JPH06103996A - Fuel cell power generating exhaust heat recovery system - Google Patents

Fuel cell power generating exhaust heat recovery system

Info

Publication number
JPH06103996A
JPH06103996A JP4254819A JP25481992A JPH06103996A JP H06103996 A JPH06103996 A JP H06103996A JP 4254819 A JP4254819 A JP 4254819A JP 25481992 A JP25481992 A JP 25481992A JP H06103996 A JPH06103996 A JP H06103996A
Authority
JP
Japan
Prior art keywords
steam
water
exhaust heat
fuel cell
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4254819A
Other languages
Japanese (ja)
Inventor
Hidekazu Sugiyama
英一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4254819A priority Critical patent/JPH06103996A/en
Publication of JPH06103996A publication Critical patent/JPH06103996A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To increase exhaust heat recovery efficiency and to miniaturise an exhaust heat recovery device by removing exhaust heat from a fuel cell power generating system as warm water and by removing excessive heat in a cell cooling water system as high-temp. steam. CONSTITUTION:Cold water such as city water is supplied to an integral type exhaust gas treatment device 9 at its low temp. side through a secondary cooling water system circulating pump 14 from a water supplying line 18. Heat exchange to the cold water and a high-temp. exhaust gas at the heat exchange part in the device 9 turns the cold water into high-temp. warm water. The warm water is supplied to a steam generator 3 at its secondary side as well as a warm water exhaust heat utilizing device 12. The warm water is additionally heated by excessive heat in a cell cooling water system and is supplied to a steam exhaust heat utilizing device 11. Meanwhile. the integral type exhaust gas treatment device 9 is provided with a function for condensing and recovering grown water vapor vaporized from an electrolyte in a fuel cell main body 1 and contained in the exhaust gas. The condensed and recovered water recovered by the device 9 is returned to a water treatment device 9 through condensation and recovery line 19 for subsequent use as a cell cooling water system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電システム
に係り、特に、排熱を利用した蒸気および温水供給シス
テム,排ガス中からの凝縮水回収およびこれらに関連し
たシステムの簡素化,機器の小形化を図った燃料電池発
電排熱回収システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system, and more particularly to a steam and hot water supply system using exhaust heat, condensed water recovery from exhaust gas and simplification of systems related thereto, The present invention relates to a miniaturized fuel cell power generation exhaust heat recovery system.

【0002】[0002]

【従来の技術】周知のように、燃料電池発電システム
は、都市ガスやプロパンガス等の燃料の有する化学エネ
ルギーを電気エネルギーに変換するもので、燃料電池本
体および都市ガスやプロパンガス等の燃料から水素を生
成する装置と、燃料電池本体で発電される直流電流を交
流電流に変換する変換装置と、燃料電池本体の動作や水
素生成に適した温度に作動ガスの温度を保つための熱交
換器等により構成されている。燃料電池本体は、水素生
成により生成された水素ガスと、空気中の酸素との結合
エネルギーを直接電気エネルギーに変換するが、これと
同時に熱も発生する。
2. Description of the Related Art As is well known, a fuel cell power generation system converts chemical energy of fuel such as city gas or propane gas into electric energy. A device for generating hydrogen, a converter for converting direct current generated by the fuel cell body into an alternating current, and a heat exchanger for maintaining the temperature of the working gas at a temperature suitable for operation of the fuel cell body and hydrogen generation Etc. The fuel cell main body directly converts the binding energy between hydrogen gas generated by hydrogen generation and oxygen in the air into electric energy, but at the same time, heat is also generated.

【0003】このように燃料電池発電システムは、化学
反応による発電のため、発電効率が高く、また大気汚染
物質の排出が少なく、しかも騒音も小さいクリーンな発
電システムとして評価されている。
As described above, the fuel cell power generation system is evaluated as a clean power generation system having high power generation efficiency, low emission of air pollutants, and low noise due to power generation by a chemical reaction.

【0004】ところで、燃料電池本体の電気化学反応を
効率よく行わせるためには、電池本体の温度を一定の温
度レベルに保つ必要があり、電池冷却水等を流し、適切
な温度に冷却している。このため、燃料電池発電システ
ムの冷却水系は、気水分離器,ポンプ,熱交換器等で構
成され、熱交換器から取出される排熱は様々な用途の熱
利用がなされている。この排熱は、一般的に温水として
取出されているが、近年では、排熱利用の用途の範囲を
拡大するために蒸気取出しの要求が強くなっている。
By the way, in order to efficiently carry out the electrochemical reaction of the fuel cell body, it is necessary to keep the temperature of the cell body at a constant temperature level. There is. Therefore, the cooling water system of the fuel cell power generation system is composed of a steam separator, a pump, a heat exchanger, etc., and exhaust heat taken out from the heat exchanger is used for various purposes. This exhaust heat is generally taken out as hot water, but in recent years, there has been a strong demand for taking out steam in order to expand the range of uses of the exhaust heat.

【0005】図4は、燃料電池発電システムの一般的な
発電負荷と総合熱効率の関係を示す特性図である。この
特性図から分かるように、発電負荷に対する発電効率は
40%であるが、温水レベルの低温排熱回収分および蒸気
レベルの高温排熱回収分をすべて利用した場合の総合熱
効率は80%以上になる。このように燃料電池発電システ
ムは、発電のみならず、排熱を系外で有効に利用するこ
とができ、排熱のうち蒸気レベルの高温廃熱、特に、乾
き飽和蒸気以上の過熱蒸気は高品位蒸気として、吸収式
冷凍機の駆動源、蒸気タービンの駆動源等の用途として
利用価値が高い。
FIG. 4 is a characteristic diagram showing the relationship between the general power generation load and the total thermal efficiency of a fuel cell power generation system. As can be seen from this characteristic diagram, the power generation efficiency for the power generation load is
Although it is 40%, the total thermal efficiency will be 80% or more when all of the low temperature exhaust heat recovery component at the hot water level and the high temperature exhaust heat recovery component at the steam level are used. As described above, the fuel cell power generation system can effectively use not only power generation but also exhaust heat outside the system, and high-temperature waste heat of vapor level out of the exhaust heat, especially superheated steam of dry saturated steam or higher is high. As grade steam, it has a high utility value as a drive source for absorption chillers and a drive source for steam turbines.

【0006】図5は、かかる排熱利用システムを取入れ
た電池冷却水の余剰熱から、電池冷却水系と分離された
二次蒸気発生系の水を加熱して蒸気を発生させる蒸気発
生器を設けた燃料電池発電システムの構成例を示すもの
である。この燃料電池発電システムにおける蒸気発生器
より発生する蒸気を排熱利用装置に供給する方法と、こ
の蒸気発生器を用いた排熱利用の多様化に対応する方法
に関する提案は既に行われている(特願平3-325738,特
願平3-325739,特願平4-3014)。
FIG. 5 shows a steam generator for heating the water of the secondary steam generating system separated from the battery cooling water system to generate steam from the excess heat of the battery cooling water incorporating the exhaust heat utilization system. 2 shows an example of the configuration of a fuel cell power generation system. Proposals have already been made regarding a method of supplying steam generated from a steam generator in this fuel cell power generation system to an exhaust heat utilization device and a method of coping with diversification of exhaust heat utilization using this steam generator ( Japanese Patent Application No. 3-325738, Japanese Patent Application No. 3-325739, Japanese Patent Application No. 4-3014).

【0007】同図に示すように、燃料極1a,空気極1
bおよび電池冷却器1cを備えた燃料電池本体1で発生
した反応熱を、電池冷却器1c内の電池冷却水と熱交換
することにより取出す。この電池冷却水は、気液二相流
となって、気水分離器2に導入される。この気水分離器
2では、気液二相流の蒸気2aを分離液化して電池冷却
水2bとし、さらにこの気水分離器2の下流に、この電
池冷却水2bの余剰熱から電池冷却水系と分離された二
次蒸気発生系の水を加熱して蒸気を発生させる蒸気発生
器3を設け、これにより温度を下げられた電池冷却水2
bを、電池冷却水循環ポンプ4により電池冷却水系温度
調整用熱交換器5および電池冷却水加熱用電気ヒータ6
を通して電池冷却器1cに導く電池冷却水系を構成して
いる。
As shown in the figure, the fuel electrode 1a and the air electrode 1
The reaction heat generated in the fuel cell body 1 including the b and the cell cooler 1c is taken out by exchanging heat with the cell cooling water in the cell cooler 1c. This battery cooling water is introduced into the steam separator 2 as a gas-liquid two-phase flow. In the steam / water separator 2, the steam 2a of the gas-liquid two-phase flow is separated and liquefied to form the battery cooling water 2b, and further to the downstream of the steam / water separator 2, the excess heat of the battery cooling water 2b is removed from the battery cooling water system. The battery cooling water 2 whose temperature is lowered by providing the steam generator 3 for heating the separated water of the secondary steam generation system to generate steam
b is a battery cooling water circulation pump 4, a heat exchanger 5 for adjusting the temperature of the battery cooling water system, and an electric heater 6 for heating the battery cooling water.
To form a battery cooling water system that leads to the battery cooler 1c.

