JPH06283184A - Fuel cell indirect steam extracting type steam separator of fuel cell power generation system - Google Patents

Fuel cell indirect steam extracting type steam separator of fuel cell power generation system

Info

Publication number
JPH06283184A
JPH06283184A JP5070616A JP7061693A JPH06283184A JP H06283184 A JPH06283184 A JP H06283184A JP 5070616 A JP5070616 A JP 5070616A JP 7061693 A JP7061693 A JP 7061693A JP H06283184 A JPH06283184 A JP H06283184A
Authority
JP
Japan
Prior art keywords
steam
water
cooling water
fuel cell
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5070616A
Other languages
Japanese (ja)
Inventor
Hidekazu Sugiyama
英一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5070616A priority Critical patent/JPH06283184A/en
Publication of JPH06283184A publication Critical patent/JPH06283184A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To maintain a function of condensation and recovery by feeding superheated steam to a secondary steam generation system while condensing superfluous steam in a cooling water system, and by keeping the amount of steam at a favorable level. CONSTITUTION:A steam generator inlet control valve 23 is provided on a piping line that connects a steam separator 30 with a steam generator 30. The control valve 23 and the generator 3 are bypassed and cooling water 2b is made to flow in a circulation pump 4 by a bypass line 22. The water of a secondary steam generation system is heated by cell cooling water and steam is formed in the generator 3, and saturated steam flows into a heat exchanger group 32 provided on the part of the steam 2a of the separator 30. The saturated steam is further heated and superheated steam is thus formed. The outer surface of the heat exchanger group 32 is formed into two- phase flow in the cooler of a cell main body, condensing the superfluous steam of the cooling water system while maintaining the amount of steam formed by the separator 30 at a favorable level. After the superheated steam is utilized by a steam waste heat utilization device it, it becomes condensed water and is returned to the generator 3 by a make-up water pump 17. The function of condensing and recovering cooling water is thus maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電システム
に係り、特に排熱を利用した蒸気および温水供給システ
ム、並びにこれに関連した間接蒸気取出し型気水分離器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system, and more particularly to a steam and hot water supply system utilizing waste heat, and an indirect steam extraction type steam separator associated therewith.

【0002】[0002]

【従来の技術】燃料電池発電システムは、都市ガスやプ
ロパンガス等の燃料の有する化学エネルギーを電気エネ
ルギーに変換するもので、燃料電池本体および都市ガス
やプロパンガス等の燃料から水素を生成する装置、燃料
電池本体で発電される直流電流を交流電流に変換する変
換装置、燃料電池本体の動作や水素生成に適した温度に
作動ガスの温度を保つための熱交換器等により構成され
ている。燃料電池本体は水素生成により生成された水素
ガスと、空気中の酸素との結合エネルギーを直接電気エ
ネルギーに変換するが、これと同時に熱も発生する。
2. Description of the Related Art A fuel cell power generation system converts chemical energy of fuel such as city gas or propane gas into electric energy, and is an apparatus for producing hydrogen from a fuel cell main body and fuel such as city gas or propane gas. , A converter for converting a direct current generated in the fuel cell main body into an alternating current, a heat exchanger for maintaining the temperature of the working gas at a temperature suitable for the operation of the fuel cell main body and hydrogen generation, and the like. The fuel cell main body directly converts the binding energy between hydrogen gas generated by hydrogen generation and oxygen in the air into electric energy, but at the same time, heat is also generated.

【0003】このように燃料電池発電システムは、化学
反応による発電のため、発電効率が高く、また大気汚染
物質の排出が少なく、しかも騒音も小さいクリーンな発
電システムとして評価されている。
As described above, the fuel cell power generation system is evaluated as a clean power generation system having high power generation efficiency, low emission of air pollutants, and low noise due to power generation by a chemical reaction.

【0004】ところで、燃料電池本体の電気化学反応を
効率よく行わせるためには、燃料電池本体の温度を一定
の温度レベルに保つ必要があり、電池冷却水等を流し、
適切な温度に冷却される。このため、燃料電池発電シス
テムの冷却水系は、気水分離器,ポンプ,熱交換器等で
構成され、熱交換器から取出される排熱は様々な用途の
熱利用がなされている。この排熱は、一般的に温水とし
て取出されているが、近年では、排熱利用の用途の範囲
を拡大するために蒸気取出しの要求が強くなっている。
By the way, in order to efficiently carry out the electrochemical reaction of the fuel cell body, it is necessary to keep the temperature of the fuel cell body at a constant temperature level.
It is cooled to an appropriate temperature. Therefore, the cooling water system of the fuel cell power generation system is composed of a steam separator, a pump, a heat exchanger, etc., and exhaust heat taken out from the heat exchanger is used for various purposes. This exhaust heat is generally taken out as hot water, but in recent years, there has been a strong demand for taking out steam in order to expand the range of uses of the exhaust heat.

【0005】図7は、燃料電池発電システムの一般的な
発電負荷と総合熱効率の関係を示す特性図である。この
特性図から分かるように、発電負荷に対する発電効率は
40%であるが、温水レベルの低温排熱回収分および蒸気
レベルの高温排熱回収分を全て利用した場合の総合熱効
率は80%以上になる。このように燃料電池発電システム
は、発電のみならず、排熱を系外で有効に利用すること
ができ、特に排熱のうち蒸気レベルの高温排熱は、吸収
式冷凍機の駆動源、蒸気タービンの駆動源等の用途とし
て利用価値が高い。
FIG. 7 is a characteristic diagram showing a relationship between general power generation load and total thermal efficiency of a fuel cell power generation system. As can be seen from this characteristic diagram, the power generation efficiency for the power generation load is
Although it is 40%, the total thermal efficiency is 80% or more when all of the low temperature exhaust heat recovery component at the hot water level and the high temperature exhaust heat recovery component at the steam level are used. As described above, the fuel cell power generation system can effectively use not only power generation but also exhaust heat outside the system. Especially, high temperature exhaust heat of vapor level out of the exhaust heat is used as a drive source of the absorption chiller, steam. It is highly useful as a drive source for turbines.

【0006】図8および図9は、従来のかかる排熱利用
システムを採用した電池冷却水の余剰熱から、電池冷却
水系と分離された二次蒸気発生系の水を加熱して蒸気を
発生させる蒸気発生器を設けた燃料電池発電システムの
構成例を示すものである。この蒸気発生器より発生する
蒸気を排熱利用装置に供給する方法およびこの蒸気発生
器を用いた排熱利用の多様化に対応する方法に関して
は、既に種々の提案がなされている。
8 and 9 heat the water of the secondary steam generating system separated from the battery cooling water system to generate steam from the surplus heat of the battery cooling water adopting the conventional exhaust heat utilization system. 1 shows an example of the configuration of a fuel cell power generation system provided with a steam generator. Various proposals have already been made regarding a method of supplying steam generated from the steam generator to an exhaust heat utilization device and a method of coping with diversification of exhaust heat utilization using the steam generator.

【0007】図8および図9に示すように、燃料極1
a,空気極1bおよび電池冷却器1cを備えた燃料電池
本体1で発生した反応熱は、電池冷却器1c内の電池冷
却水と熱交換することにより取出されるが、その電池冷
却水は気液二相流となって、気水分離器2に導入され
る。この気水分離器2では、気液二相流の蒸気2aを分
離液化して電池冷却水2bとし、さらにこの気水分離器
2の下流に設けた蒸気発生器3において、この電池冷却
水2bの余剰熱から電池冷却水系と分離された二次蒸気
発生系の水を加熱して蒸気を発生させ、これにより温度
を下げられた電池冷却水2bを電池冷却水循環ポンプ4
により温度調整用熱交換器5および電池冷却水加熱用電
気ヒータ6を介して電池冷却器1cに導くようにした電
池冷却水系を構成している。
As shown in FIGS. 8 and 9, the fuel electrode 1
a, the reaction heat generated in the fuel cell main body 1 including the air electrode 1b and the cell cooler 1c is taken out by exchanging heat with the cell cooling water in the cell cooler 1c. It becomes a liquid two-phase flow and is introduced into the steam separator 2. In the steam / water separator 2, the steam 2a of the gas-liquid two-phase flow is separated and liquefied into a battery cooling water 2b, and in the steam generator 3 provided downstream of the steam / water separator 2, the battery cooling water 2b is discharged. The water in the secondary steam generation system separated from the battery cooling water system is heated from the excess heat of to generate steam, and the battery cooling water 2b whose temperature is lowered by this is generated in the battery cooling water circulation pump 4
Thus, the battery cooling water system is configured to be guided to the battery cooler 1c through the temperature adjusting heat exchanger 5 and the battery cooling water heating electric heater 6.

【0008】一方、気水分離器2で分離された蒸気2a
は、燃料改質蒸気過熱器21に供給され、この燃料改質蒸
気過熱器21にて加熱され過熱蒸気となり、この過熱蒸気
は燃料とある一定の比率で混合され燃料改質器7内の触
媒層を通過し、この間に燃料改質器7内のバーナ燃焼ガ
スにより加熱される吸熱反応により、水素リッチガスに
変成される。
On the other hand, the steam 2a separated by the steam separator 2a
Is supplied to the fuel reforming steam superheater 21 and is heated by the fuel reforming steam superheater 21 to become superheated steam. This superheated steam is mixed with fuel at a certain ratio and the catalyst in the fuel reformer 7 is heated. The hydrogen-rich gas is converted by the endothermic reaction of passing through the layer and being heated by the burner combustion gas in the fuel reformer 7 during this period.

【0009】図8に示す構成の場合、燃料改質器7内で
燃焼したバーナ燃焼排ガスは、燃料改質器7から排出さ
れた後、燃料改質器7のバーナ空気予熱器8の加熱源と
して空気と熱交換し、その後流で燃料電池本体1での排
空気と合流し、一体型排ガス処理装置9に流入する。こ
の一体型排ガス処理装置9には、燃料電池本体1の電解
質から気散し、生成水蒸気とともに排出されるリン酸溶
液を含む排ガスからリン酸を除去回収するリン酸除去機
能と、排ガス中に含まれる生成水蒸気を凝縮回収する凝
縮水回収機能を具備しており、その機能,構成に関する
提案は既になされている。
In the case of the structure shown in FIG. 8, the burner combustion exhaust gas burned in the fuel reformer 7 is discharged from the fuel reformer 7, and then the heating source of the burner air preheater 8 of the fuel reformer 7. As a result, the heat is exchanged with the air, and after that, it merges with the exhaust air in the fuel cell main body 1 and flows into the integrated exhaust gas treatment device 9. The integrated exhaust gas treatment device 9 has a phosphoric acid removing function of removing and recovering phosphoric acid from exhaust gas containing a phosphoric acid solution which is diffused from the electrolyte of the fuel cell main body 1 and is discharged together with the generated steam, and a phosphoric acid removing function included in the exhaust gas. It has a condensed water recovery function that condenses and recovers the generated water vapor that is generated, and proposals regarding its function and configuration have already been made.

【0010】また、蒸気発生器3の二次側で発生した飽
和蒸気は、蒸気供給ライン3eを介して蒸気排熱利用装
置11の二次蒸気発生系に供給されて利用された後、凝縮
水となり、蒸気発生器補給水ポンプ17により凝縮水戻り
配管3dを介して蒸気発生器3の下側(液相側)に戻さ
れる。一体型排ガス処理装置9の一次側で生成、回収し
た排ガス中の凝縮水は、凝縮水回収ライン19を介して水
処理装置16に導入され、ここで水処理された冷却水を気
水分離器2の下流側に戻す構成としている。
The saturated steam generated on the secondary side of the steam generator 3 is supplied to the secondary steam generating system of the steam exhaust heat utilization device 11 through the steam supply line 3e and used, and then the condensed water is condensed. And is returned to the lower side (liquid phase side) of the steam generator 3 through the condensed water return pipe 3d by the steam generator makeup water pump 17. The condensed water in the exhaust gas generated and collected on the primary side of the integrated exhaust gas treatment device 9 is introduced into the water treatment device 16 through the condensed water recovery line 19, and the cooling water treated here is steam-water separator. It is configured to return to the downstream side of 2.

【0011】なお、図中、3aは二次発生蒸気,3bは
高温水,3cは蒸気発生器ブローライン,10はブローダ
ウン水熱交換器、13は温水排熱回収熱交換器、15は二次
冷却水系冷却器、18は補給水供給ライン,19は凝縮回収
水ライン、20はブローダウン水ライン,22は蒸気発生器
バイパスライン,23は蒸気発生器入口制御弁、24は蒸気
発生器バイパス制御弁を示す。
In the figure, 3a is secondary steam, 3b is high temperature water, 3c is a steam generator blow line, 10 is blowdown water heat exchanger, 13 is hot water exhaust heat recovery heat exchanger, and 15 is secondary. Secondary cooling water cooler, 18 make-up water supply line, 19 condensate recovery water line, 20 blowdown water line, 22 steam generator bypass line, 23 steam generator inlet control valve, 24 steam generator bypass The control valve is shown.

【0012】図9に示す構成の場合は、蒸気発生器3の
二次側で発生した飽和蒸気を、燃料改質器7から排出さ
れた燃焼排ガスを加熱源とする二次蒸気過熱器25におい
てさらに加熱することにより、過熱蒸気として蒸気供給
ライン3eを介して蒸気排熱利用装置11の二次蒸気発生
系に供給する構成とし、排熱利用装置に高品位な過熱蒸
気を供給している。
In the case of the configuration shown in FIG. 9, the saturated steam generated on the secondary side of the steam generator 3 is used in the secondary steam superheater 25 which uses the combustion exhaust gas discharged from the fuel reformer 7 as a heating source. By further heating, the superheated steam is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11 via the steam supply line 3e, and high-quality superheated steam is supplied to the exhaust heat utilization device.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、従来の
このような蒸気排熱利用装置を採用した燃料電池発電シ
ステムにおいては、燃料電池本体1の電池冷却器1cよ
り気液二相流となって取出した電池冷却水の気相分の
内、燃料改質器7への必要供給量以上の余剰蒸気分を凝
縮回収させる機能がなく、電池冷却水系の温度を燃料電
池本体1にとって適切な温度に維持するのが困難である
という問題があった。
However, in the conventional fuel cell power generation system which employs such a steam exhaust heat utilization device, it is extracted from the cell cooler 1c of the fuel cell body 1 as a gas-liquid two-phase flow. There is no function of condensing and recovering excess vapor of the required amount of supply to the fuel reformer 7 in the vapor phase of the cell cooling water, and the temperature of the cell cooling water system is maintained at an appropriate temperature for the fuel cell main body 1. There was a problem that it was difficult to do.

【0014】ここで、燃料改質器7への必要供給量以上
の余剰蒸気分が気水分離器2内に発生することについて
は、燃料電池本体1の運転性能を上げるために、例え
ば、電池冷却水量を減らして、燃料電池本体1内部の電
池冷却器1cの温度分布が均一になるように、ある飽和
温度の気液二相流領域を増やそうとする場合、電池冷却
器1c出口の気相分の比率が増えること等が考えられ
る。
Here, in order to improve the operating performance of the fuel cell main body 1, for example, in order to improve the operation performance of the fuel cell main body 1, it is necessary to prevent the excess steam content exceeding the required supply amount to the fuel reformer 7 from occurring in the steam separator 2. When the amount of cooling water is reduced to increase the gas-liquid two-phase flow region at a certain saturation temperature so that the temperature distribution of the cell cooler 1c inside the fuel cell body 1 becomes uniform, the gas phase at the outlet of the cell cooler 1c is increased. It is possible that the ratio of minutes will increase.

【0015】また、一方では、高温排熱として、吸収式
冷凍機の駆動源,蒸気タービンの駆動源等の用途として
の利用価値が高い過熱蒸気を発生させ、二次蒸気発生発
生系に過熱蒸気を供給する需要が高まっているが、図9
に示すように、蒸気発生器3の二次側で発生した飽和蒸
気を、燃料改質器7の排ガスで加熱し、過熱蒸気にする
方法では、二次蒸気過熱器25がガス−蒸気熱交換器であ
るため、必要伝熱面積が大きくなり容積の大きな熱交換
器となり、プラントをコンパクト化する上で問題があっ
た。
On the other hand, on the other hand, as high temperature exhaust heat, superheated steam having a high utility value as a drive source of an absorption chiller, a drive source of a steam turbine, etc. is generated, and the superheated steam is generated in a secondary steam generation system. Demand is increasing, but Fig. 9
As shown in, in the method of heating the saturated steam generated on the secondary side of the steam generator 3 with the exhaust gas of the fuel reformer 7 to turn it into superheated steam, the secondary steam superheater 25 uses gas-steam heat exchange. Since it is a heat exchanger, the required heat transfer area is large and the heat exchanger has a large volume, which causes a problem in downsizing the plant.

【0016】さらに、従来のこのような燃料電池発電シ
ステムでは、蒸気排熱利用装置の二次蒸気発生系の起動
時間がかかったり、燃料電池本体1の冷却水温度が低い
場合等には、燃料電池冷却水系および排熱利用装置の二
次蒸気発生系の発生蒸気温度が低くなり、所望の二次蒸
気温度が得られなくなり、排熱利用装置側の例えば吸収
式冷凍機の運転効率が低下したり、燃料電池発電システ
ム側と排熱利用装置側との運転温度のマッチング、燃料
電池発電システム側と排熱利用装置側との同時運転温度
制御が困難になる等の問題があった。
Further, in such a conventional fuel cell power generation system, when the secondary steam generation system of the steam exhaust heat utilization apparatus takes a long time to start or the cooling water temperature of the fuel cell body 1 is low, The generated steam temperature of the battery cooling water system and the secondary steam generation system of the exhaust heat utilization device becomes low, the desired secondary steam temperature cannot be obtained, and the operation efficiency of, for example, an absorption chiller on the exhaust heat utilization device side decreases. However, there are problems such as matching of operating temperatures between the fuel cell power generation system side and the exhaust heat utilization device side, and simultaneous operation temperature control between the fuel cell power generation system side and the exhaust heat utilization device side becoming difficult.

【0017】そこで、本発明の目的は、上記の問題を解
決すべく、蒸気発生器で発生した二次飽和蒸気を、気水
分離器内の余剰熱によりさらに加熱することにより、二
次蒸気発生系に必要な所望の過熱蒸気を供給可能にする
と共に、電池冷却水系の燃料改質器への必要供給量以上
の余剰蒸気分を、凝縮回収させる機能を保持させた燃料
電池発電システムの燃料電池間接蒸気取出し型気水分離
器を提供することにある。
Therefore, in order to solve the above problems, the object of the present invention is to generate secondary steam by further heating the secondary saturated steam generated in the steam generator with the surplus heat in the steam separator. A fuel cell for a fuel cell power generation system that is capable of supplying the desired superheated steam necessary for the system and also has a function of condensing and recovering excess steam that is more than the necessary supply amount to the fuel reformer of the cell cooling water system. It is to provide an indirect steam extraction type steam separator.

【0018】[0018]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、燃料極,空気極および冷却器を備えた燃
料電池本体と、燃料を改質して生成された水素ガスを燃
料電池本体の燃料極に供給する燃料改質器と、燃料電池
本体の反応熱により加熱され二相流化した冷却水を気相
と水相に分離する気水分離器と、この気水分離器で分離
された冷却水を燃料電池本体の冷却器を介して循環させ
る電池冷却水循環ポンプおよび気水分離器の水相出口下
流側に電池冷却水系の余剰熱により燃料電池冷却水系と
分離された状態で排熱利用装置の二次蒸気発生系に蒸気
を供給する蒸気発生器とから構成された燃料電池発電シ
ステムの燃料電池間接蒸気取出し型気水分離器におい
て、蒸気発生器で発生した二次飽和蒸気を、内部に配設
した伝熱管内に流入させてさらに加熱することにより過
熱蒸気を発生させ、この過熱蒸気を二次蒸気発生系に供
給すると共に、伝熱管の外表面で電池冷却水系の余剰蒸
気を凝縮させ、発生する水蒸気量を所望の値に維持する
機能を保持させるようにしたことを特徴とするものであ
る。
In order to achieve the above object, the present invention provides a fuel cell main body having a fuel electrode, an air electrode, and a cooler, and a hydrogen gas produced by reforming the fuel. A fuel reformer that supplies the fuel electrode of the cell body, a steam separator that separates the two-phase flow cooling water that is heated by the reaction heat of the fuel cell into a gas phase and a water phase, and this steam separator The cooling water circulation pump that circulates the cooling water separated in step 1 through the cooler of the fuel cell main body and the state in which it is separated from the fuel cell cooling water system by the excess heat of the cell cooling water system on the downstream side of the water phase outlet of the steam separator. The secondary saturation generated in the steam generator in the fuel cell indirect steam extraction type water-water separator of the fuel cell power generation system that consists of a steam generator that supplies steam to the secondary steam generation system of the exhaust heat utilization device Steam flows into the heat transfer tube inside And further heat to generate superheated steam, which is supplied to the secondary steam generation system, and the excess steam of the battery cooling water system is condensed on the outer surface of the heat transfer tube to generate a desired amount of steam. The feature is that the function of maintaining the value is retained.

【0019】[0019]

【作用】以上のように構成することにより、電池冷却水
系の余剰蒸気を凝縮させ、気水分離器で発生する水蒸気
量を所望の値に維持することができ、かつ、システム内
で最も熱容量の大きい気水分離器内より燃料電池冷却水
系と分離された状態で間接的の排熱利用装置の二次蒸気
発生系に過熱蒸気を供給することおよび間接過熱蒸気取
出し量を増大させることができ、システムからの排熱回
収効率を高めることができる。
With the above-mentioned structure, the excess steam of the battery cooling water system can be condensed and the amount of water vapor generated in the steam separator can be maintained at a desired value, and the maximum heat capacity in the system can be maintained. It is possible to supply superheated steam to the secondary steam generation system of the indirect exhaust heat utilization device in a state where it is separated from the fuel cell cooling water system from inside the large steam separator and to increase the indirect superheated steam extraction amount, The efficiency of exhaust heat recovery from the system can be improved.

【0020】これにより、従来、燃料電池冷却水系に単
独で設置していた二次蒸気発生系の間接蒸気取出しに係
わる熱交換器、すなわち、蒸気発生器,蒸気過熱器また
は排熱回収予熱器を気水分離器中に組込むことが可能と
なり、プラント設備をコンパクト化できるとともに、経
済的にも有利となる。
As a result, the heat exchanger relating to the indirect steam extraction of the secondary steam generation system, which was conventionally installed alone in the fuel cell cooling water system, that is, the steam generator, the steam superheater, or the exhaust heat recovery preheater is used. Since it can be incorporated in a steam separator, the plant equipment can be made compact and economically advantageous.

【0021】また、これら二次蒸気発生系の間接蒸気取
出しに係わる熱交換器を組込んだ気水分離器と二次蒸気
気水分離ドラムとを一体化させることも可能となり、こ
のように構成することもプラント設備をコンパクト化で
きると共に、経済的にも有利となる。
Further, it is possible to integrate a steam / water separator incorporating a heat exchanger for taking out the indirect steam of the secondary steam generation system and the secondary steam / water separation drum. This also makes it possible to make the plant equipment compact and is economically advantageous.

【0022】さらに、この一体化し間接蒸気取出し機能
を備えた気水分離器内に加熱ヒータを設けることによ
り、燃料電池発電システム起動時の燃料電池冷却水系お
よび排熱利用装置の二次蒸気発生系の同時昇温が可能に
なり、燃料電池発電システム運転時の燃料電池冷却水お
よび排熱利用装置の二次蒸気発生系の同時運転制御を容
易にすることができ、燃料電池発電システム運転時に、
排熱利用装置の二次蒸気発生系の発生蒸気温度が低い場
合、蒸気発生器の中の一次側(高温側、すなわち、電池
冷却水側)または二次側(低温側、すなわち、蒸気発生
側)に設置した加熱ヒータを作動させ、所望の二次蒸気
温度が得られるようにすることもでき、燃料電池発電シ
ステムの排熱利用装置とマッチングさせた効率的な運転
が可能となる。
Further, by providing a heating heater in the steam / water separator integrated with the indirect steam extraction function, the fuel cell cooling water system and the secondary steam generation system of the exhaust heat utilization device at the time of starting the fuel cell power generation system are provided. It is possible to simultaneously increase the temperature of the fuel cell power generation system, and to facilitate simultaneous operation control of the fuel cell cooling water and the secondary steam generation system of the exhaust heat utilization device during operation of the fuel cell power generation system.
When the generated steam temperature of the secondary steam generation system of the exhaust heat utilization device is low, the primary side (high temperature side, that is, battery cooling water side) or the secondary side (low temperature side, that is, steam generation side) in the steam generator It is also possible to operate the heater installed in (1) to obtain a desired secondary steam temperature, and efficient operation that matches the exhaust heat utilization device of the fuel cell power generation system becomes possible.

【0023】また、これにより、従来、燃料電池冷却水
系に単独で設置していた加熱ヒータを気水分離器および
蒸気発生器と合体させることができ、プラント設備をコ
ンパクト化できると共に、経済的にも有利となる。
Further, this makes it possible to combine the heating heater, which has conventionally been installed alone in the fuel cell cooling water system, with the steam separator and the steam generator, and to make the plant equipment compact and economical. Will also be advantageous.