【0008】一方、気水分離器2で分離された蒸気2a
は、燃料改質蒸気過熱器21に供給され、この燃料改質蒸
気過熱器21にて加熱された過熱蒸気となる。この過熱蒸
気は、燃料とある一定の比率で混合され燃料改質器7内
の触媒層を通過し、この間に燃料改質器7内のバーナ燃
料ガスにより加熱される吸熱反応により、水素リッチガ
スに変成されるさらに、燃料改質器7内で燃焼したバー
ナ燃焼排ガスは、燃料改質器7から排出された後、燃料
改質器7のバーナ空気予熱気8の加熱源として空気と熱
交換し、その後流で燃料電池本体1での排空気と合流
し、一体型排ガス処理装置9に流入する。この一体型排
ガス処理装置9には燃料電池本体1の電解質から気散し
生成水蒸気とともに排出されるリン酸溶液を含む排ガス
からリン酸を除去回収するリン酸除去機能と、排気ガス
中に含まれる生成水蒸気を凝縮回収する凝縮水回収機能
とを備えており、その機能,構成に関する提案は既に行
われている(特願平4-203650)。
On the other hand, the steam 2a separated by the steam separator 2a
Is supplied to the fuel reforming steam superheater 21 and becomes superheated steam heated by the fuel reforming steam superheater 21. This superheated steam is mixed with fuel at a certain ratio and passes through the catalyst layer in the fuel reformer 7, and during this period, the endothermic reaction is heated by the burner fuel gas in the fuel reformer 7 to become hydrogen-rich gas. Further, the burner flue gas that has been burnt in the fuel reformer 7 is discharged from the fuel reformer 7 and then exchanges heat with air as a heating source of the burner air preheated air 8 of the fuel reformer 7. In the subsequent flow, it merges with the exhaust air from the fuel cell body 1 and flows into the integrated exhaust gas treatment device 9. The integrated exhaust gas treatment device 9 has a phosphoric acid removing function of removing and recovering phosphoric acid from exhaust gas containing a phosphoric acid solution which is diffused from the electrolyte of the fuel cell main body 1 and discharged together with the generated steam, and is included in the exhaust gas. It has a condensate water recovery function for condensing and recovering the generated water vapor, and proposals for its function and configuration have already been made (Japanese Patent Application No. 4-203650).

【0009】ところで、従来の燃料電池発電システム
は、燃料電池発電システムの電池冷却水系からの排熱も
まとめて回収すべく、同図に示すように、ブローダウン
水熱交換器10,一体型排ガス処理装置9および電池冷却
水系温度調整用熱交換器5の低温側に電池冷却水系とは
別ループの二次冷却水系を形成して排熱を回収し、この
二次冷却水系で回収した排熱を温水排熱利用装置12等に
供給する温水排熱回収熱交換器13にて二次冷却水系の温
度を下げ、さらに二次冷却水系冷却器15にて外気に余剰
熱を放出し、これを二次冷却水系循環ポンプ14にて循環
させる方式にしている。
By the way, in the conventional fuel cell power generation system, in order to collectively recover the exhaust heat from the cell cooling water system of the fuel cell power generation system, as shown in FIG. On the low temperature side of the processing device 9 and the heat exchanger 5 for adjusting the temperature of the battery cooling water system, a secondary cooling water system which is a loop different from the battery cooling water system is formed to recover exhaust heat, and the exhaust heat recovered by this secondary cooling water system Is supplied to the hot water exhaust heat utilization device 12 etc. to lower the temperature of the secondary cooling water system in the hot water exhaust heat recovery heat exchanger 13, and the secondary cooling water system cooler 15 further releases excess heat to the outside air. The secondary cooling water circulation pump 14 is used for circulation.

【0010】なお、図中3aは二次発生蒸気、3bは高
温水、3cは蒸気発生器ブローライン、3dは蒸気発生
器給水ライン、3eは蒸気供給ライン、16は水処理装
置、17は蒸気発生器補給水ポンプ、18は補給水供給ライ
ン、19は凝縮回収ライン、20はブローダウン水ライン、
24は蒸気発生器バイパスライン、25は蒸気発生器入口制
御弁、26は蒸気発生器バイパス制御弁を示す。
In the figure, 3a is secondary generated steam, 3b is high temperature water, 3c is a steam generator blow line, 3d is a steam generator feed line, 3e is a steam supply line, 16 is a water treatment device, and 17 is steam. Generator make-up water pump, 18 make-up water supply line, 19 condensation recovery line, 20 blowdown water line,
24 is a steam generator bypass line, 25 is a steam generator inlet control valve, and 26 is a steam generator bypass control valve.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来の
このような排熱利用装置を取入れた燃料電池発電システ
ムでは、燃料電池発電システムからの排熱回収に係わる
装置、特に蒸気発生器3,一体型排ガス処理装置9等の
熱交換器類が個別分散化し、排熱利用装置を取入れた燃
料電池発電装置が大型化し、コストアップにつながるる
こと、また、配管ルートが長くなり、システムから回収
した排熱の系外への放熱量の増大による排熱回収効率が
低下する等の問題がある。
However, in a fuel cell power generation system incorporating such a conventional exhaust heat utilization device, a device relating to exhaust heat recovery from the fuel cell power generation system, particularly the steam generator 3, integrated type The heat exchangers such as the exhaust gas treatment device 9 are individually dispersed, the fuel cell power generation device incorporating the exhaust heat utilization device becomes large, which leads to an increase in cost, and the piping route becomes long, and the exhaust gas recovered from the system is exhausted. There is a problem that the exhaust heat recovery efficiency decreases due to an increase in the amount of heat released to the outside of the system.

【0012】さらに、一体型排ガス処理装置9、電池冷
却水系温度調整用熱交換器5の低温側に流す冷媒を二次
冷却水系とし、排熱回収系とは別個の循環ループを形成
し、この二次冷却水系で回収した余剰熱をさらに排熱回
収系に伝達することにしているため、例えば、排熱のう
ち蒸気レベルの高温排熱の回収効率が低下したり、シス
テムからのトータル排熱回収効率が低下する等の問題が
ある。
Further, the refrigerant flowing to the low temperature side of the integrated exhaust gas treatment device 9 and the heat exchanger 5 for adjusting the temperature of the battery cooling water system is the secondary cooling water system, and a circulation loop separate from the exhaust heat recovery system is formed. Since the surplus heat recovered in the secondary cooling water system is further transferred to the exhaust heat recovery system, for example, the recovery efficiency of high-temperature exhaust heat at the steam level of the exhaust heat is reduced, or the total exhaust heat from the system is reduced. There are problems such as a decrease in collection efficiency.

【0013】その上、燃料電池発電システムの余剰熱か
ら高温排熱を取出す形態として常に高温水のみを必要と
するばかりでなく、高温蒸気,特に高品位排熱として乾
き飽和蒸気以上の過熱蒸気で取出すことが吸収式冷凍機
の駆動源、蒸気タービンの駆動源等の用途として利用価
値が高いが、従来のシステムでは、これら高温水と高温
過熱蒸気を同時に取出すことができず、排熱利用の多様
化に対応すること、また、高品位排熱として排熱を取出
すことが困難である。
In addition, not only high temperature water is always required as a form of extracting high temperature exhaust heat from the surplus heat of the fuel cell power generation system, but also high temperature steam, particularly high quality exhaust heat, is used as superheated steam above dry saturated steam. Taking out is highly useful as a drive source for an absorption chiller, a drive source for a steam turbine, etc., but in the conventional system, it is not possible to take out these high-temperature water and high-temperature superheated steam at the same time, so that the exhaust heat cannot be used. It is difficult to cope with diversification and to take out waste heat as high-quality waste heat.

【0014】そこで、本発明の目的は、排熱利用の多様
化に対応でき、また、排熱回収効率を高めるように燃料
電池発電システムからの排熱回収系統を構成し、排熱回
収に係わる装置、特に、蒸気発生器,一体型排ガス処理
装置の熱交換器類の性能を向上させ、これらの排熱回収
機器の容積を小形化し、かつ、安価にして排熱利用の多
様化に対応することができるようにした燃料電池発電排
熱回収システムを提供することにある。
Therefore, an object of the present invention is to deal with diversification of exhaust heat utilization, and to configure an exhaust heat recovery system from a fuel cell power generation system so as to enhance exhaust heat recovery efficiency, and to be involved in exhaust heat recovery. The equipment, especially the steam generator and the heat exchangers of the integrated exhaust gas treatment equipment are improved in performance, the volume of these exhaust heat recovery equipment is made smaller, and the cost is reduced to cope with the diversification of exhaust heat utilization. An object of the present invention is to provide a fuel cell power generation exhaust heat recovery system capable of performing the above.