【0024】さらに、二次蒸気気水分離ドラムまたは一
体化した気水分離器と二次蒸気気水分離ドラムの二次蒸
気気水分離ドラム側の下流側に、排熱利用装置への温水
供給系を接続して蒸気量分以外の余剰飽和水(高温水)
を取出すことにより、高温水を必要とする排熱利用装置
に高温水をも供給することができ、排熱利用の多様化に
も対応することができる。
Further, hot water is supplied to the exhaust heat utilization device on the downstream side of the secondary steam / water separation drum or the integrated steam / water separator and the secondary steam / water separation drum side of the secondary steam / water separation drum. Excess saturated water (high temperature water) other than the steam amount by connecting the system
By taking out the high temperature water, the high temperature water can be supplied also to the exhaust heat utilization device that requires the high temperature water, and it is possible to cope with the diversification of utilization of the exhaust heat.

【0025】[0025]

【実施例】以下、本発明の実施例を図面を参照して説明
する。なお、以下の説明においては、図8および図9と
同一部分には同符号を付し、重複した説明は省略する。
図1は、本発明の一実施例を示す構成図である。同図に
おいて、30は気水分離器で、蒸気発生器3の上流側に設
置され、蒸気発生器3の二次側で発生した飽和蒸気3a
を過熱蒸気とし、この過熱蒸気を排熱利用装置11の二次
蒸気発生系に供給するように構成したものである。
Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same parts as those in FIG. 8 and FIG. 9 will be assigned the same reference numerals and overlapping description will be omitted.
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 30 is a steam separator, which is installed on the upstream side of the steam generator 3 and is a saturated steam 3a generated on the secondary side of the steam generator 3.
Is superheated steam, and this superheated steam is supplied to the secondary steam generation system of the exhaust heat utilization device 11.

【0026】すなわち、気水分離器30は、容器31の気相
2a部分に蒸気発生器3の二次側で発生した飽和蒸気を
加熱する伝熱管群32を配設し、下部に液相2bに連通す
る水相出口ダウンカマー33を設けたもので、伝熱管群32
の入口側には飽和蒸気供給配管34を介して蒸気発生器3
の二次発生蒸気3a部分が接続され、伝熱管群32の出口
側には二次蒸気供給ライン3eを介して蒸気排熱利用装
置11が接続されている。なお、電池冷却器から導入され
た電池冷却水が容器31内において、上半部で気相(蒸
気)2a、下半部で液相(冷却水)2bとに分離された
状態、伝熱管群32の配設状態、管配列,形状,種類等
は、その設計手法により種々の形態が適宜選択できるこ
とは言うまでもない。
That is, in the steam-water separator 30, the heat transfer tube group 32 for heating the saturated steam generated on the secondary side of the steam generator 3 is arranged in the gas phase 2a portion of the container 31, and the liquid phase 2b is arranged in the lower part. A water phase outlet downcomer 33 communicating with the heat transfer tube group 32
At the inlet side of the steam generator 3 through a saturated steam supply pipe 34
The secondary generated steam 3a portion is connected, and the steam exhaust heat utilization device 11 is connected to the outlet side of the heat transfer tube group 32 via the secondary steam supply line 3e. The state in which the battery cooling water introduced from the battery cooler is separated into the gas phase (steam) 2a in the upper half part and the liquid phase (cooling water) 2b in the lower half part in the container 31 is shown in FIG. It goes without saying that various arrangements, arrangements, shapes, types, etc. of the 32 can be appropriately selected depending on the design method.

【0027】次に、以上の構成による気水分離器30を設
置した燃料電池発電システムの全般について説明する。
まず、気水分離器30には、燃料電池本体1の電池冷却器
1c内で二相流化した電池冷却水が電池冷却水入口ノズ
ル35を介して流入し、気相(以下、蒸気という)2aと
液相(以下、冷却水という)2bとに分離される。この
分離された冷却水2bは、電池冷却水循環ポンプ4によ
り気水分離器30の水相出口ダウンカマー33を通して流出
し、その下流に設置された蒸気発生器3の一次側(高温
側)を流れ、蒸気発生器3の二次側(蒸気発生側)の水
を加熱し、これを飽和蒸気にする。蒸気発生器3で二次
側(蒸気発生側)の水を加熱することにより熱交換し冷
却された一次側(高温側)の電池冷却水は、電池冷却水
循環ポンプ4を通して図8に示すように温度調整用熱交
換器5に導入され温度調整された後、再び燃料電池本体
1の電池冷却器1cに戻すように電池冷却水系を構成し
ている。
Next, the overall fuel cell power generation system in which the steam / water separator 30 having the above-described configuration is installed will be described.
First, the two-phase flow of the cell cooling water in the cell cooler 1c of the fuel cell body 1 flows into the steam separator 30 through the cell cooling water inlet nozzle 35, and the gas phase (hereinafter referred to as steam) 2a and a liquid phase (hereinafter referred to as cooling water) 2b are separated. The separated cooling water 2b flows out through the water phase outlet downcomer 33 of the steam separator 30 by the battery cooling water circulation pump 4 and flows through the primary side (high temperature side) of the steam generator 3 installed downstream thereof. , The water on the secondary side (steam generation side) of the steam generator 3 is heated to make it saturated steam. The battery cooling water on the primary side (high temperature side) that has been heat-exchanged and cooled by heating the water on the secondary side (steam generating side) in the steam generator 3 passes through the battery cooling water circulation pump 4 as shown in FIG. The cell cooling water system is configured so as to be returned to the cell cooler 1c of the fuel cell main body 1 again after being introduced into the temperature adjusting heat exchanger 5 and subjected to temperature adjustment.

【0028】この場合、気水分離器30と蒸気発生器3と
を結ぶ配管ラインには蒸気発生器入口制御弁23が設けら
れており、また、これら蒸気発生器入口制御弁23および
蒸気発生器3をバイパスして気水分離器30からの冷却水
2bを電池冷却水循環ポンプ4に流すバイパスライン22
が設けられており、この蒸気発生器バイパスライン22
に蒸気発生器バイパス制御弁24が設けられている。
In this case, a steam generator inlet control valve 23 is provided in the pipe line connecting the steam separator 30 and the steam generator 3, and the steam generator inlet control valve 23 and the steam generator are also provided. Bypass line 22 for bypassing 3 to flow cooling water 2b from steam separator 30 to battery cooling water circulation pump 4
Is installed in the steam generator bypass line 22.
Is provided with a steam generator bypass control valve 24.

【0029】ここで、蒸気発生器3は、一次側に流れる
電池冷却水により二次蒸気発生系の水を加熱して蒸気を
発生させるもので、一次側入口ヘッダ部と一次側出口ヘ
ッダ部は図1に示すように、伝熱管群3gで接続されて
いる。この蒸気発生器3の二次側で発生した飽和蒸気3
aは、飽和蒸気供給配管34を介して気水分離器30の容器
31内の上部の蒸気2a部分に配設した伝熱管群32内に流
入し、気水分離器30内の蒸気2a部分の熱によってさら
に加熱することにより過熱蒸気を発生させ、二次蒸気供
給ライン3eを介し、蒸気排熱利用装置11の二次蒸気発
生系に供給される。一方、この伝熱管群32は、その外表
面で、燃料電池本体1の電池冷却器1c内で二相流化し
た電池冷却水系の余剰蒸気を凝縮させ、気水分離器30で
発生する水蒸気量を所望の値に維持する機能も有してい
る。
Here, the steam generator 3 heats the water of the secondary steam generating system by the battery cooling water flowing to the primary side to generate steam, and the primary side inlet header part and the primary side outlet header part are As shown in FIG. 1, the heat transfer tube groups 3g are connected. Saturated steam 3 generated on the secondary side of this steam generator 3
a is a container of the steam separator 30 through the saturated steam supply pipe 34.
The superheated steam is generated by flowing into the heat transfer tube group 32 arranged in the upper steam 2a portion in 31 and further heating by the heat of the steam 2a portion in the steam separator 30, and the secondary steam supply line It is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11 via 3e. On the other hand, the heat transfer tube group 32 condenses, on its outer surface, the surplus steam of the cell cooling water system that has been two-phase-flowed in the cell cooler 1c of the fuel cell body 1, and the amount of water vapor generated in the steam separator 30. Also has a function of maintaining a desired value.

【0030】しかして、二次蒸気供給ライン3eを介し
て蒸気排熱利用装置11に供給された過熱蒸気は、蒸気排
熱利用装置11で利用された後凝縮水となり、この凝縮水
は蒸気発生器補給水ポンプ17により蒸気発生器給水ライ
ン3dを介して蒸気発生器3に戻される。また、蒸気発
生器3内の蒸気分以外の余剰飽和水(高温水)3bは、
温水供給配管3fを介して温水排熱を利用する温水排熱
利用装置12に供給されると同時に、蒸気発生器3内の水
質を確保するために、その一部は図8に示す水処理装置
16に蒸気発生器ブロー用ライン3cを介して間欠的に供
給され、この水処理装置16で処理された水は電池冷却水
系の補給水として水処理補給水供給ラインを介して再び
電池冷却水系に導入される(図8参照)。ここで、図1
中、温水排熱利用装置12にて利用後の水処理された水を
電池冷却水系に戻す位置を電池冷却水循環ポンプ4の手
前にしているが、システムの組み方に依り、この位置に
限定されないことは、言うまでもない。
Thus, the superheated steam supplied to the steam exhaust heat utilization device 11 via the secondary steam supply line 3e becomes condensed water after being used in the steam exhaust heat utilization device 11, and this condensed water is generated as steam. It is returned to the steam generator 3 via the steam generator water supply line 3d by the steam supply water pump 17. The surplus saturated water (high temperature water) 3b other than the steam component in the steam generator 3 is
The water is supplied to the hot water exhaust heat utilization device 12 that utilizes the hot water exhaust heat via the hot water supply pipe 3f, and at the same time, a part of the water treatment device is shown in FIG. 8 in order to ensure the water quality in the steam generator 3.
The water intermittently supplied to 16 through the steam generator blowing line 3c and treated by the water treatment device 16 is again supplied to the battery cooling water system as makeup water for the battery cooling water system through the water treatment makeup water supply line. Introduced (see FIG. 8). Here, FIG.
The position where the water treated by the warm water exhaust heat utilization device 12 is returned to the battery cooling water system is in front of the battery cooling water circulation pump 4, but it is not limited to this position depending on how the system is assembled. Needless to say.

【0031】なお、図1中36は二次蒸気供給ライン3e
に設置された過熱蒸気の蒸気圧力を検出する圧力検出
器、37はこの過熱蒸気を蒸気排熱利用装置11に供給する
圧力を所定値に保つように二次蒸気圧力調節弁38の開度
を調節する圧力コントローラである。
Incidentally, 36 in FIG. 1 is a secondary steam supply line 3e.
A pressure detector that detects the steam pressure of the superheated steam installed in 37, 37 is the opening degree of the secondary steam pressure control valve 38 so as to keep the pressure for supplying this superheated steam to the steam exhaust heat utilization device 11 to a predetermined value. It is a pressure controller to adjust.

【0032】次に、上述したように構成された本発明の
一実施例の作用について説明する。まず、燃料電池発電
システムの起動時に、電池冷却水系の冷却水温度を上昇
させていく場合について説明する。最初に電池冷却水循
環ポンプ4を起動して電池冷却水系の冷却水を循環さ
せ、同時に、電池冷却水系に設置されている電池冷却水
加熱用電気ヒータ6を起動し、電池冷却水系の温度を所
定の温度まで上昇させていく。このとき、電池冷却水系
の冷却水昇温を効率良く行うために、蒸気発生器バイパ
ス制御弁24は開、蒸気発生器入口制御弁23は閉の状態に
する。但し、電池冷却水系と二次蒸気発生系の同時昇温
を行う場合には、バイパス制御弁24は閉、蒸気発生器入
口制御弁23は開の状態にし、システムの起動時から蒸気
発生器3の一次側(電池冷却水側)から二次側(蒸気発
生側)を加熱していく運転も考えられる。システムの起
動時で、まだ蒸気発生器3の二次側の温度が低く、二次
蒸気を発生させる必要のないときは、二次蒸気圧力調節
弁32の開度を調節し蒸気発生器3の二次側の圧力を一次
側(電池冷却水側)の圧力よりも低く設定しておく。
Next, the operation of the embodiment of the present invention constructed as described above will be described. First, the case where the temperature of the cooling water of the cell cooling water system is raised when the fuel cell power generation system is started will be described. First, the battery cooling water circulation pump 4 is activated to circulate the cooling water in the battery cooling water system, and at the same time, the battery cooling water heating electric heater 6 installed in the battery cooling water system is activated to set the temperature of the battery cooling water system to a predetermined value. To raise the temperature. At this time, the steam generator bypass control valve 24 is opened and the steam generator inlet control valve 23 is closed in order to efficiently raise the temperature of the cooling water in the battery cooling water system. However, in the case of simultaneously raising the temperature of the battery cooling water system and the secondary steam generation system, the bypass control valve 24 is closed and the steam generator inlet control valve 23 is opened, and the steam generator 3 is activated from the start of the system. An operation in which the secondary side (steam generation side) is heated from the primary side (battery cooling water side) is also conceivable. When the temperature of the secondary side of the steam generator 3 is still low at the time of starting the system and it is not necessary to generate the secondary steam, the opening degree of the secondary steam pressure control valve 32 is adjusted to adjust the opening of the steam generator 3. Set the pressure on the secondary side lower than the pressure on the primary side (battery cooling water side).