【0015】[0015]

【課題を解決するための手段】本発明は、上記した目的
を達成するため、燃料極,空気極および冷却器を備えた
燃料電池本体と、燃料を改質して生成された水素ガスを
燃料電池本体の燃料極に供給する燃料改質器と、燃料電
池本体の反応熱により加熱され二相流化した電池冷却水
を気相と水相に分離する気水分離器と、この気水分離器
で分離された電池冷却水を燃料電池本体の冷却器を通し
て循環させる電池冷却水系と、気水分離器の水相出口下
流側に電池冷却水系の余剰熱により電池冷却水と分離さ
れた形で蒸気排熱利用装置の二次蒸気発生系に蒸気を供
給する蒸気発生器および燃料電池本体の電解質から気散
し生成水蒸気と共に排出されるリン酸溶液を含む排ガス
からリン酸を除去回収するリン酸除去機能と排ガス中に
含まれる生成水蒸気を凝縮回収する凝縮水回収機能を備
えた一体型排ガス処理装置により構成された燃料電池発
電システムにおいて、冷水を一体型排ガス処理装置の低
温側に供給し、排ガスの熱エネルギーにより冷水を温水
にして温水排熱利用装置等に供給すると共に、この温水
を前記蒸気発生器の二次側に供給するように構成したも
のである。
In order to achieve the above object, the present invention provides a fuel cell main body having a fuel electrode, an air electrode and a cooler, and a hydrogen gas produced by reforming the fuel. A fuel reformer that supplies the fuel electrode of the cell body, a steam separator that separates the two-phase flow-cooled cell cooling water that is heated by the reaction heat of the fuel cell into a gas phase and a water phase, and this gas-water separation Cell cooling water system that circulates the cell cooling water separated by the reactor through the cooler of the fuel cell main body, and in the form separated from the cell cooling water by the excess heat of the cell cooling water system on the downstream side of the water phase outlet of the steam separator. Phosphoric acid that removes and recovers phosphoric acid from exhaust gas containing phosphoric acid solution that diffuses from the electrolyte of the steam generator and fuel cell body that supplies steam to the secondary steam generation system of the steam exhaust heat utilization device and that is discharged with the generated steam Removal function and generated water vapor contained in exhaust gas In a fuel cell power generation system that is configured with an integrated exhaust gas treatment device that has a condensed water recovery function that condenses and recovers The hot water is supplied to the exhaust heat utilization device and the like, and the hot water is supplied to the secondary side of the steam generator.

【0016】一方、蒸気発生器の低温側において発生し
た飽和二次蒸気を排ガスの熱エネルギーによりさらに乾
き飽和蒸気以上の過熱蒸気にする蒸気過熱器を、蒸気発
生器の二次側後流に設置し、これによって燃料電池冷却
水系と分離された形で蒸気排熱利用装置の二次蒸気発生
系に乾き飽和蒸気以上の過熱蒸気を燃料電池冷却水系と
分離された形で蒸気排熱利用装置の二次蒸気発生系に供
給でき、または燃料改質器の燃料改質系にも乾き飽和蒸
気以上の過熱蒸気を供給することができるようにしたも
のである。
On the other hand, a steam superheater for converting the saturated secondary steam generated on the low temperature side of the steam generator into the superheated steam which is further dried by the thermal energy of the exhaust gas and is equal to or higher than the saturated steam is installed downstream of the steam generator. As a result, the superheated steam that is dry and saturated steam or more is separated from the fuel cell cooling water system in the form of being separated from the fuel cell cooling water system in the secondary steam generation system of the steam exhaust heat utilization device. The secondary steam generation system can be supplied to the fuel reformer system of the fuel reformer, or the superheated steam of dry saturated steam or more can be supplied.

【0017】[0017]

【作用】冷水を一体型排ガス処理装置の低温側に供給す
ることにより、排気ガス中に含まれる生成水蒸気を凝縮
回収する凝固水回収機能を向上させることができ、一体
型排ガス処理装置自体の容積を小形化することができ
る。これは、従来の一体型排ガス処理装置の低温側に流
す冷媒を二次冷却水系とし、排熱回収系はこの二次冷却
水系から排熱回収熱交換器を通して別個の排熱回収循環
ループを形成している場合に比べ、例えば市水のよう
に、より低温の冷水を一体型排ガス処理装置の低温側に
供給することができることによる。また、一体型排ガス
処理装置の低温側で得られたこの排熱回収温水を蒸気発
生器の二次側に供給することにより蒸気発生器の蒸発性
能を向上させることができ、蒸気発生器の容積も小形化
することができ、従来に比べプラント設備も小形化でき
ると共に、経済的にも有利となる。
By supplying cold water to the low temperature side of the integrated exhaust gas treatment equipment, the function of collecting coagulated water for condensing and recovering the generated water vapor contained in the exhaust gas can be improved, and the volume of the integrated exhaust gas treatment equipment itself can be increased. Can be miniaturized. This uses a secondary cooling water system as the refrigerant flowing to the low temperature side of the conventional integrated exhaust gas treatment device, and the exhaust heat recovery system forms a separate exhaust heat recovery circulation loop from this secondary cooling water system through the exhaust heat recovery heat exchanger. This is because, as compared with the case where it is performed, lower temperature cold water such as city water can be supplied to the low temperature side of the integrated exhaust gas treatment device. Also, by supplying this exhaust heat recovery hot water obtained on the low temperature side of the integrated exhaust gas treatment device to the secondary side of the steam generator, the evaporation performance of the steam generator can be improved, and the volume of the steam generator can be increased. Can be downsized, the plant equipment can be downsized as compared with the conventional one, and it is economically advantageous.

【0018】また、蒸気発生器を一体型排ガス処理装置
の二次側後流に設置し、一体型排ガス処理装置の低温側
において冷水から加熱された温水を、温水排熱利用装置
等に供給するのみでなく、この温水を前記蒸気発生器の
二次側にも供給するようにしたことにより、一体型排ガ
ス処理装置の二次側で加熱された温水を、電池冷却水系
の余剰熱によりさらに加熱し、電池冷却水系とは分離し
た形で蒸気を発生させることができ、蒸気発生の効率を
向上させることができる。
Further, the steam generator is installed in the downstream of the secondary side of the integrated exhaust gas treatment device, and hot water heated from cold water on the low temperature side of the integrated exhaust gas treatment device is supplied to the hot water exhaust heat utilization device or the like. Not only this, this hot water is also supplied to the secondary side of the steam generator, so that the hot water heated on the secondary side of the integrated exhaust gas treatment device is further heated by the excess heat of the battery cooling water system. However, steam can be generated separately from the battery cooling water system, and the efficiency of steam generation can be improved.

【0019】一方、乾き飽和蒸気以上の過熱蒸気にする
蒸気過熱器を、二次蒸気発生系の蒸気発生器の後流に設
置することにより、燃料電池冷却水系と分離された形で
蒸気排熱利用装置の二次蒸気発生系に乾き飽和蒸気以上
の過熱蒸気を供給することができ、一体型排ガス処理装
置、蒸気発生器および蒸気過熱器を含めた燃料電池発電
システムからの排熱回収装置をまとめて一体化すること
が可能となり、プラントからの温水、蒸気の同時排熱回
収性能を高め、排熱回収装置の容積を小形化することが
できると共に、この一体化した排熱回収装置をプラント
外置きに設置することも可能で、各々のプラントの排熱
利用形態に合わせた一体化排熱回収装置の設計が容易に
行える。
On the other hand, by installing a steam superheater for making superheated steam of dry saturated steam or more into the downstream of the steam generator of the secondary steam generation system, the steam exhaust heat is separated from the fuel cell cooling water system. It is possible to supply superheated steam above dry saturated steam to the secondary steam generation system of the utilization device, and to provide an exhaust heat recovery device from the fuel cell power generation system including the integrated exhaust gas treatment device, steam generator and steam superheater. It is possible to integrate them together, improve the simultaneous exhaust heat recovery performance of hot water and steam from the plant, and reduce the volume of the exhaust heat recovery device. It can be installed externally, and the integrated exhaust heat recovery device can be easily designed according to the exhaust heat utilization form of each plant.

【0020】[0020]

【実施例】以下、本発明の実施例を図面を参照して説明
する。なお、以下の説明においては、図5と同一部分に
は同符号を付し、重複した説明は省略する。図1は、本
発明の一実施例(以下、第1実施例という)に係る燃料
電池発電排熱回収システムの構成図である。この第1実
施例は、市水等の冷水を一体型排ガス処理装置の低温側
に供給し、排ガスの熱エネルギーにより冷水を温水にし
温水排熱利用装置等に供給するようにしたシステム構成
にある。
Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same parts as those in FIG. 5 will be assigned the same reference numerals and overlapping description will be omitted. FIG. 1 is a configuration diagram of a fuel cell power generation exhaust heat recovery system according to an embodiment of the present invention (hereinafter referred to as a first embodiment). The first embodiment has a system configuration in which cold water such as city water is supplied to the low temperature side of the integrated exhaust gas treatment device, and the cold water is turned into hot water by the heat energy of the exhaust gas and is supplied to the hot water exhaust heat utilization device and the like. .

【0021】また、第1実施例の系統が図4に示す従来
の燃料電池発電排熱回収システムの系統と相違する点
は、従来の系統では、一体型排ガス処理装置9、電池冷
却水系温度調整用熱交換器5の低温側に流す冷媒を二次
冷却水系とし、排熱回収系とは別個の循環ループを形成
していたのを、これら熱交換器の二次側(低温側)に流
す冷媒を直接排熱利用装置に排熱を供給する排熱回収系
とし、さらに、これと同一の排熱回収系に、気水分離器
2の水相出口下流側に電池冷却水系の余剰熱により燃料
電池冷却水系と分離された形で蒸気排熱利用装置11の二
次蒸気発生系に蒸気を供給する蒸気発生器3を加えるこ
とにより、同一の排熱回収系から蒸気排熱および温水排
熱の両形態の排熱回収を可能にすると共に、排熱回収系
に関わる装置をまとめて一体化することを可能にし、プ
ラントからの排熱回収効率の向上を図り、排熱回収系の
コンパクト化を図った点である。
The system of the first embodiment differs from the system of the conventional fuel cell power generation exhaust heat recovery system shown in FIG. 4 in that the conventional system has an integrated exhaust gas treatment device 9 and a battery cooling water system temperature adjustment. The coolant that flows to the low temperature side of the heat exchanger 5 is a secondary cooling water system, and a circulation loop that is separate from the exhaust heat recovery system is formed. The refrigerant flows to the secondary side (low temperature side) of these heat exchangers. The refrigerant is used as an exhaust heat recovery system that directly supplies the exhaust heat to the exhaust heat utilization device, and the same exhaust heat recovery system is provided on the downstream side of the water phase outlet of the steam separator 2 by the excess heat of the battery cooling water system. By adding a steam generator 3 for supplying steam to the secondary steam generation system of the steam exhaust heat utilization device 11 in a form separated from the fuel cell cooling water system, steam exhaust heat and hot water exhaust heat can be extracted from the same exhaust heat recovery system. Both types of exhaust heat recovery are possible, and equipment related to the exhaust heat recovery system is installed. It makes it possible to integrate Te, aims to improve the exhaust heat recovery efficiency from the plant, a point which attained the size of the exhaust heat recovery system.

【0022】同図において、まず、市水等の冷水を、補
給水供給ライン18から二次冷却水系循環ポンプ14を介し
て一体型排ガス処理装置9の低温側入口ノズルから流入
させ、この一体型排ガス処理装置9内部の熱交換部にお
いて高温排ガスと熱交換することによって高温水とし、
一体型排ガス処理装置9の低温側出口ノズルから流出さ
せる。
In the figure, first, cold water such as city water is introduced from the makeup water supply line 18 through the secondary cooling water system circulation pump 14 from the low temperature side inlet nozzle of the integrated exhaust gas treatment device 9, and this integrated type High-temperature water is produced by exchanging heat with high-temperature exhaust gas in the heat exchange section inside the exhaust gas treatment device 9,
It is made to flow out from the low temperature side exit nozzle of the integrated exhaust gas treatment device 9.

【0023】この一体型排ガス処理装置9には、燃料電
池本体1の電解質から気散し、生成水蒸気とともに排出
されるリン酸溶液を含む排ガスからリン酸を除去回収す
るリン酸除去機能と、排ガス中に含まれる生成水蒸気を
凝縮回収する凝縮水回収機能を備えており、その機能,
構成に関する詳細は、既に提案(特願平4-203650)した
ものに記載しているとおりである。なお、この一体型排
ガス処理装置9にて回収した凝縮回収水は、凝縮回収水
ライン19を介して水処理装置16に戻し、電池冷却水系と
して再利用することにより、プラントに外部からの補給
水なしでの自立運転が可能となる。
The integrated exhaust gas treatment device 9 has a phosphoric acid removing function for removing and recovering phosphoric acid from exhaust gas containing a phosphoric acid solution which is diffused from the electrolyte of the fuel cell body 1 and is discharged together with the generated steam. It has a condensed water recovery function that condenses and recovers the generated water vapor contained in it.
The details of the structure are as described in the one already proposed (Japanese Patent Application No. 4-203650). The condensed and recovered water recovered by the integrated exhaust gas treatment device 9 is returned to the water treatment device 16 through the condensed and recovered water line 19 and reused as a battery cooling water system, so that makeup water from the outside is supplied to the plant. Independent operation is possible without it.

【0024】一体型排ガス処理装置9にて排ガスの熱エ
ネルギーにより加熱された低温側出口ノズルから流出し
た市水等の温水は、排熱利用側の利用形態,運転条件に
より温水として利用する場合には、そのまま温水排熱利
用装置12に供給しても良いが、さらに高温水,高温蒸気
として排熱利用装置に供給するには、同図に示すよう
に、一時側に加熱源として電池冷却水を流す蒸気発生器
3の二次側に供給する。これにより、蒸気発生器3で
は、一体型排ガス処理装置9にて加熱された温水が蒸気
発生器3の二次側に供給され、一時側の加熱源としての
電池冷却水と熱交換することにより、蒸気発生器3の上
部より飽和蒸気が発生する。
Hot water such as city water flowing out from the low temperature side exit nozzle heated by the thermal energy of the exhaust gas in the integrated exhaust gas treatment device 9 is used as hot water depending on the usage form and operating conditions on the waste heat utilization side. May be supplied to the hot water exhaust heat utilization device 12 as it is, but in order to further supply it to the exhaust heat utilization device as high temperature water or high temperature steam, as shown in FIG. Is supplied to the secondary side of the steam generator 3. As a result, in the steam generator 3, the hot water heated by the integrated exhaust gas treatment device 9 is supplied to the secondary side of the steam generator 3 and exchanges heat with the battery cooling water as the heat source on the temporary side. Saturated steam is generated from the upper part of the steam generator 3.

【0025】同図においては、この飽和蒸気を蒸気供給
ライン3eを通じてさらに二次蒸気過熱器22に供給する
ようにしているが、蒸気排熱利用装置11の蒸気排熱の利
用形態により、飽和蒸気またはそれ以下の湿り蒸気にて
も十分な利用価値がある場合には、この蒸気発生器3に
て発生した蒸気を蒸気供給ライン3eを通じて、二次蒸
気過熱器22を通さずにそのまま蒸気排熱利用装置11に供
給する系統にすることもできる。また、蒸気発生器3の
下部よりブローする温水は、蒸気発生器ブローライン3
cを通じて温水排熱利用装置12に供給し温水排熱として
利用することができる。
In the figure, this saturated steam is further supplied to the secondary steam superheater 22 through the steam supply line 3e. However, depending on the usage form of the steam exhaust heat of the steam exhaust heat utilization device 11, the saturated steam is Or, if the moist steam of less than that has a sufficient utility value, the steam generated by the steam generator 3 is directly passed through the steam supply line 3e without passing through the secondary steam superheater 22 and exhausted from the steam exhaust heat. A system for supplying to the utilization device 11 can also be used. In addition, the warm water blown from the lower part of the steam generator 3 is used in the steam generator blow line 3
It can be supplied to the hot water exhaust heat utilization device 12 through c and used as the hot water exhaust heat.

【0026】このように第1実施例では、一体型排ガス
処理装置9にて加熱された温水を蒸気発生器3の二次側
に供給し、電池冷却水系の余剰熱により加熱して蒸気を
発生させているので、電池冷却水系と分離した状態で蒸
気を蒸気排熱利用装置11に供給でき、また、蒸気発生器
3の二次側でさらに加熱された高温水を温水排熱利用装
置12に高温水として同時に供給できるので、排熱利用の
多様化に対応させることができると共に、排熱利用側の
ニーズに合ったプラントの運転が行い易くなり、燃料電
池発電システムの排熱を利用した蒸気および温水供給シ
ステムの利用効率の向上を図ることができる。
As described above, in the first embodiment, the hot water heated by the integrated exhaust gas treatment apparatus 9 is supplied to the secondary side of the steam generator 3 and heated by the excess heat of the battery cooling water system to generate steam. Therefore, the steam can be supplied to the steam exhaust heat utilization device 11 in a state of being separated from the battery cooling water system, and the high temperature water further heated on the secondary side of the steam generator 3 can be supplied to the hot water exhaust heat utilization device 12. Since it can be supplied as high-temperature water at the same time, it is possible to respond to diversification of exhaust heat utilization, facilitate operation of the plant that meets the needs of the exhaust heat utilization side, and use steam that uses the exhaust heat of the fuel cell power generation system. Also, the utilization efficiency of the hot water supply system can be improved.