【0033】しかして、一次側(電池冷却水側)の温度
が規定の温度に達しシステムの運転が始まり、蒸気排熱
利用装置11を作動させる場合には、二次蒸気圧力調節弁
32の開度を調節し、蒸気発生器3の二次側から規定の蒸
気圧の蒸気を発生させ、この蒸気を気水分離器30の容器
31内の上部の蒸気2a部分に設置した伝熱管群32内に流
入させ、気水分離器30内の蒸気2a部分の熱によってさ
らに加熱することにより過熱蒸気を発生させ、二次蒸気
供給ライン3eを介し、蒸気排熱利用装置11の二次蒸気
発生系に供給する。
However, when the temperature on the primary side (battery cooling water side) reaches the specified temperature and the system operation starts and the steam exhaust heat utilization device 11 is operated, the secondary steam pressure control valve
By adjusting the opening degree of 32, the steam of the prescribed steam pressure is generated from the secondary side of the steam generator 3, and this steam is stored in the container of the steam separator 30.
It is made to flow into the heat transfer tube group 32 installed in the upper steam 2a portion in 31 and is further heated by the heat of the steam 2a portion in the steam separator 30 to generate superheated steam, and the secondary steam supply line 3e To the secondary steam generation system of the steam exhaust heat utilization device 11.

【0034】ここで、例えば、気水分離器30内の蒸気2
a、冷却水2bの温度が 185℃とし、理想的な条件で蒸
気発生器3の一次側に 185℃の温度で流入したとして
も、蒸気発生器3の二次側の温度は、蒸気発生器3の設
計の制約(例えば、熱交換器のピンチ温度と伝熱面積と
の関係で伝熱面積をむやみに増やして、蒸気発生器3を
大きなものにすることはできないこと等)により、 160
〜 170℃の飽和蒸気としての蒸気取出しができるのみ
で、過熱蒸気としての蒸気取出しは困難である。
Here, for example, the steam 2 in the steam separator 30
a, the temperature of the cooling water 2b is 185 ° C, and even if it flows into the primary side of the steam generator 3 at a temperature of 185 ° C under ideal conditions, the temperature of the secondary side of the steam generator 3 is Due to design restrictions of 3 (for example, the steam generator 3 cannot be increased in size by unnecessarily increasing the heat transfer area due to the relationship between the pinch temperature of the heat exchanger and the heat transfer area).
It is only possible to take out steam as saturated steam at ~ 170 ° C, and it is difficult to take out steam as superheated steam.

【0035】しかしながら、気水分離器30内の伝熱管群
32にこの飽和蒸気を流入させ、蒸気2a部分の熱によっ
てさらに加熱することにより過熱蒸気を発生させること
ができ、気水分離器30内の運転温度にもよるが、気水分
離器30内の温度よりも僅かに下回る程度の 170〜 184℃
の過熱蒸気を発生させることが可能となる。
However, the heat transfer tube group in the steam separator 30
It is possible to generate superheated steam by injecting this saturated steam into 32 and further heating it with the heat of the steam 2a portion, and depending on the operating temperature in the steam separator 30, the steam inside the steam separator 30 170 to 184 ° C, slightly below the temperature
It becomes possible to generate superheated steam of.

【0036】一方、気水分離器30内の伝熱管群32の管外
側では、電池冷却水系の余剰蒸気を凝縮させることがで
きるため、この余剰蒸気量を、燃料電池本体1の電池冷
却器1cから出る電池冷却水の二相流比を電池冷却水量
または燃料燃料電池本体1をバイパスさせる電池バイパ
ス水量等で調節することにより、蒸気排熱利用装置11に
供給する過熱蒸気の量の負荷変化に対応することができ
る。
On the other hand, since the excess steam of the cell cooling water system can be condensed outside the heat transfer tube group 32 in the steam separator 30, the amount of this excess steam is used as the cell cooler 1c of the fuel cell body 1. By adjusting the two-phase flow ratio of the cell cooling water that comes out from the cell cooling water amount or the battery bypass water amount that bypasses the fuel-fuel cell main body 1 or the like, it is possible to change the load of the amount of superheated steam supplied to the steam exhaust heat utilization device 11. Can respond.

【0037】ここで、排熱利用装置11または12側で蒸気
または温水の供給の必要がない場合には、蒸気発生器バ
イパス制御弁24を開、蒸気発生器入口制御弁23は閉の状
態にし、燃料電池本体1の電池冷却器1cから出る電池
冷却水の二相流比を電池冷却水量または燃料電池本体1
をバイパスさせる電池バイパス水量等を調節することに
より、電池冷却水系の余剰蒸気を発生させない条件で運
転する。
Here, when it is not necessary to supply steam or hot water on the exhaust heat utilization device 11 or 12 side, the steam generator bypass control valve 24 is opened and the steam generator inlet control valve 23 is closed. , The two-phase flow ratio of the cell cooling water discharged from the cell cooler 1c of the fuel cell body 1 to
By adjusting the amount of battery bypass water that bypasses the battery, etc., operation is performed under conditions that do not generate excess steam in the battery cooling water system.

【0038】以上説明したように上述した実施例(以
下、第1実施例という)では、気水分離器30の水相出口
下流側に蒸気発生器3を設置し、この蒸気発生器3で二
次蒸気発生側の水を電池冷却水の余剰熱により加熱し飽
和蒸気3aを発生させるのみでなく、蒸気発生器3の二
次側(蒸気発生側)で発生した二次飽和蒸気を気水分離
器30内の上部の蒸気2a部分に配設した伝熱管群32内に
流入し、さらに加熱することにより過熱蒸気を発生さ
せ、二次蒸気発生系に過熱蒸気を供給すると共に、この
伝熱管群32の外表面で電池冷却水系の余剰蒸気を凝縮さ
せ、気水分離器30で発生する水蒸気量を所望の値に維持
する機能を気水分離器30に具備させたことにより、気水
分離器30で発生する水蒸気量を所望の値に維持すること
ができ、かつ、システム内で最も熱容量の大きい気水分
離器30内より燃料電池冷却水系と分離された状態で間接
的に蒸気排熱利用装置11の二次蒸気発生系に過熱蒸気を
供給することが可能となる。また、これにより、間接過
熱蒸気取出し量を増大させることができ、蒸気排熱とし
て利用価値が高い過熱蒸気を発生させて二次蒸気発生系
に供給することができ、システムからの高温排熱回収効
率をさらに上昇させることができる。
As described above, in the above-described embodiment (hereinafter referred to as the first embodiment), the steam generator 3 is installed on the downstream side of the water phase outlet of the steam separator 30, and the steam generator 3 is connected to the steam generator 3. Not only is the water on the secondary steam generation side heated by the excess heat of the battery cooling water to generate saturated steam 3a, but the secondary saturated steam generated on the secondary side (steam generation side) of the steam generator 3 is separated into steam and water. Flows into the heat transfer tube group 32 disposed in the upper steam 2a portion of the container 30, and further heats to generate superheated steam, and supplies the superheated steam to the secondary steam generation system. The steam-water separator 30 is provided with a function of condensing excess steam of the battery cooling water system on the outer surface of 32 and maintaining the amount of water vapor generated in the steam-water separator 30 at a desired value. The amount of water vapor generated in 30 can be maintained at a desired value, and The indirectly capable of supplying superheated steam to a secondary steam generating system of the steam exhaust heat utilization device 11 in the most heat capacity larger steam separator state of being separated from the fuel cell cooling water system from the inside 30 of the. In addition, this makes it possible to increase the amount of indirect superheated steam taken out, generate superheated steam with high utility value as steam exhaust heat, and supply it to the secondary steam generation system, and recover high-temperature exhaust heat from the system. The efficiency can be further increased.

【0039】さらに、二次蒸気過熱器としての伝熱管群
32を気水分離器30の中に組込むことが可能となり、プラ
ント設備をコンパクト化できると共に、経済的にも有利
となる。
Further, a heat transfer tube group as a secondary steam superheater
It becomes possible to incorporate 32 into the steam separator 30, which makes the plant equipment compact and is economically advantageous.

【0040】次に、本発明の他の実施例(以下、第2実
施例という)を説明する。なお、図1と同一部分には同
符号を付し、重複した説明を省略する。図2は、本発明
の第2実施例を示す構成図である。同図において、40は
気水分離器で、上述した第1実施例と同様に蒸気発生器
3の上流側に設置され、蒸気発生器3の二次側で発生し
た飽和蒸気3aを、気水分離器40内を垂直に上昇するよ
うに流入させ、さらに加熱することにより過熱蒸気に
し、この過熱蒸気を蒸気排熱利用装置11の二次蒸気発生
系に供給するように構成したものである。
Next, another embodiment of the present invention (hereinafter referred to as a second embodiment) will be described. The same parts as those in FIG. 1 are designated by the same reference numerals, and duplicated description will be omitted. FIG. 2 is a configuration diagram showing a second embodiment of the present invention. In the figure, 40 is a steam separator, which is installed on the upstream side of the steam generator 3 in the same manner as in the first embodiment described above, and the saturated steam 3a generated on the secondary side of the steam generator 3 is steamed. The separator 40 is configured so as to rise vertically and is further heated to become superheated steam, and the superheated steam is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11.

【0041】すなわち、気水分離器40は、容器41に上下
方向に貫通する伝熱管群42を配設し、この伝熱管群42と
は異なる位置の下部に水相出口ダウンカマー33を設けた
もので、伝熱管群42の入口側には飽和蒸気供給配管44を
介して蒸気発生器3の二次発生蒸気3a部分が接続さ
れ、伝熱管群42の出口側には二次蒸気供給ライン3eを
介して蒸気排熱利用装置11が接続されている。なお、電
池冷却器から導入された電池冷却水が容器41内におい
て、上半部で蒸気2a、下半部で冷却水2bとに分離さ
れた状態、伝熱管群42の配設状態、管配列,形状,種類
等は、その設計手法により種々の形態が適宜選択できる
ことは言うまでもない。
That is, in the steam separator 40, the heat transfer tube group 42 penetrating in the vertical direction is arranged in the container 41, and the water phase outlet downcomer 33 is provided in the lower portion at a position different from the heat transfer tube group 42. The secondary generated steam 3a portion of the steam generator 3 is connected to the inlet side of the heat transfer tube group 42 through the saturated steam supply pipe 44, and the secondary steam supply line 3e is connected to the outlet side of the heat transfer tube group 42. The steam exhaust heat utilization device 11 is connected via the. In the container 41, the battery cooling water introduced from the battery cooler is separated into the steam 2a in the upper half and the cooling water 2b in the lower half, the arrangement of the heat transfer tube group 42, and the tube arrangement. It goes without saying that various shapes, shapes, types, etc. can be appropriately selected depending on the design method.

【0042】以上の構成においては、蒸気発生器3の二
次側で発生した飽和蒸気3aは飽和蒸気供給配管43を介
して気水分離器40の容器41内に垂直に配設された伝熱管
群42内に流入し、この伝熱管群42内でさらに加熱される
ことにより過熱蒸気を発生させ、二次蒸気供給ライン3
eを介して蒸気排熱利用装置11の二次蒸気発生系に供給
される。
In the above structure, the saturated steam 3a generated on the secondary side of the steam generator 3 is vertically arranged in the container 41 of the steam separator 40 via the saturated steam supply pipe 43. It flows into the group 42 and is further heated in the heat transfer tube group 42 to generate superheated steam, and the secondary steam supply line 3
It is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11 via e.

【0043】一方、伝熱管群42は、その外表面におい
て、燃料電池本体1の電池冷却器1c内で二相流化した
電池冷却水系の内、まず冷却水2b部と熱交換し、さら
に蒸気2a部と熱交換することにより、気水分離器40内
の余剰蒸気を凝縮させ、気水分離器40で発生する水蒸気
量を所望の値に維持する機能も具備している。
On the other hand, the heat transfer tube group 42, on the outer surface thereof, first exchanges heat with the cooling water 2b portion of the two-phase flow of the cell cooling water system in the cell cooler 1c of the fuel cell main body 1, and then the steam. It also has a function of condensing the excess steam in the steam separator 40 by exchanging heat with the portion 2a and maintaining the amount of steam generated in the steam separator 40 at a desired value.