【0027】また、蒸気発生器3の二次側において発生
した飽和二次蒸気を、燃料改質器7のバーナ燃焼排ガス
の熱エネルギーによりさらに乾き飽和蒸気以上の過熱蒸
気にするため、二次蒸気過熱器22を蒸気発生器3の二次
側後流に設置し、燃料電池冷却水系と分離された形で蒸
気排熱利用装置11の二次蒸気発生系に乾き飽和蒸気以上
の過熱蒸気を供給できるようにしている。図中の系統で
は、二次蒸気過熱器22を燃料改質器7を出たバーナ燃焼
排ガスがバーナ空気予熱器8で空気と熱交換した後流に
配置しているが、燃料改質器7の性能,プラントの効率
により、二次蒸気発生器22を燃料改質器7の直後、すな
わち、バーナ空気予熱器8の手前に配置することができ
ることは言うまでもない。
Further, the saturated secondary steam generated on the secondary side of the steam generator 3 is further dried by the thermal energy of the burner combustion exhaust gas of the fuel reformer 7 to become superheated steam equal to or higher than the saturated steam, so that the secondary steam A superheater 22 is installed downstream of the steam generator 3 to supply dry steam to the secondary steam generation system of the steam exhaust heat utilization device 11 in a form separated from the fuel cell cooling water system. I am able to do it. In the system in the figure, the secondary steam superheater 22 is arranged in the downstream of the burner combustion exhaust gas that has exited the fuel reformer 7 after heat exchange with the air in the burner air preheater 8. It is needless to say that the secondary steam generator 22 can be arranged immediately after the fuel reformer 7, that is, before the burner air preheater 8 depending on the performance and the efficiency of the plant.

【0028】さらに、第1実施例では、冷水を一体型排
ガス処理装置9の低温側に供給することにより、排ガス
中に含まれる生成水蒸気を凝縮回収する凝縮水回収機能
を向上させることができ、一体型排ガス処理装置9自体
の容積を小形化することができ、その上、一体型排ガス
処理装置9の低温側で予熱され温水になった排熱回収水
を蒸気発生器3の二次側に供給することにより、蒸気発
生器3の蒸発性能を向上させることができ、これにより
蒸気発生器3の容積も小形化することができ、従来に比
べプラント設備も小形化できると共に、経済的にも有利
である。
Furthermore, in the first embodiment, by supplying cold water to the low temperature side of the integrated exhaust gas treatment apparatus 9, the condensed water recovery function of condensing and recovering the generated water vapor contained in the exhaust gas can be improved, The volume of the integrated exhaust gas treatment device 9 itself can be reduced, and in addition, the exhaust heat recovered water that has been preheated to be warm water on the low temperature side of the integrated exhaust gas treatment device 9 is supplied to the secondary side of the steam generator 3. By supplying the steam generator 3, the vaporization performance of the steam generator 3 can be improved, whereby the volume of the steam generator 3 can be downsized, and the plant equipment can be downsized as compared with the conventional one, and also economically. It is advantageous.

【0029】ここで、第1実施例の運転制御例について
説明する。同図に示すように、温水供給三方弁23を一体
型排ガス処理装置9の低温側温水出口配管ラインに設置
することにより、一体型排ガス処理装置9の低温側にて
発生した温水を温水排熱利用装置12等に供給すると同時
に、蒸気発生器3の二次側にもこの温水を供給でき、こ
の温水供給三方弁23の開度を調節することにより、蒸気
排熱利用装置11の二次蒸気発生系に蒸気を供給する蒸気
供給量と、温水排熱利用装置12等に温水を供給する温水
供給量の割合をコントロールすることが可能となる。こ
の場合、気水分離器2と蒸気発生器3とを結ぶ電池冷却
水系の配管ラインには蒸気発生器入口制御弁25が設けら
れ、この配管ラインのバイパス配管ライン24に蒸気発生
器バイパス制御弁26が設けられてる。なお、図中27は蒸
気発生器3内の蒸気圧力を検出する圧力検出器、28は蒸
気発生器3の圧力を所定値に保つように圧力調整弁29の
開度を調節する圧力コントローラである。
Here, an example of the operation control of the first embodiment will be described. As shown in the figure, by installing the hot water supply three-way valve 23 in the low temperature side hot water outlet piping line of the integrated exhaust gas treatment device 9, the hot water generated on the low temperature side of the integrated exhaust gas treatment device 9 is discharged into the hot water exhaust heat. This hot water can be supplied to the secondary side of the steam generator 3 at the same time as it is supplied to the utilization device 12 and the like, and the secondary steam of the steam exhaust heat utilization device 11 can be adjusted by adjusting the opening degree of the hot water supply three-way valve 23. It is possible to control the ratio between the steam supply amount for supplying steam to the generation system and the hot water supply amount for supplying hot water to the hot water exhaust heat utilization device 12 and the like. In this case, a steam generator inlet control valve 25 is provided in the battery cooling water system piping line that connects the steam separator 2 and the steam generator 3, and the steam generator bypass control valve is provided in the bypass piping line 24 of this piping line. 26 is provided. In the figure, 27 is a pressure detector that detects the steam pressure in the steam generator 3, and 28 is a pressure controller that adjusts the opening of the pressure adjusting valve 29 so that the pressure of the steam generator 3 is maintained at a predetermined value. .

【0030】次に、以上のように構成された第1実施例
の作用を説明する。いま、蒸気排熱回収が行われず温水
排熱回収のみが行われている状態で燃料電池本体1が運
転されているときは、バイパス配管ライン24の蒸気発生
器バイパス制御弁26が開、蒸気発生器入口制御弁25が
閉、温水供給三方弁23は全量温水排熱利用装置12側に流
す状態にある。このような状態にあるとき、蒸気発生器
3より蒸気を蒸気を発生させて蒸気排熱回収運転を行う
には、バイパス配管ライン24の蒸気発生器バイパス制御
弁26を閉じ、蒸気発生器入口制御弁25を開の状態にする
と、気水分離器2より流出する電池冷却水が蒸気発生器
3の一次側を通じて電池冷却水系を流れる。このとき、
電池冷却水系からの排熱回収量、蒸気排熱利用装置11の
二次蒸気発生系への二次蒸気供給条件および温水排熱利
用装置12への温水排熱供給条件に応じて温水供給三方弁
23の開度を調整する。これにより、蒸気発生器3の二次
蒸気発生系の水が電池冷却水系の余剰熱により加熱され
て蒸気および高温水を発生し、蒸気は圧力調整弁29を介
して蒸気排熱利用装置11に供給される。蒸気排熱利用装
置11で蒸気排熱利用後の凝縮温水は、温水排熱利用装置
12に供給するか、または図示してはいないが再び蒸気発
生器3の二次側に戻される。この場合、圧力コントロー
ラ28により開度制御され、蒸気発生器3内の蒸気圧力が
一定に保持される以上説明したようなシステムを形成す
ることにより、一体型排ガス処理装置9,蒸気発生器3
および二次蒸気過熱器22を、同図に一点鎖線で囲んで示
すように各機器を合体させ、例えば高温排熱回収一体型
熱交換器30とし、プラント各々の高温排熱利用装置の利
用形態,運転条件に合わせた設計をすることが可能にな
る。
Next, the operation of the first embodiment constructed as above will be described. Now, when the fuel cell main body 1 is operated in a state where only the hot water exhaust heat recovery is being performed without the steam exhaust heat recovery being performed, the steam generator bypass control valve 26 of the bypass piping line 24 is opened to generate the steam. The device inlet control valve 25 is closed, and the hot water supply three-way valve 23 is in a state in which the entire amount is supplied to the hot water exhaust heat utilization device 12 side. In such a state, in order to perform steam exhaust heat recovery operation by generating steam from the steam generator 3, the steam generator bypass control valve 26 of the bypass piping line 24 is closed to control the steam generator inlet. When the valve 25 is opened, the battery cooling water flowing out from the steam separator 2 flows through the battery cooling water system through the primary side of the steam generator 3. At this time,
A hot water supply three-way valve depending on the amount of exhaust heat recovered from the battery cooling water system, the secondary steam supply condition to the secondary steam generation system of the steam exhaust heat utilization device 11 and the hot water exhaust heat supply condition to the hot water exhaust heat utilization device 12.
Adjust the opening of 23. As a result, the water in the secondary steam generation system of the steam generator 3 is heated by the excess heat of the battery cooling water system to generate steam and high-temperature water, and the steam is supplied to the steam exhaust heat utilization device 11 via the pressure adjustment valve 29. Supplied. The condensed hot water after the steam exhaust heat utilization device 11 has used the steam exhaust heat is a hot water exhaust heat utilization device.
12 or is returned to the secondary side of the steam generator 3 again (not shown). In this case, the opening degree is controlled by the pressure controller 28, and the steam pressure in the steam generator 3 is kept constant, thereby forming the system as described above, so that the integrated exhaust gas treatment device 9 and the steam generator 3 are formed.
And the secondary steam superheater 22 is combined with each equipment as shown by the one-dot chain line in the same figure, for example, as a high temperature exhaust heat recovery integrated heat exchanger 30, the utilization form of the high temperature exhaust heat utilization device of each plant , It becomes possible to design according to operating conditions.

【0031】なお、本発明は、以上説明した第1実施例
に限定されるものではなく、種々変形実施できる。
The present invention is not limited to the above-described first embodiment, but various modifications can be made.

【0032】図2は、本発明の第2実施例に係る燃料電
池発電排熱回収システムの構成図である。この第2実施
例は、第1実施例と同様の一体型排ガス処理装置9と蒸
気発生器3の組合わせで、一体型排ガス処理装置9の低
温側に水処理装置16にて水処理された冷水を供給し、一
体型排ガス処理装置9にて加熱された水処理されている
温水を、蒸気発生器3の二次側に供給するのみでなく、
この温水を電池冷却水系にも供給できるように水処理温
水三方弁31を一体型排ガス処理装置9の低温側温水出口
配管ラインに設置し、この水処理温水三方弁31の開度を
調節することにより、蒸気排熱利用装置11の二次蒸気発
生系に蒸気を供給する蒸気供給量と、電池冷却水系に水
処理された温水を供給する温水供給量の割合をコントロ
ールできるようにもしたもので、その他の系統,運転動
作等は、第1実施例と同様である。
FIG. 2 is a block diagram of a fuel cell power generation exhaust heat recovery system according to a second embodiment of the present invention. In the second embodiment, the combination of the integrated exhaust gas treatment device 9 and the steam generator 3 as in the first embodiment is used, and the low temperature side of the integrated exhaust gas treatment device 9 is treated by the water treatment device 16. Not only the cold water is supplied and the hot water that has been water-treated by the integrated exhaust gas treatment device 9 is supplied to the secondary side of the steam generator 3,
A water treatment hot water three-way valve 31 is installed in the low temperature side hot water outlet piping line of the integrated exhaust gas treatment device 9 so that this hot water can be supplied also to the battery cooling water system, and the opening degree of the water treatment hot water three way valve 31 is adjusted. This makes it possible to control the ratio of the steam supply amount that supplies steam to the secondary steam generation system of the steam exhaust heat utilization device 11 and the hot water supply amount that supplies hot water that has undergone water treatment to the battery cooling water system. The other system, operation and the like are the same as those in the first embodiment.

【0033】このように、一体型排ガス処理装置9の低
温側温水出口配管ラインに水処理温水三方弁31を設置す
ることにより、一体型排ガス処理装置9において冷水か
ら加熱された温水を、この水処理温水三方弁32の開度を
調節することにより、蒸気排熱利用装置11の二次蒸気発
生系に蒸気を供給する蒸気供給量と、温水排熱利用装置
等に温水を供給する温水供給量の割合をコントロールす
ることができ、また、一体型排ガス処理装置9の低温側
に水処理装置16にて水処理された冷水から加熱された温
水を、蒸気発生器3の二次側に供給するのみでなく、こ
の一体型排ガス処理装置9で加熱された温水を電池冷却
水系に供給できるよう水処理温水三方弁31を一体型排ガ
ス処理装置9の低温側温水出口配管ラインに設置し、こ
の水処理温水三方弁32の開度を調節することにより、蒸
気排熱利用装置11の二次蒸気発生系に蒸気を供給する蒸
気供給量と、電池冷却水系に水処理された温水を供給す
る温水供給量の割合をコントロールすることができ、燃
料電池発電システムとその排熱利用装置との冗長性を向
上させることができる。ここで、第2実施例でも第1実
施例と同様に、蒸気発生器3の二次側において、発生し
た飽和二次蒸気を、燃料改質器7のバーナ燃料排ガスの
熱エネルギーによりさらに乾き飽和蒸気以上の過熱蒸気
にするため、二次蒸気過熱器22を蒸気発生器3の二次側
後流に設置し、燃料電池冷却水系と分離された形で蒸気
排熱利用装置11の二次蒸気発生系に乾き飽和蒸気以上の
過熱蒸気を供給できるようにしてる。図中の系統では、
二次蒸気過熱器22を燃料改質器7を出たバーナ燃焼排ガ
スがバーナ空気予熱器8で空気と熱交換した後流に配置
しているが、燃料改質器7の性能、プラントの効率によ
り、二次蒸気過熱器22を燃料改質器7の直後、すなわ
ち、バーナ空気予熱器8の手前に配置することもできる
ことはいうまでもない。
As described above, by installing the water treatment hot water three-way valve 31 in the low temperature side hot water outlet piping line of the integrated exhaust gas treatment device 9, the hot water heated from the cold water in the integrated exhaust gas treatment device 9 is replaced with this water. By adjusting the opening degree of the treatment hot water three-way valve 32, the steam supply amount for supplying steam to the secondary steam generation system of the steam exhaust heat utilization device 11 and the hot water supply amount for supplying hot water to the hot water exhaust heat utilization device, etc. Can be controlled, and hot water heated from cold water treated by the water treatment device 16 to the low temperature side of the integrated exhaust gas treatment device 9 is supplied to the secondary side of the steam generator 3. In addition, a water treatment hot water three-way valve 31 is installed in the low temperature side hot water outlet piping line of the integrated exhaust gas treatment device 9 so that the hot water heated by the integrated exhaust gas treatment device 9 can be supplied to the battery cooling water system. Treated hot water three-way valve 32 By adjusting the opening degree, the ratio of the steam supply amount for supplying steam to the secondary steam generation system of the steam exhaust heat utilization device 11 and the hot water supply amount for supplying the hot water treated with water to the battery cooling water system is controlled. Therefore, the redundancy between the fuel cell power generation system and the exhaust heat utilization device can be improved. Here, similarly to the first embodiment, in the second embodiment, the saturated secondary steam generated on the secondary side of the steam generator 3 is further dried and saturated by the thermal energy of the burner fuel exhaust gas of the fuel reformer 7. A secondary steam superheater 22 is installed downstream of the steam generator 3 in order to obtain superheated steam above the steam, and the secondary steam of the steam exhaust heat utilization device 11 is separated from the fuel cell cooling water system. It is designed to be able to supply dry steam with superheated steam over saturated steam. In the system in the figure,
The secondary steam superheater 22 is arranged in the downstream of the burner combustion exhaust gas that has exited the fuel reformer 7 after heat exchange with the air in the burner air preheater 8, but the performance of the fuel reformer 7 and the efficiency of the plant Therefore, it goes without saying that the secondary steam superheater 22 can be arranged immediately after the fuel reformer 7, that is, before the burner air preheater 8.

【0034】さらに、第2実施例では、二次蒸気過熱器
22にて発生した過熱蒸気を、配管を介して燃料改質器7
の燃料改質系にも吸熱反応に必要な蒸気として供給する
ことができるように、気水分離器2において発生した気
相(飽和蒸気)2aが燃料改質蒸気過熱器21にて加熱さ
れた下流の燃料改質器過熱蒸気供給配管33に合流させる
系統にしている。これにより、燃料改質器7の燃料改質
系に二次蒸気過熱器22にて発生した過熱蒸気を供給で
き、従来気水分離器2において発生させて燃料改質器7
の燃料改質系に供給していた気相(飽和蒸気)の量を減
少させることができ、また、燃料改質蒸気過熱器21の要
量も小さくし、または省略することができ、燃料改質系
もコンパクト化を図ることができる。
Further, in the second embodiment, the secondary steam superheater is used.
The superheated steam generated in 22 is passed through the pipe to the fuel reformer 7
The gas phase (saturated steam) 2a generated in the steam-water separator 2 was heated by the fuel reforming steam superheater 21 so that it could be supplied to the fuel reforming system of FIG. The system is such that it joins the downstream fuel reformer superheated steam supply pipe 33. As a result, the superheated steam generated in the secondary steam superheater 22 can be supplied to the fuel reforming system of the fuel reformer 7, and it is generated in the conventional steam-water separator 2 to generate the fuel reformer 7.
The amount of the vapor phase (saturated steam) supplied to the fuel reforming system can be reduced, and the required amount of the fuel reforming steam superheater 21 can be reduced or omitted. The quality system can also be made compact.