【0044】以上のように構成された第2実施例が上述
した第1実施例と相違する点は、気水分離器内の伝熱管
群が、第1実施例では容器31内で水平に配設されている
のに対して、第2実施例では容器41内に垂直に貫通して
配設されていることで、図2に示すように伝熱管群42を
垂直に貫通して配設することにより、管内に流れる過熱
蒸気の流動形態をより安定にできるという長所がある。
また、伝熱管群42の変形例として、例えば熱交換器のコ
ンパクト化が図れるプレートフィン式熱交換器等を設置
することも可能となり、これによって二次蒸気過熱器と
して気水分離器40内に組込むことが可能となる。その他
の作用,運転については、第1実施例と同様であり、第
1実施例と同様の効果が得られる。
The second embodiment configured as described above differs from the first embodiment described above in that the heat transfer tube group in the steam separator is horizontally arranged in the container 31 in the first embodiment. On the other hand, in the second embodiment, the heat transfer tube group 42 is vertically penetrated in the container 41, so that the heat transfer tube group 42 is vertically penetrated as shown in FIG. This has the advantage that the flow form of the superheated steam flowing in the pipe can be made more stable.
Further, as a modified example of the heat transfer tube group 42, for example, it is also possible to install a plate fin type heat exchanger or the like that can achieve a compact heat exchanger, and thereby in the steam separator 40 as a secondary steam superheater. It becomes possible to incorporate it. Other operations and operations are similar to those of the first embodiment, and the same effects as the first embodiment can be obtained.

【0045】次に、本発明のさらに異なる他の実施例
(以下、第3実施例という)を説明する。なお、図1と
同一部分には同符号を付し、重複した説明を省略する。
図3は、本発明の第3実施例を示す構成図である。同図
において、50は気水分離器で、上述した第1実施例,第
2実施例とは異なり、下流に蒸気発生器の代りに、電池
冷却水系の余剰熱により二次蒸気発生系へほぼ飽和水の
温度域まで予熱する予熱器53を設置し、この予熱器53の
二次側で発生した飽和水を、飽和蒸気供給配管を介して
気水分離器50内に配設した伝熱管群に流入し、さらに加
熱することにより、二次蒸気として過熱蒸気または飽和
蒸気にし、これを蒸気排熱利用装置11の二次蒸気発生系
に供給するようにしたものである。
Next, still another embodiment of the present invention (hereinafter referred to as a third embodiment) will be described. The same parts as those in FIG. 1 are designated by the same reference numerals, and duplicated description will be omitted.
FIG. 3 is a configuration diagram showing a third embodiment of the present invention. In the figure, 50 is a steam separator, which is different from the first and second embodiments described above, and instead of the steam generator in the downstream, the secondary heat is almost transferred to the secondary steam generation system by the excess heat of the battery cooling water system. A preheater 53 that preheats to the temperature range of saturated water is installed, and the saturated water generated on the secondary side of this preheater 53 is arranged in the steam separator 50 through the saturated steam supply pipe. The secondary steam is heated to become superheated steam or saturated steam, and is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11.

【0046】そして、この発生した二次蒸気が飽和蒸気
の場合にも対応できるよう、二次飽和蒸気を気相と液相
とに分離する二次蒸気気水分離ドラム55を設置し、蒸気
排熱利用装置11の二次蒸気発生系に、湿り度のない飽和
蒸気として供給できるようにし、排熱として回収した二
次蒸気が、過熱蒸気、或いは、飽和蒸気のいずれの場合
にも対応できるように構成したものである。
In order to deal with the case where the generated secondary steam is saturated steam, a secondary steam / water separation drum 55 for separating the secondary saturated steam into a gas phase and a liquid phase is installed to discharge the steam. The secondary steam generation system of the heat utilization device 11 can be supplied as saturated steam with no wetness so that the secondary steam recovered as exhaust heat can handle either case of superheated steam or saturated steam. It is configured in.

【0047】すなわち、気水分離器50は、容器51の気相
26部分に伝熱管群52を配設し、下部に水相出口ダウンカ
マー33を設ける。水相出口ダウンカマー33は、予熱器53
に接続する。伝熱管群52の入口側は温水供給ライン54を
介して予熱器53の二次側に接続され、伝熱管群52の出口
側は二次蒸気供給ライン3eを介して二次蒸気気水分離
ドラム55に接続される。二次蒸気気水分離ドラム55には
ドラムレベル検出器56が設けられ、補給水給水ライン18
に接続する配管に設けた二次飽和水流量調節弁57を調整
する。また、二次蒸気気水分離ドラム55は、気相55aに
蒸気圧力検出器36が接続され、液相55bは二次飽和水温
水供給配管58を介して温水排熱利用装置12、ドラムブロ
ー用ライン59を介して水処理装置(図示しない)にそれ
ぞれ接続される。
That is, the steam separator 50 is the gas phase of the container 51.
A heat transfer tube group 52 is arranged in the 26 part, and a water phase outlet downcomer 33 is provided in the lower part. Water phase outlet downcomer 33, preheater 53
Connect to. The inlet side of the heat transfer tube group 52 is connected to the secondary side of the preheater 53 via the hot water supply line 54, and the outlet side of the heat transfer tube group 52 is connected to the secondary steam / water separation drum via the secondary steam supply line 3e. Connected to 55. The secondary steam / water separation drum 55 is provided with a drum level detector 56, and the makeup water supply line 18
The secondary saturated water flow rate control valve 57 provided in the pipe connected to is adjusted. Further, in the secondary steam / water separation drum 55, the steam pressure detector 36 is connected to the gas phase 55a, and the liquid phase 55b is used for the hot water exhaust heat utilization device 12 and the drum blow through the secondary saturated water hot water supply pipe 58. Each is connected to a water treatment device (not shown) via a line 59.

【0048】以上のように構成された第3実施例は、第
1実施例と異なり、下流に蒸気発生器の代りに予熱器53
を設置することにより、この予熱器53のみでは蒸気発生
器のように二次蒸気は取出せないが、この予熱器53が一
般に熱貫流率の高い水−水熱交換器であることから、予
熱器53の容積を蒸気発生器の容積に比べてかなり小さく
できるという特徴があり、気水分離器を含めたトータル
のプラント容積をコンパクトにできるという長所があ
る。
The third embodiment constructed as described above is different from the first embodiment in that the preheater 53 is provided downstream instead of the steam generator.
By installing the preheater 53, secondary steam cannot be taken out only by the preheater 53 unlike the steam generator, but since the preheater 53 is generally a water-water heat exchanger having a high coefficient of heat transmission, the preheater 53 The feature is that the volume of 53 can be made considerably smaller than the volume of the steam generator, and there is an advantage that the total plant volume including the steam separator can be made compact.

【0049】次に、以上のように構成された第3実施例
の気水分離器50の作用を、上述した第1実施例と異なる
二次蒸気発生系について説明する。蒸気排熱利用装置11
で利用後の凝縮水等の二次蒸気発生系への補給水は、蒸
気発生器補給水ポンプ17により蒸気発生器給水ライン3
dを介して戻され、予熱器53の二次側(低温側)に供給
され、ここで補給水はほぼ飽和水の温度域まで予熱さ
れ、温水給水ライン54を介して気水分離器50内に配設し
た伝熱管群52内を流れることによってさらに加熱され、
過熱蒸気または飽和蒸気となり、蒸気排熱利用装置11の
二次蒸気発生系に供給される。
Next, the operation of the steam / water separator 50 of the third embodiment configured as described above will be described with respect to the secondary steam generating system different from the first embodiment described above. Steam waste heat utilization device 11
Make-up water such as condensed water after being used in the secondary steam generating system is supplied by the steam generator make-up water pump 17 to the steam generator water supply line 3
It is returned via d and is supplied to the secondary side (low temperature side) of the preheater 53, where the makeup water is preheated to a temperature range of almost saturated water, and the hot water supply line 54 is used to supply the water inside the steam separator 50. Is further heated by flowing through the heat transfer tube group 52 arranged in
It becomes superheated steam or saturated steam and is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11.

【0050】ここで、二次蒸気発生系の予熱器53に流入
させる温水流量を絞ることにより、蒸気排熱利用装置11
に規定の過熱蒸気を供給させることは可能で、その場合
には同図に示したような二次蒸気気水分離ドラム55は必
要としない。しかしながら、実際の運転では、プラント
の負荷変動に伴う電池冷却水系の余剰蒸気量の変動、二
次蒸気発生系の流動変動等があり、第3実施例の構成で
二次蒸気気水分離ドラム55を設置することにより、プラ
ントの安定した運転が可能となる。
Here, by restricting the flow rate of hot water flowing into the preheater 53 of the secondary steam generation system, the steam exhaust heat utilization device 11
It is possible to supply the prescribed superheated steam to the above, and in that case, the secondary steam steam separation drum 55 as shown in the same figure is not required. However, in actual operation, there are fluctuations in the amount of excess steam in the battery cooling water system due to load fluctuations in the plant, fluctuations in the flow of the secondary steam generation system, etc., and with the configuration of the third embodiment, the secondary steam / water separation drum 55 By installing, it becomes possible to operate the plant stably.

【0051】さらに、二次蒸気として、過熱蒸気が取出
せる条件の場合には、この過熱蒸気は二次蒸気気水分離
ドラム55の上部ノズルより、蒸気排熱利用装置11の二次
蒸気発生系に供給される。
Further, when the superheated steam can be taken out as the secondary steam, the superheated steam is supplied from the upper nozzle of the secondary steam steam separation drum 55 to the secondary steam generation system of the steam exhaust heat utilization device 11. Is supplied to.

【0052】一方、飽和蒸気が取出せる条件の場合に
は、気水分離器50内で発生した飽和蒸気2aは、二次蒸
気気水分離ドラム55で蒸気(気相)55aと飽和水(液
相)55bとに分離され、飽和蒸気のみ二次蒸気気水分離
ドラム55の上部ノズルより、蒸気排熱利用装置11の二次
蒸気発生系に供給される。
On the other hand, under the condition that the saturated steam can be taken out, the saturated steam 2a generated in the steam separator 50 is steam (gas phase) 55a and saturated water (liquid) in the secondary steam steam separation drum 55. Phase) 55b, and only saturated steam is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11 from the upper nozzle of the secondary steam steam separation drum 55.

【0053】また、この二次蒸気気水分離ドラム55内の
蒸気分以外の余剰飽和水55bは、温水供給配管58を介し
て温水排熱を利用する温水排熱利用装置12に供給される
と同時に、二次蒸気気水分離ドラム55内の水質を確保す
るために、その一部は水処理装置16にドラムブロー用ラ
イン59を介して間欠的に供給され、この水処理装置16で
処理された水は電池冷却水系の補給水として水処理補給
水供給ラインを介して再び電池冷却水系に導入される。
なお、二次蒸気気水分離ドラム55内の水位は、ドラムレ
ベル検出器56を介して検出され、これにより二次蒸気気
水分離ドラム下流の飽和水の流量調節弁57の開度を調節
する。
Further, when the surplus saturated water 55b other than the steam component in the secondary steam / water separation drum 55 is supplied to the hot water exhaust heat utilization device 12 for utilizing the hot water exhaust heat via the hot water supply pipe 58. At the same time, in order to secure the water quality in the secondary steam / water separation drum 55, a part of it is intermittently supplied to the water treatment device 16 through a drum blow line 59 and is treated by this water treatment device 16. The water is reintroduced into the battery cooling water system as makeup water for the battery cooling water system through the water treatment makeup water supply line.
The water level in the secondary steam / water separation drum 55 is detected via the drum level detector 56, and the opening degree of the saturated water flow rate control valve 57 downstream of the secondary steam / water separation drum is thereby adjusted. .

【0054】その他の気水分離器の作用,運転について
は、上述した第1実施例と同様であり、第3実施例でも
第1実施例と同様の効果が得られる。次に、本発明のさ
らに異なる他の実施例(以下、第4実施例という)につ
いて説明する。なお、図1と同一部分には同符号を付
し、重複した説明を省略する。
The other operation and operation of the steam separator are the same as those of the first embodiment described above, and the same effects as the first embodiment can be obtained in the third embodiment. Next, still another embodiment of the present invention (hereinafter, referred to as a fourth embodiment) will be described. The same parts as those in FIG. 1 are designated by the same reference numerals, and duplicated description will be omitted.