【0035】ところで、気水分離器2において発生した
気相(飽和蒸気)2aは、燃料改質蒸気過熱器21にて加
熱され燃料改質器7の燃料改質系の吸熱反応に必要な蒸
気として供給するが、燃料改質器7での必要蒸気量以上
の余剰蒸気分は、気水分離器飽和蒸気供給配管34を通し
て蒸気発生器3の二次蒸気発生系へ合流させ、二次蒸気
過熱器22で加熱し、上記したように蒸気排熱利用装置11
に過熱蒸気を供給したり、燃料改質器7の燃料改質系に
過熱蒸気を供給するのに供することもできる。このよう
に、電池冷却水系で発生した蒸気を直接二次蒸気発生系
へ合流させることは、温度レベルの高い蒸気を取出せる
利点はあるが、二次蒸気発生系,蒸気排熱利用装置11の
二次蒸気循環ループが電池冷却水系と同一の配管系にあ
るため、二次蒸気循環ループに漏洩防止対策や水質汚染
対策が必要になり、使用装置、材料の高級化、水処理装
置の容量アップとなるという欠点がある。しかしなが
ら、電池冷却水系の余剰蒸気排熱を利用する手段として
は、有効である。なお、図中35は凝縮回収水熱交換器、
36は水処理冷水供給ポンプを示す。
The gas phase (saturated steam) 2a generated in the steam-water separator 2 is heated by the fuel reforming steam superheater 21 and is necessary for the endothermic reaction of the fuel reforming system of the fuel reformer 7. However, the surplus steam amount exceeding the required steam amount in the fuel reformer 7 is merged into the secondary steam generation system of the steam generator 3 through the steam / water separator saturated steam supply pipe 34, and the secondary steam is overheated. It is heated in the reactor 22 and, as described above, the steam exhaust heat utilization device 11
It can also be used to supply superheated steam to the fuel reformer 7 or to supply superheated steam to the fuel reforming system of the fuel reformer 7. Thus, directly joining the steam generated in the battery cooling water system to the secondary steam generation system has an advantage that the steam having a high temperature level can be taken out, but the secondary steam generation system and the steam exhaust heat utilization device 11 Since the secondary steam circulation loop is in the same piping system as the battery cooling water system, it is necessary to take measures to prevent leakage and water pollution in the secondary steam circulation loop, increasing the capacity of equipment used, materials, and water treatment equipment. There is a drawback that However, it is effective as a means for utilizing the excess steam exhaust heat of the battery cooling water system. In the figure, 35 is a condensed and recovered water heat exchanger,
36 indicates a water treatment cold water supply pump.

【0036】第2実施例も以上説明したようなシステム
を形成することにより、第1実施例と同様に一体型排ガ
ス処理装置9,蒸気発生器3および蒸気過熱器22を、同
図に一点鎖線で囲んで示すように各機器を合体させ、例
えば高温排熱回収一体型熱交換器30とし、プラント各々
の高温排熱利用装置の利用形態,運転条件に合わせた設
計をすることが可能になる。
In the second embodiment as well, by forming the system as described above, the integrated exhaust gas treatment device 9, the steam generator 3 and the steam superheater 22 are shown in the same dotted line as in the first embodiment. It becomes possible to combine the respective equipment as shown in the box with, for example, a high temperature exhaust heat recovery integrated heat exchanger 30 and design according to the usage pattern and operating conditions of the high temperature exhaust heat utilization device of each plant. .

【0037】図3は、本発明の第3実施例に係る燃料電
池発電排熱回収システムの構成図である。この第3実施
例は、電池冷却水ブローダウン水を水処理装置16に戻す
際に、一体型排ガス処理装置9の低温側出口の温水と熱
交換し温水の温度をさらに上げ、高温排熱回収効率をさ
らに高めるべく、ブローダウン水温水予熱器37を一体型
排ガス処理装置9の低温側出口配管ラインに設置した系
統としたものである。上記した第1実施例では、電池冷
却水循環ポンプ4の下流にブローダウン水ライン20を設
け、電池冷却水ブローダウン水を水処理装置16に戻す系
統において、この高温水であるブローダウン水の熱量を
有効に利用するために、ブローダウン水熱交換器10を設
置し、ここで一体型排ガス処理装置9にて加熱され温水
供給三方弁23を経て温水排熱利用装置12へ供給する温水
と熱交換し温水の温度をさらに上げ、温水排熱回収効率
を高めると同時に、ブローダウン水の温度を下げ、水処
理装置16に戻す系統にしている。これに対して、第3実
施例では、ブローダウン水温水予熱器37を一体型排ガス
処理装置9の低温側出口配管ラインに設置した系統とし
ているため、高温排熱回収効率がさらに高くなり、さら
に、ブローダウン水温水予熱器37は水−水熱交換である
ため、一般のシェル&チューブ式またはプレート式熱交
換器等で対応することができ、しかも排熱回収系の水が
ブローダウン水温水予熱器37で飽和水近傍まで加熱され
ているため、蒸気発生器3の容積を小さくできることか
ら、プラント設備の小形化と、コストダウンを図ること
ができる。なお、その他の系統,運転動作等は、第1実
施例および第2実施例と同様である。
FIG. 3 is a configuration diagram of a fuel cell power generation exhaust heat recovery system according to a third embodiment of the present invention. In the third embodiment, when the battery cooling water blowdown water is returned to the water treatment device 16, it exchanges heat with the hot water at the low temperature side outlet of the integrated exhaust gas treatment device 9 to further raise the temperature of the hot water and recover the high temperature exhaust heat. In order to further improve the efficiency, the blowdown water warm water preheater 37 is installed in the low temperature side outlet piping line of the integrated exhaust gas treatment device 9. In the above-described first embodiment, the blowdown water line 20 is provided downstream of the battery cooling water circulation pump 4, and in the system that returns the battery cooling water blowdown water to the water treatment device 16, the heat quantity of the blowdown water that is this high temperature water. In order to effectively use the water, a blowdown water heat exchanger 10 is installed, where hot water and heat which are heated by the integrated exhaust gas treatment device 9 and are supplied to the hot water exhaust heat utilization device 12 via the hot water supply three-way valve 23. A system is provided in which the temperature of the blowdown water is lowered and then returned to the water treatment device 16 while at the same time increasing the temperature of the hot water by exchanging the hot water to enhance the recovery efficiency of the hot water exhaust heat. On the other hand, in the third embodiment, since the blowdown water warm water preheater 37 is installed in the low temperature side outlet piping line of the integrated exhaust gas treatment device 9, the high temperature exhaust heat recovery efficiency is further increased, and Since the blowdown water warm water preheater 37 is a water-water heat exchanger, it can be used with a general shell & tube type or plate type heat exchanger, and the waste heat recovery system water is the blowdown water warm water. Since the preheater 37 is heated to the vicinity of saturated water, the volume of the steam generator 3 can be reduced, so that the plant equipment can be downsized and the cost can be reduced. The other system, operation, etc. are similar to those of the first and second embodiments.

【0038】以上、説明したようなシステムを形成する
ことにより、第1実施例および第2実施例と同様に一体
型排ガス処理装置9,蒸気発生器3および蒸気過熱器22
を、同図に一点鎖線で囲んで示すように各機器を合体さ
せ、例えば高温排熱回収一体型熱交換器30とし、プラン
ト各々の高温排熱利用装置の利用形態,運転条件に合わ
せた設計とすることが可能になる。
By forming the system as described above, the integrated exhaust gas treating apparatus 9, the steam generator 3 and the steam superheater 22 are formed as in the first and second embodiments.
Is combined with each equipment as shown by the one-dot chain line in the figure to form, for example, a high temperature exhaust heat recovery integrated heat exchanger 30, which is designed according to the usage pattern and operating conditions of the high temperature exhaust heat utilization device of each plant. It becomes possible to

【0039】また、第3の実施例は、同図に示すように
水処理装置16の上流に、3基の熱交換器を合体させ、例
えば、低温排熱回収一体型熱交換器38としている。これ
も上記した高温排熱回収一体型熱交換器30と同様に、高
温側には蒸気発生器3からの高温水、ブローダウン水温
水予熱器37を通過してきたブローダウン水、一体型排ガ
ス処理装置9からの凝縮回収水をそれぞれ流し、低温側
の市水等の冷水と熱交換することにより低温側の流体を
加熱し、電池冷却水系温度調整用熱交換器5の低温側に
加熱された流体を供給することができ、低温排熱回収系
のコンパクト化を図ることができる。
Further, in the third embodiment, as shown in the figure, three heat exchangers are combined upstream of the water treatment device 16 to form, for example, a low temperature exhaust heat recovery integrated heat exchanger 38. . Similar to the high temperature exhaust heat recovery integrated heat exchanger 30 described above, the high temperature water from the steam generator 3, the blowdown water that has passed through the blowdown water warm water preheater 37, and the integrated exhaust gas treatment are also provided on the high temperature side. The condensed and recovered water from the device 9 is respectively flowed to heat the low temperature side fluid by exchanging heat with cold water such as low temperature side city water, and is heated to the low temperature side of the battery cooling water system temperature adjusting heat exchanger 5. A fluid can be supplied, and the low temperature exhaust heat recovery system can be made compact.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、燃
料電池発電システムから排熱を温水として取出すことが
できるだけでなく、電池冷却水系の余剰熱を電池冷却水
系とは分離した形で間接的に利用価値の高い高温蒸気と
して取出すことができ、加えて温水排熱および蒸気排熱
利用装置の負荷とマッチしたプラントの運転制御が容易
になると共に、従来に比べプラント設備、特に、排熱回
収機器の小形化を図ることができ、経済的にも有利であ
る。
As described above, according to the present invention, not only the waste heat from the fuel cell power generation system can be taken out as hot water, but also the surplus heat of the cell cooling water system is indirectly separated from the cell cooling water system. Can be extracted as high-temperature steam with high utility value, and in addition to facilitating operation control of the plant that matches the load of the hot water exhaust heat and steam exhaust heat utilization equipment, plant equipment, especially exhaust heat The size of the recovery device can be reduced, which is economically advantageous.

【0041】さらに、二次蒸気過熱器を設けることによ
り、乾き飽和蒸気以上の過熱蒸気を燃料電池冷却水系と
分離された形で蒸気排熱利用装置の二次蒸気発生系に供
給することができると共に、一体型排ガス処理装置,蒸
気発生器および蒸気過熱器を含めた燃料電池発電システ
ムからの排熱回収装置をまとめて一体型することが可能
となり、プラントからの温水、蒸気の同時排熱回収性能
を向上し、排熱回収装置の容積を小形化に対応すること
ができる燃料電池発電排熱回収システムを提供できる。
Further, by providing the secondary steam superheater, the superheated steam of dry saturated steam or more can be supplied to the secondary steam generation system of the steam exhaust heat utilization device in a form separated from the fuel cell cooling water system. At the same time, it is possible to integrate the exhaust heat recovery device from the fuel cell power generation system including the integrated exhaust gas treatment device, steam generator and steam superheater into one unit, and recover the simultaneous exhaust heat of hot water and steam from the plant. It is possible to provide a fuel cell power generation exhaust heat recovery system which has improved performance and can cope with downsizing of the exhaust heat recovery device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例(第2実施例)を示す構成
図。
FIG. 2 is a configuration diagram showing another embodiment (second embodiment) of the present invention.

【図3】本発明のさらに異なる他の実施例(第3実施
例)を示す構成図。
FIG. 3 is a configuration diagram showing still another embodiment (third embodiment) of the present invention.

【図4】本発明に関連する燃料電池発電システムの発電
負荷と総合熱効率の関係を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between the power generation load and the total thermal efficiency of the fuel cell power generation system related to the present invention.

【図5】従来の燃料電池発電システムの一例を示す構成
図。
FIG. 5 is a configuration diagram showing an example of a conventional fuel cell power generation system.

【符号の説明】[Explanation of symbols]

1…燃料電池、2…気水分離器、3…蒸気発生器、3e
…蒸気供給ライン、4…電池冷却循環ポンプ、5…温度
調整用熱交換器、7…燃料改質器、8…バーナ空気予熱
器、9…一体型排ガス処理装置、10…ブローダウン水熱
交換器、11…蒸気排熱利用装置、12…温水排熱利用装
置、14…二次冷却水循環ポンプ、16…水処理装置、18…
補給水供給ライン、21…燃料改質蒸気過熱器、22…二次
蒸気過熱器、23…温水供給三方弁。
1 ... Fuel cell, 2 ... Steam separator, 3 ... Steam generator, 3e
... Steam supply line, 4 ... Battery cooling circulation pump, 5 ... Heat exchanger for temperature adjustment, 7 ... Fuel reformer, 8 ... Burner air preheater, 9 ... Integrated exhaust gas treatment device, 10 ... Blowdown water heat exchange Heater, 11 ... Steam waste heat utilization device, 12 ... Hot water waste heat utilization device, 14 ... Secondary cooling water circulation pump, 16 ... Water treatment device, 18 ...
Make-up water supply line, 21 ... Fuel reforming steam superheater, 22 ... Secondary steam superheater, 23 ... Hot water supply three-way valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料極,空気極および冷却器を備えた燃
料電池本体と、燃料を改質して生成された水素ガスを前
記燃料電池本体の燃料極に供給する燃料改質器と、前記
燃料電池本体の反応熱により加熱され二相流化した電池
冷却水を気相と水相に分離する気水分離器と、この気水
分離器で分離された前記電池冷却水を前記燃料電池本体
の冷却器を通して循環させる電池冷却水系と、前記気水
分離器の水相出口下流側に前記電池冷却水系の余剰熱に
より前記電池冷却水と分離された形で蒸気排熱利用装置
の二次蒸気発生系に蒸気を供給する蒸気発生器および前
記燃料電池本体の電解質から気散した生成水蒸気と共に
排出されるリン酸溶液を含む排ガスからリン酸を除去回
収するリン酸除去機能と排ガス中に含まれる生成水蒸気
を凝縮回収する凝縮水回収機能を備えた一体型排ガス処
理装置により構成された燃料電池発電システムにおい
て、冷水を前記一体型排ガス処理装置の低温側に供給
し、排ガスの熱エネルギーにより前記冷水を温水にして
温水排熱利用装置等に供給すると共に、この温水を前記
蒸気発生器の二次側に供給するようにしたことを特徴と
する燃料電池発電排熱回収システム。
1. A fuel cell main body having a fuel electrode, an air electrode, and a cooler, a fuel reformer for supplying hydrogen gas produced by reforming fuel to the fuel electrode of the fuel cell main body, A steam separator for separating the two-phase flow of the cell cooling water heated by the reaction heat of the fuel cell body into a gas phase and an aqueous phase, and the cell cooling water separated by the steam separator to the fuel cell body. A battery cooling water system to be circulated through the cooler, and a secondary steam of the steam exhaust heat utilization device in a form separated from the battery cooling water by the excess heat of the battery cooling water system on the downstream side of the water phase outlet of the steam separator. Included in the exhaust gas and a phosphoric acid removing function for removing and recovering phosphoric acid from the exhaust gas containing a phosphoric acid solution discharged together with the steam generator that supplies steam to the generating system and the generated steam vaporized from the electrolyte of the fuel cell main body Condensation to condense and recover the generated steam In a fuel cell power generation system composed of an integrated exhaust gas treatment device having a water recovery function, cold water is supplied to the low temperature side of the integrated exhaust gas treatment device, and the cold water is turned into warm water by the heat energy of the exhaust gas, and the hot water is exhausted. A fuel cell power generation exhaust heat recovery system characterized in that the hot water is supplied to a secondary side of the steam generator while being supplied to a utilization device or the like.
JP4254819A 1992-09-24 1992-09-24 Fuel cell power generating exhaust heat recovery system Pending JPH06103996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254819A JPH06103996A (en) 1992-09-24 1992-09-24 Fuel cell power generating exhaust heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254819A JPH06103996A (en) 1992-09-24 1992-09-24 Fuel cell power generating exhaust heat recovery system

Publications (1)

Publication Number Publication Date
JPH06103996A true JPH06103996A (en) 1994-04-15

Family

ID=17270317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254819A Pending JPH06103996A (en) 1992-09-24 1992-09-24 Fuel cell power generating exhaust heat recovery system

Country Status (1)

Country Link
JP (1) JPH06103996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012932A3 (en) * 1998-08-26 2000-06-02 Plug Power Inc Integrated fuel processor, furnace, and fuel cell system for providing heat and electrical power to a building
JP2001325982A (en) * 2000-05-15 2001-11-22 Toyota Motor Corp Combined system of fuel cell apparatus and hot-water supply equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012932A3 (en) * 1998-08-26 2000-06-02 Plug Power Inc Integrated fuel processor, furnace, and fuel cell system for providing heat and electrical power to a building
JP2001325982A (en) * 2000-05-15 2001-11-22 Toyota Motor Corp Combined system of fuel cell apparatus and hot-water supply equipment
JP4513168B2 (en) * 2000-05-15 2010-07-28 トヨタ自動車株式会社 Combined system of fuel cell device and hot water supply device

Similar Documents

Publication Publication Date Title
JP4358338B2 (en) Fuel cell combined power plant system
JPS5828176A (en) Fuel-cell generation system
JP2889807B2 (en) Fuel cell system
JPH06103996A (en) Fuel cell power generating exhaust heat recovery system
JP2920018B2 (en) Fuel cell power generator
JP3461909B2 (en) Fuel cell surplus steam condensation type steam separator
JP2005282512A (en) Effective use device of surplus steam
JPH0766829B2 (en) Fuel cell system with exhaust heat energy recovery device
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JPH09223510A (en) Fuel cell power generation device
JP3936310B2 (en) Fuel cell surplus steam condensing type steam separator
JPH06283184A (en) Fuel cell indirect steam extracting type steam separator of fuel cell power generation system
JPH06283185A (en) Integrated exhaust heat recovery device of fuel cell power generation system
JPH05159792A (en) Fuel cell generating system
JP3670467B2 (en) Fuel cell power generation system
JP3202292B2 (en) Fuel cell power generation system
JPH0443567A (en) Waste heat recovery device for fuel cell power generating plant
JP4453226B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JPH0541229A (en) Fuel cell power generating system
JPS5828177A (en) Fuel-cell generation plant
JP3796887B2 (en) Fuel cell power generation system
JP4440676B2 (en) Fuel cell power generation hot water supply system
JPH08255623A (en) Power generating system for fuel cell
JP3287502B2 (en) Power generation method using fuel cell
JPH10334932A (en) Fuel cell power generating system and exhaust heat recovery method therein