【0055】図4は、本発明の第4実施例を示す構成図
である。同図において、60は気水分離器で、この気水分
離器60の下流には上述した第3実施例と同様に蒸気発生
器の代りに、電池冷却水系の余剰熱により二次蒸気発生
系へほぼ飽和水の温度域まで予熱する予熱器53を設置
し、この予熱器53の二次側で発生した飽和水を、気水分
離器60内に配設した伝熱管群内に流入させてさらに加熱
することにより、二次蒸気として過熱蒸気または飽和蒸
気にし、これを蒸気排熱利用装置11の二次蒸気発生系に
供給するように構成したものであるが、上述した第3実
施例における二次飽和蒸気を気相と液相とに分離する二
次蒸気気水分離ドラム55と気水分離器50とを一体化し、
コンパクト化した点に特徴を有する。
FIG. 4 is a block diagram showing a fourth embodiment of the present invention. In the figure, 60 is a steam separator, and downstream of this steam separator 60, instead of the steam generator as in the third embodiment, the secondary steam generation system is generated by the excess heat of the battery cooling water system. A preheater 53 for preheating to a temperature range of almost saturated water is installed, and saturated water generated on the secondary side of the preheater 53 is caused to flow into the heat transfer tube group arranged in the steam separator 60. By further heating, the secondary steam is made into superheated steam or saturated steam, and this is supplied to the secondary steam generation system of the steam exhaust heat utilization apparatus 11, but in the third embodiment described above. The secondary steam steam separation drum 55 and the steam separator 50 for separating the secondary saturated steam into a gas phase and a liquid phase are integrated,
It is characterized by being compact.

【0056】すなわち、気水分離器60は、容器61を仕切
板61aで気水分離部62と二次蒸気気水分離部63に区画し
ている。しかして、気水分離部62は、蒸気2a部分に伝
熱管群64を配設し、下部に水相出口ダウンカマー33を設
けている。水相出口ダウンカマー33は、予熱器53に接続
される。伝熱管群64の入口側は温水供給ライン54を介し
て予熱器53の二次側に接続され、伝熱管群64の出口側は
二次蒸気気水分離部63に接続される。さらに、この一体
化した気水分離器60内の気水分離部62内の冷却水2b
部、二次蒸気気水分離部63内の液相53b部にそれぞれ独
立した加熱ヒータ65a,65bを設ける構成にしたもので
ある。この加熱ヒータ65a,65bの熱源としては、電
気,蒸気,熱水等を適宜選択して用いる。
That is, in the steam / water separator 60, the container 61 is divided into a steam / water separator 62 and a secondary steam / water separator 63 by a partition plate 61a. Thus, in the steam separation unit 62, the heat transfer tube group 64 is disposed in the steam 2a portion, and the water phase outlet downcomer 33 is disposed in the lower portion. The water phase outlet downcomer 33 is connected to the preheater 53. The inlet side of the heat transfer tube group 64 is connected to the secondary side of the preheater 53 via the hot water supply line 54, and the outlet side of the heat transfer tube group 64 is connected to the secondary steam / water separation section 63. Further, the cooling water 2b in the steam / water separator 62 in the integrated steam / water separator 60 is
And the liquid phase 53b in the secondary steam / water separation unit 63 are provided with independent heaters 65a and 65b, respectively. Electricity, steam, hot water or the like is appropriately selected and used as a heat source of the heaters 65a and 65b.

【0057】この場合、燃料電池冷却水系および排熱利
用装置の二次蒸気発生系を加熱する加熱ヒータは、気水
分離器60の燃料電池冷却水系二次側(蒸気発生側)の下
部および二次蒸気発生系の二次蒸気気水分離部63の下部
に、電池冷却水系加熱ヒータ65aおよび二次蒸気発生系
加熱ヒータ65bがそれぞれ設置されており、電池冷却水
系および排熱利用装置の二次蒸気発生系を加熱すること
ができる構成となっている。
In this case, the heating heaters for heating the fuel cell cooling water system and the secondary steam generating system of the exhaust heat utilization device are the lower part and the secondary side of the fuel cell cooling water system secondary side (steam generating side) of the steam separator 60. A battery cooling water system heating heater 65a and a secondary steam generation system heating heater 65b are installed below the secondary steam steam separation unit 63 of the secondary steam generation system, respectively. It is configured to be able to heat the steam generation system.

【0058】ここで、蒸気排熱利用装置11で利用後の凝
縮水等の二次蒸気発生系への補給水は、蒸気発生器補給
水ポンプ17により蒸気発生器給水ライン3dを介して戻
され、予熱器53の二次側(低温側)に供給された温水
は、ほぼ飽和水の温度域まで予熱され、温水供給ライン
54を介して気水分離部62内に配設した伝熱管群64内を流
れることによってさらに加熱され、過熱蒸気または飽和
蒸気となり、二次蒸気気水分離部63内に流入し、ここで
湿分を除かれた後に蒸気排熱利用装置11の二次蒸気発生
系に供給される。この二次蒸気気水分離部63の作用につ
いては、上述した第3実施例における二次蒸気気水分離
ドラム55と同様である。
Here, the makeup water such as condensed water after being used in the steam exhaust heat utilization device 11 to the secondary steam generation system is returned by the steam generator makeup water pump 17 through the steam generator feed water line 3d. The hot water supplied to the secondary side (low temperature side) of the preheater 53 is preheated to a temperature range of almost saturated water, and the hot water supply line
It is further heated by flowing through the heat transfer tube group 64 arranged in the steam / water separator 62 via 54 to become superheated steam or saturated steam, which flows into the secondary steam / water separator 63, where it is wet. After the amount is removed, it is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11. The operation of the secondary steam / water separation section 63 is the same as that of the secondary steam / water separation drum 55 in the third embodiment described above.

【0059】次に、以上のように構成された第4実施例
の作用について説明する。まず、燃料電池発電システム
の起動時に、電池冷却水系の冷却水温度を上昇させてい
く場合について説明する。この場合は、まず電池冷却水
循環ポンプ4を起動し電池冷却水系の冷却水を循環さ
せ、同時に、気水分離器60内の下部に設置されている電
池冷却水系加熱ヒータ65aを起動し、電池冷却水系の温
度を加熱していく。
Next, the operation of the fourth embodiment constructed as described above will be explained. First, the case where the temperature of the cooling water of the cell cooling water system is raised when the fuel cell power generation system is started will be described. In this case, first, the battery cooling water circulation pump 4 is activated to circulate the cooling water of the battery cooling water system, and at the same time, the battery cooling water system heater 65a installed in the lower portion of the steam separator 60 is activated to cool the battery cooling system. Heating the water temperature.

【0060】このとき、二次蒸気発生系加熱ヒータ65b
も、電池冷却水温度が規定の温度に達する昇温特性に合
わせて起動させることにより、燃料電池発電システムと
の同時運転制御も可能である。
At this time, the secondary steam generating system heater 65b
Also, the simultaneous operation control with the fuel cell power generation system can be performed by activating the cell cooling water temperature in accordance with the temperature rising characteristic of reaching the specified temperature.

【0061】ここで、排熱利用装置(11または12)側の
方で蒸気または温水の供給の必要がなく、かつ、電池冷
却水温度も規定の温度よりも高い場合には加熱ヒータ65
aの運転を停止する。ただし、電池冷却水側の運転状態
により、電池冷却水系の加熱が必要な場合等はこの電池
冷却水系加熱ヒータ65aを逐次ON−OFFする等、プ
ラントの運転特性に合わせて制御すればよく、また、予
熱器53の容積も小さく、上述した第1実施例,第2実施
例に示したような、バイパス制御弁24、入口制御弁23等
は必要がない。
Here, when it is not necessary to supply steam or hot water on the side of the exhaust heat utilization device (11 or 12) and the battery cooling water temperature is also higher than the specified temperature, the heater 65 is used.
Stop the operation of a. However, depending on the operating state of the battery cooling water side, when it is necessary to heat the battery cooling water system, the battery cooling water system heater 65a may be sequentially turned on and off, and may be controlled according to the operating characteristics of the plant. The volume of the preheater 53 is also small, and the bypass control valve 24, the inlet control valve 23 and the like as shown in the first and second embodiments described above are not necessary.

【0062】逆に、排熱利用装置(11または12)側のみ
を起動させる場合には、電池冷却水循環ポンプ4を停止
させておき、二次蒸気発生系加熱ヒータ65aを起動させ
二次蒸気のみを発生させることも可能である。
On the contrary, when only the exhaust heat utilization device (11 or 12) side is activated, the battery cooling water circulation pump 4 is stopped and the secondary steam generation system heater 65a is activated to operate only the secondary steam. Can also be generated.

【0063】燃料電池発電システムの運転時は、燃料電
池本体1で発生した反応熱を電池冷却器1c内の電池冷
却水と熱交換することにより取出し、その電池冷却水は
気液二相流となって気水分離器60に導入され、蒸気2a
と冷却水2bとに分離され、この気水分離器60で分離さ
れた冷却水2bは、電池冷却水循環ポンプ4により気水
分離器60の水相出口下流側に設置された予熱器53の一次
側(高温側)を介して温度調整用熱交換器5に導入さ
れ、さらにこの温度調整用熱交換器5で温度調整された
冷却水を電池冷却器1cに戻す運転を行う。
During operation of the fuel cell power generation system, the reaction heat generated in the fuel cell main body 1 is taken out by exchanging heat with the cell cooling water in the cell cooler 1c, and the cell cooling water is converted into a gas-liquid two-phase flow. Is introduced into the steam separator 60 and steam 2a
And the cooling water 2b, and the cooling water 2b separated by the steam / water separator 60 is the primary of the preheater 53 installed downstream of the water phase outlet of the steam / water separator 60 by the battery cooling water circulation pump 4. The cooling water introduced into the temperature adjusting heat exchanger 5 through the side (high temperature side) and further adjusted in temperature by the temperature adjusting heat exchanger 5 is returned to the battery cooler 1c.

【0064】燃料電池発電システムの通常運転時は、電
池冷却水系を加熱ヒータ6により加熱する必要はほとん
ど無いが、システムの出力負荷が下げたり、負荷変動を
伴う運転を行う場合等は、電池冷却水系の冷却水温度変
動が生じることにより、電池冷却水系の加熱が必要とな
り、このような場合には、二次蒸気発生系の蒸気発生量
も減少するため、電池冷却水系の冷却水温度および二次
蒸気発生系の圧力,温度により電池冷却水系加熱ヒータ
65aおよび二次蒸気発生系加熱ヒータ65bを間欠的にO
N−OFF制御させ、電池冷却水系の冷却水温度、蒸気
排熱利用装置11の二次蒸気発生系の圧力,温度を規定値
に維持させる。
During normal operation of the fuel cell power generation system, it is almost unnecessary to heat the battery cooling water system by the heater 6. However, when the output load of the system is lowered or the operation involving load fluctuation is performed, the battery cooling system is cooled. Due to fluctuations in the cooling water temperature of the water system, it is necessary to heat the battery cooling water system, and in such a case, the amount of steam generated in the secondary steam generating system also decreases, so Battery cooling water system heater depending on the pressure and temperature of the secondary steam generation system
65a and the secondary steam generating system heater 65b are intermittently turned on.
The N-OFF control is performed to maintain the cooling water temperature of the battery cooling water system and the pressure and temperature of the secondary steam generation system of the steam exhaust heat utilization device 11 at specified values.

【0065】また、蒸気排熱利用装置11側の運転負荷条
件が変動し、蒸気排熱利用装置11側に供給する発生蒸気
量または発生蒸気圧力の設定を変えるときには、二次蒸
気気水分離部63内の蒸気圧力を検出する圧力検出器36で
蒸気圧力を検出し、圧力調節弁38の開度を調節すること
により圧力を設定値に変更し、発生蒸気の圧力,温度を
設定値に維持させる。これらのシステムの運転特性に合
わせた制御操作により、燃料電池発電システム運転時の
前記燃料電池冷却水系および蒸気排熱利用装置11の二次
蒸気発生系の同時運転制御を容易にすることができる。
その他の気水分離器60の作用,運転については、上述し
た第1実施例と同様である。
When the operating load condition on the steam exhaust heat utilization device 11 side changes and the setting of the generated steam amount or the generated steam pressure supplied to the steam exhaust heat utilization device 11 side is changed, the secondary steam steam separation unit is used. The pressure is detected by the pressure detector 36 that detects the steam pressure in 63, and the pressure is changed to the set value by adjusting the opening of the pressure control valve 38, and the pressure and temperature of the generated steam are maintained at the set values. Let By controlling the operation in accordance with the operating characteristics of these systems, simultaneous operation control of the fuel cell cooling water system and the secondary steam generation system of the steam exhaust heat utilization device 11 during operation of the fuel cell power generation system can be facilitated.
The other operation and operation of the steam separator 60 are similar to those of the first embodiment described above.

【0066】以上のように構成された第4実施例では、
燃料電池発電システムの起動時の燃料電池冷却水系およ
び蒸気排熱利用装置11の二次蒸気発生系を同時に昇温す
ることができ、燃料電池冷却水系および蒸気排熱利用装
置11の二次蒸気発生系の昇温時間の短縮を図ることがで
きる。これにより、燃料電池発電システムが発電運転に
入ると同時に、蒸気排熱利用装置11側に所望の二次蒸気
を供給することができる。
In the fourth embodiment constructed as described above,
It is possible to simultaneously raise the temperature of the fuel cell cooling water system and the secondary steam generation system of the steam exhaust heat utilization device 11 when starting the fuel cell power generation system, and to generate the secondary steam of the fuel cell cooling water system and the steam exhaust heat utilization device 11. The heating time of the system can be shortened. As a result, a desired secondary steam can be supplied to the steam exhaust heat utilization device 11 side at the same time when the fuel cell power generation system starts power generation operation.

【0067】また、燃料電池発電システムの通常運転時
の、電池冷却水系の冷却水温度制御、蒸気排熱利用装置
11側に供給する発生蒸気量または発生蒸気圧力の制御
を、気水分離器60内に設置した電池冷却水系加熱ヒータ
65a、二次蒸気発生系加熱ヒータ65bおよび二次蒸気気
水分離部63の圧力調節弁38、二次蒸気気水分離部63内の
水位を検出するレベル検出器56およびこれにより二次蒸
気気水分離ドラム下流の飽和水の流量調節弁57の開度調
節によりまとめて行うことができ、燃料電池冷却水系お
よび蒸気排熱利用装置11の二次蒸気発生系の各々の負荷
特性に合わせた同時運転制御を容易にすることができ
る。
Further, during normal operation of the fuel cell power generation system, the cooling water temperature control of the cell cooling water system, the steam exhaust heat utilization device
Control of the amount of steam generated or the pressure of steam generated to be supplied to the 11 side is controlled by a battery cooling water heater installed in the steam separator 60.
65a, a secondary steam generation system heater 65b, a pressure control valve 38 of the secondary steam / water separation section 63, a level detector 56 for detecting the water level in the secondary steam / water separation section 63, and a secondary steam gas thus detected. This can be performed collectively by adjusting the opening degree of the saturated water flow rate control valve 57 downstream of the water separation drum, and can be performed simultaneously according to the load characteristics of the fuel cell cooling water system and the secondary steam generation system of the steam exhaust heat utilization device 11. Operation control can be facilitated.

【0068】さらに、二次蒸気気水分離部63内の蒸気分
以外の余剰飽和水(高温水)55bは温水供給配管58を介
して温水排熱を利用する温水排熱利用装置12に高温水と
して同時に供給できるので、排熱の多様化にも対応させ
ることができる。加えて、従来、燃料電池冷却水系の燃
料電池本体1の電池冷却器1c手前に設置していた電池
冷却水加熱用電気ヒータ(図8に符号6で示す)を設置
する必要が無くなり、その分だけ電池冷却水循環ポンプ
4の動力、プラントからの放熱量も小さくでき、このこ
とにより、プラント設備の小形化とコストダウンを図る
ことができる。
Further, the surplus saturated water (high temperature water) 55b other than the steam component in the secondary steam / water separator 63 is supplied to the hot water exhaust heat utilization device 12 for utilizing the hot water exhaust heat via the hot water supply pipe 58. Since it can be supplied at the same time, it is possible to deal with diversification of exhaust heat. In addition, it is no longer necessary to install an electric heater (indicated by reference numeral 6 in FIG. 8) for heating the battery cooling water, which is conventionally installed in front of the battery cooler 1c of the fuel cell cooling water system fuel cell main body 1. Therefore, the power of the battery cooling water circulation pump 4 and the amount of heat radiation from the plant can also be reduced, which enables downsizing of plant equipment and cost reduction.

【0069】次に、本発明のさらに異なる他の実施例
(以下、第5実施例という)について説明する。なお、
図1と同一部分には同符号を付し、重複した説明を省略
する。図5は、本発明の第5実施例を示す構成図であ
る。同図において、70は気水分離器で、この気水分離器
70の下流には上述した第4実施例のように独立した予熱
器53が設置されず、この予熱器53に相当する予熱部を内
部の冷却水2b部に組込み、これらを一体化し、コンパ
クト化した点に特徴を有する。
Next, still another embodiment of the present invention (hereinafter referred to as the fifth embodiment) will be described. In addition,
The same parts as those in FIG. 1 are designated by the same reference numerals, and duplicated description will be omitted. FIG. 5 is a configuration diagram showing a fifth embodiment of the present invention. In the figure, 70 is a steam separator.
Unlike the above-described fourth embodiment, the independent preheater 53 is not provided downstream of 70, and a preheating part corresponding to this preheater 53 is incorporated into the internal cooling water 2b to integrate them into a compact size. It has a feature in the point.

【0070】すなわち、気水分離器70は、容器71を仕切
板71aで気水分離部72と二次蒸気気水分離部73に区画し
ている。しかして、気水分離部72は、蒸気2a部分に伝
熱管群74、冷却水2b部に伝熱管群75を配設し、この伝
熱管群75の出口側を伝熱管群74の入口側に接続し、伝熱
管群74の出口側は二次蒸気気水分離部73に接続し、伝熱
管群75の入口側は蒸気発生器給水ライン3dに接続して
いる。ここで、伝熱管群75は、上述した予熱器53に相当
する機能を有する。
That is, in the steam / water separator 70, the container 71 is divided into a steam / water separator 72 and a secondary steam / water separator 73 by a partition plate 71a. In the steam-water separating unit 72, the heat transfer tube group 74 is arranged in the steam 2a portion and the heat transfer tube group 75 is arranged in the cooling water 2b portion, and the outlet side of the heat transfer tube group 75 is set to the inlet side of the heat transfer tube group 74. The heat transfer tube group 74 has an outlet side connected to the secondary steam / water separating section 73, and the heat transfer tube group 75 has an inlet side connected to the steam generator water supply line 3d. Here, the heat transfer tube group 75 has a function corresponding to that of the preheater 53 described above.

【0071】なお、伝熱管群75を気水分離器70内上部の
蒸気2a部に配設した伝熱管群74と同様な伝熱管群とし
てモデル化して示しているが、この伝熱管群75の設置状
態,管配列,形状,種類等は、その設計手法により、種
々の形態を適宜選択できることは言うまでもない。
The heat transfer tube group 75 is modeled and shown as a heat transfer tube group similar to the heat transfer tube group 74 arranged in the steam 2a portion in the upper part of the steam separator 70. It goes without saying that various forms of the installation state, pipe arrangement, shape, type, etc. can be selected as appropriate depending on the design method.

【0072】以上のように構成された第5実施例の作
用,運転については、上述した第3実施例と同様であ
る。以上のような第5実施例により、予熱器53および二
次蒸気過熱器を気水分離器70の中に組込むことが可能と
なり、プラント設備をさらにコンパクト化できるととも
に、経済的にも有利である。
The operation and operation of the fifth embodiment constructed as described above are the same as those of the third embodiment described above. According to the fifth embodiment as described above, the preheater 53 and the secondary steam superheater can be incorporated in the steam separator 70, the plant equipment can be further downsized, and it is economically advantageous. .

【0073】次に、本発明のさらに異なる他の実施例
(以下、第6実施例という)について説明する。なお、
図1と同一部分には同符号を付し、重複した説明を省略
する。図6は、本発明の第6実施例を示す構成図であ
る。同図において、80は気水分離器で、この気水分離器
80は上述した第4実施例と第5実施例を1つに纏めたよ
うな形態にされており、気水分離器80の中に、上記二次
蒸気発生系予熱器の伝熱管群,二次蒸気発生系過熱器の
伝熱管群,二次蒸気気水分離ドラム,電池冷却水系加熱
ヒータ,二次蒸気発生系加熱ヒータを全て組込んだ構成
としている。
Next, another embodiment of the present invention (hereinafter referred to as the sixth embodiment) will be described. In addition,
The same parts as those in FIG. 1 are designated by the same reference numerals, and duplicated description will be omitted. FIG. 6 is a block diagram showing a sixth embodiment of the present invention. In the figure, 80 is a steam separator.
Reference numeral 80 denotes a configuration in which the above-described fourth embodiment and fifth embodiment are combined into one, and the steam-water separator 80 includes a heat transfer tube group of the secondary steam generation system preheater It has a configuration in which the heat transfer tube group of the secondary steam generation superheater, the secondary steam steam separation drum, the battery cooling water system heater, and the secondary steam generation system heater are all incorporated.

【0074】すなわち、気水分離器80は、容器81を仕切
板81aで気水分離部82と二次蒸気気水分離部83に区画し
ている。しかして、気水分離部82は、蒸気2a部分に伝
熱管群84、冷却水2b部に伝熱管群85を配設し、この伝
熱管群85の出口側を伝熱管群84の入口側に接続し、伝熱
管群84の出口側は二次蒸気気水分離部83に接続し、伝熱
管群85の入口側は蒸気発生器給水ライン3dに接続して
いる。ここで、伝熱管群85は、上述した予熱器53に相当
する機能を有する。また、気水分離部82の冷却水2bに
電池冷却水系加熱ヒータ86a、二次蒸気気水分離部83の
冷却水55b内に二次蒸気発生系加熱ヒータ86bをそれぞ
れ配設している。
That is, in the steam / water separator 80, the container 81 is divided into a steam / water separator 82 and a secondary steam / water separator 83 by the partition plate 81a. In the steam-water separating unit 82, the heat transfer tube group 84 is arranged in the steam 2a portion and the heat transfer tube group 85 is arranged in the cooling water 2b portion, and the outlet side of this heat transfer tube group 85 is set to the inlet side of the heat transfer tube group 84. The heat transfer tube group 84 has its outlet side connected to the secondary steam / water separating section 83, and the heat transfer tube group 85 has its inlet side connected to the steam generator water supply line 3d. Here, the heat transfer tube group 85 has a function corresponding to that of the preheater 53 described above. Further, a battery cooling water system heater 86a is provided in the cooling water 2b of the steam separation unit 82, and a secondary steam generation system heater 86b is provided in the cooling water 55b of the secondary steam steam separation unit 83.

【0075】なお、この第6実施例においても、上述し
た第5実施例と同様に、伝熱管群85を気水分離器内上部
の蒸気2a部に配設した伝熱管群84と同様な伝熱管群と
してモデル化して示しているが、この伝熱管群85および
蒸気2a部に配設した伝熱管群84の設置状態,管配列,
形状,種類等は、その設計手法により、種々な形態を適
宜選択できることは言うまでもない。
In the sixth embodiment as well, similar to the fifth embodiment described above, the heat transfer tube group 85 is similar to the heat transfer tube group 84 arranged in the steam 2a portion in the upper part of the steam separator. Although it is shown as a model as a heat pipe group, the installation state of the heat transfer pipe group 85 and the heat transfer pipe group 84 arranged in the steam 2a portion, the tube arrangement,
It goes without saying that various shapes, types, etc. can be appropriately selected depending on the design method.

【0076】このように構成された第6実施例におい
て、加熱ヒータ86a,86bおよび二次蒸気気水分離部83
の作用,運転については、上述した第4実施例と同様で
ある。以上のように第6の実施例では、上述した第4実
施例と同様の効果が得られると共に、プラント設備の小
形化とコストダウンを図ることができる。
In the sixth embodiment thus constructed, the heaters 86a and 86b and the secondary steam / water separator 83 are used.
The operation and operation of are similar to those of the above-described fourth embodiment. As described above, in the sixth embodiment, the same effect as that of the above-described fourth embodiment can be obtained, and the plant equipment can be downsized and the cost can be reduced.

【0077】なお、以上説明した各実施例では、蒸気発
生器3としてケトル式ボイラのイメージを図示したが、
別の形態の蒸気発生器でも同様の排熱回収を行うことが
できることは言うまでもなく、蒸気発生器3内の蒸気分
以外の余剰飽和水(高温水)3bは温水供給配管3fを
介して温水排熱利用装置12に直接供給するようにした
が、蒸気発生器3内の二次系圧力は発生蒸気の飽和蒸気
圧程度に高く、加圧温水となっている場合があり、この
ような場合には温水供給配管3fの途中に減圧弁を設け
ることで対処することができる。
In each of the embodiments described above, the image of the kettle type boiler as the steam generator 3 is shown.
Needless to say, the same exhaust heat recovery can be performed with a steam generator of another form, and the surplus saturated water (high temperature water) 3b other than the steam component in the steam generator 3 is discharged through the hot water supply pipe 3f. Although it was supplied directly to the heat utilization device 12, the secondary system pressure in the steam generator 3 may be as high as the saturated vapor pressure of the generated steam and may be pressurized hot water. In such a case, Can be dealt with by providing a pressure reducing valve in the middle of the hot water supply pipe 3f.

【0078】また、以上説明した各実施例について、各
発明に関連した燃料電池発電システムの系統や各機器の
形式は、種々のものを適宜選択することは、言うまでも
ない。
It is needless to say that in each of the embodiments described above, various types of systems and devices of the fuel cell power generation system related to each invention are appropriately selected.

【0079】[0079]

【発明の効果】以上説明したように本発明によれば、燃
料極,空気極および冷却器を備えた燃料電池本体と、燃
料を改質して生成された水素ガスを燃料電池本体の燃料
極に供給する燃料改質器と、燃料電池本体の反応熱によ
り加熱され二相流化した冷却水を気相と水相に分離する
気水分離器と、この気水分離器で分離された冷却水を燃
料電池本体の冷却器を介して循環させる電池冷却水循環
ポンプおよび気水分離器の水相出口下流側に電池冷却水
系の余剰熱により燃料電池冷却水系と分離された状態で
排熱利用装置の二次蒸気発生系に蒸気を供給する蒸気発
生器とから構成された燃料電池発電システムの燃料電池
間接蒸気取出し型気水分離器において、蒸気発生器で発
生した二次飽和蒸気を、内部に配設した伝熱管内に流入
させてさらに加熱することにより過熱蒸気を発生させ、
この過熱蒸気を二次蒸気発生系に供給すると共に、伝熱
管の外表面で電池冷却水系の余剰蒸気を凝縮させ、発生
する水蒸気量を所望の値に維持する機能を具備させてい
るので、電池冷却水系の余剰熱を電池冷却水系とは分離
した状態で間接的に利用価値の高い過熱蒸気として取出
し、これによってシステムからの排熱回収効率を向上す
ることができ、かつ、電池冷却水系の余剰蒸気を凝縮さ
せ、気水分離器で発生する水蒸気量を所望の値に維持す
ることができる燃料電池発電システムからの間接蒸気取
出しに効率的に対応できる気水分離器を提供することが
できる。
As described above, according to the present invention, the fuel cell main body having the fuel electrode, the air electrode and the cooler, and the hydrogen gas generated by reforming the fuel are used as the fuel electrode of the fuel cell main body. To the fuel reformer, a steam separator that separates the two-phase flow cooling water that is heated by the reaction heat of the fuel cell body into a gas phase and a water phase, and the cooling that is separated by this steam separator. Battery cooling water circulation pump that circulates water through the cooler of the fuel cell main body and exhaust heat utilization device in a state separated from the fuel cell cooling water system by excess heat of the cell cooling water system downstream of the water phase outlet of the steam separator In the fuel cell indirect steam extraction type water-water separator of the fuel cell power generation system, which is composed of a steam generator that supplies steam to the secondary steam generation system, the secondary saturated steam generated in the steam generator is Heated by flowing into the heat transfer tube provided To generate superheated steam by Rukoto,
This superheated steam is supplied to the secondary steam generation system, and at the same time, it is equipped with the function of condensing the excess steam of the battery cooling water system on the outer surface of the heat transfer tube and maintaining the generated water vapor amount at a desired value. The excess heat of the cooling water system is indirectly taken out as superheated steam with a high utility value in a state where it is separated from the battery cooling water system, and this makes it possible to improve the efficiency of exhaust heat recovery from the system, and the excess of the battery cooling water system. It is possible to provide a steam-water separator that can efficiently cope with indirect steam extraction from a fuel cell power generation system that can condense steam and maintain the amount of steam generated in the steam-water separator at a desired value.

【0080】また、従来、燃料電池冷却水系に単独で設
置していた二次蒸気発生系の間接蒸気取出しに係わる熱
交換器、すなわち、蒸気発生器,蒸気過熱器または排熱
回収予熱器および加熱ヒータを気水分離器の内部に組込
むことが可能となり、プラント設備をコンパクト化でき
ると共に、経済的にも有利な気水分離器を提供すること
ができる。
Further, the heat exchanger relating to the indirect steam extraction of the secondary steam generation system, which is conventionally installed alone in the fuel cell cooling water system, that is, the steam generator, the steam superheater or the exhaust heat recovery preheater and the heating Since the heater can be incorporated inside the steam separator, the plant equipment can be made compact and an economically advantageous steam separator can be provided.

【0081】さらに、一体化し間接蒸気取出し機能を備
えた気水分離器内に加熱ヒータを設けることにより、燃
料電池発電システム起動時の燃料電池冷却水系および排
熱利用装置の二次蒸気発生系の同時昇温が可能になり、
燃料電池発電システム運転時の燃料電池冷却水および排
熱利用装置の二次蒸気発生系の同時運転制御を容易にす
ることができ、燃料電池発電システムの排熱利用装置と
マッチングさせた効率的な運転が可能となり、排熱利用
の多様化にも対応することができる気水分離器を提供す
ることができる。
Furthermore, by providing a heater in the steam separator which is integrated and has an indirect steam extraction function, the fuel cell cooling water system and the secondary steam generating system of the exhaust heat utilization system at the time of starting the fuel cell power generation system are provided. Simultaneous temperature rise is possible,
Simultaneous operation control of the fuel cell cooling water and the secondary steam generation system of the exhaust heat utilization device during operation of the fuel cell power generation system can be facilitated, and an efficient match with the exhaust heat utilization device of the fuel cell power generation system can be achieved. It is possible to provide a steam separator that can be operated and can cope with diversification of utilization of exhaust heat.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例(第2実施例)を示す構成
図。
FIG. 2 is a configuration diagram showing another embodiment (second embodiment) of the present invention.

【図3】本発明のさらに異なる他の実施例(第3実施
例)を示す構成図。
FIG. 3 is a configuration diagram showing still another embodiment (third embodiment) of the present invention.

【図4】本発明のさらに異なる他の実施例(第4実施
例)を示す構成図。
FIG. 4 is a configuration diagram showing still another embodiment (fourth embodiment) of the present invention.

【図5】本発明のさらに異なる他の実施例(第5実施
例)を示す構成図。
FIG. 5 is a configuration diagram showing still another embodiment (fifth embodiment) of the present invention.

【図6】本発明のさらに異なる他の実施例(第6実施
例)を示す構成図。
FIG. 6 is a configuration diagram showing still another embodiment (sixth embodiment) of the present invention.

【図7】燃料電池発電システムの発電負荷と総合熱効率
の関係を示す特性図。
FIG. 7 is a characteristic diagram showing the relationship between the power generation load and the total thermal efficiency of the fuel cell power generation system.

【図8】従来の燃料電池発電システムの一例を示す構成
図。
FIG. 8 is a configuration diagram showing an example of a conventional fuel cell power generation system.

【図9】従来の燃料電池発電システムの他の例を示す構
成図。
FIG. 9 is a configuration diagram showing another example of a conventional fuel cell power generation system.

【符号の説明】[Explanation of symbols]

1…燃料電池本体、1a…燃料極、1b…空気極、1c
…冷却器、2,30,40,50,60,70,80…気水分離器、
3…蒸気発生器、4…電池冷却水循環ポンプ、5…温度
調整用熱交換器、6…電池冷却水加熱用ヒータ、7…燃
料改質器、9…一体型排ガス処理装置、11…蒸気排熱利
用装置、16…水処理装置、17…蒸気発生器補給水ポン
プ、18…補給水給水ライン、31,41,51,61,71,81…
容器、32,42,52,64,74,75,84,85…伝熱管群、33
…水相出口ダウンカマー、36…蒸気圧力検出器、37…圧
力コントローラ、38…二次蒸気圧力調整弁、53…予熱
器、55…二次蒸気気水分離ドラム、56…ドラムレベル検
出器、57…二次飽和水流量調整弁、62,72,82…気水分
離部、63,73,83…二次蒸気気水分離部、65a,65b,
86a,86b…加熱ヒータ。
1 ... Fuel cell main body, 1a ... Fuel electrode, 1b ... Air electrode, 1c
… Cooler, 2,30,40,50,60,70,80… Air-water separator,
3 ... Steam generator, 4 ... Battery cooling water circulating pump, 5 ... Heat exchanger for temperature adjustment, 6 ... Heater for heating battery cooling water, 7 ... Fuel reformer, 9 ... Integrated exhaust gas treatment device, 11 ... Steam exhaust Heat utilization device, 16 ... Water treatment device, 17 ... Steam generator makeup water pump, 18 ... Makeup water supply line, 31, 41, 51, 61, 71, 81 ...
Container, 32, 42, 52, 64, 74, 75, 84, 85 ... Heat transfer tube group, 33
… Water phase outlet downcomer, 36… Steam pressure detector, 37… Pressure controller, 38… Secondary steam pressure regulating valve, 53… Preheater, 55… Secondary steam steam separation drum, 56… Drum level detector, 57 ... Secondary saturated water flow rate control valve, 62, 72, 82 ... Steam / water separator, 63, 73, 83 ... Secondary steam / water separator, 65a, 65b,
86a, 86b ... Heating heater.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料極,空気極および冷却器を備えた燃
料電池本体と、燃料を改質して生成された水素ガスを前
記燃料電池本体の前記燃料極に供給する燃料改質器と、
前記燃料電池本体の反応熱により加熱され二相流化した
冷却水を気相と水相に分離する気水分離器と、この気水
分離器で分離された冷却水を前記燃料電池本体の前記冷
却器を介して循環させる電池冷却水循環ポンプおよび前
記気水分離器の水相出口下流側に前記電池冷却水系の余
剰熱により前記燃料電池冷却水系と分離された状態で排
熱利用装置の二次蒸気発生系に蒸気を供給する蒸気発生
器とから構成された燃料電池発電システムの燃料電池間
接蒸気取出し型気水分離器において、前記蒸気発生器で
発生した二次飽和蒸気を、内部に配設した伝熱管内に流
入させてさらに加熱することにより過熱蒸気を発生さ
せ、この過熱蒸気を前記二次蒸気発生系に供給すると共
に、前記伝熱管の外表面で前記電池冷却水系の余剰蒸気
を凝縮させ、発生する水蒸気量を所望の値に維持する機
能を保持させたことを特徴とする燃料電池発電システム
の燃料電池間接蒸気取出し型気水分離器。
1. A fuel cell main body having a fuel electrode, an air electrode and a cooler, and a fuel reformer for supplying hydrogen gas produced by reforming fuel to the fuel electrode of the fuel cell main body.
A steam separator for separating the cooling water, which is heated by the reaction heat of the fuel cell body into a two-phase flow, into a gas phase and a water phase, and the cooling water separated by the steam separator is used for the fuel cell body. A battery cooling water circulation pump that circulates through a cooler and a secondary side of an exhaust heat utilization device in a state of being separated from the fuel cell cooling water system by the excess heat of the battery cooling water system on the downstream side of the water phase outlet of the steam separator. In a fuel cell indirect steam extraction type water-water separator of a fuel cell power generation system comprising a steam generator that supplies steam to a steam generating system, the secondary saturated steam generated by the steam generator is provided inside. The superheated steam is generated by further flowing into the heat transfer tube and further heating, and supplying the superheated steam to the secondary steam generation system, and condensing the excess steam of the battery cooling water system on the outer surface of the heat transfer tube. Let it occur Fuel cell indirect vapor extraction type steam-water separator of the fuel cell power generation system is characterized in that to retain the ability to maintain the water vapor content to a desired value.
JP5070616A 1993-03-30 1993-03-30 Fuel cell indirect steam extracting type steam separator of fuel cell power generation system Pending JPH06283184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5070616A JPH06283184A (en) 1993-03-30 1993-03-30 Fuel cell indirect steam extracting type steam separator of fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5070616A JPH06283184A (en) 1993-03-30 1993-03-30 Fuel cell indirect steam extracting type steam separator of fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPH06283184A true JPH06283184A (en) 1994-10-07

Family

ID=13436722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5070616A Pending JPH06283184A (en) 1993-03-30 1993-03-30 Fuel cell indirect steam extracting type steam separator of fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH06283184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199092A (en) * 2010-06-10 2010-09-09 Panasonic Corp Fuel cell system
JP2011116452A (en) * 2009-12-01 2011-06-16 Kozo Hatakeyama Line (steam pipe) and corrugated plate of double steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116452A (en) * 2009-12-01 2011-06-16 Kozo Hatakeyama Line (steam pipe) and corrugated plate of double steel plate
JP2010199092A (en) * 2010-06-10 2010-09-09 Panasonic Corp Fuel cell system

Similar Documents

Publication Publication Date Title
JP4644704B2 (en) Fuel cell system
RU99128094A (en) EXHAUST GAS HEAT REGENERATION IN AN ORGANIC ENERGY CONVERTER USING THE INTERMEDIATE LIQUID CYCLE
JP3241488U (en) Steam heat storage system
CN111457450A (en) Thermoelectric decoupling system and working method
JP4358338B2 (en) Fuel cell combined power plant system
JP2889807B2 (en) Fuel cell system
JPH11173109A (en) Power generation and hot water supply system
JPH06283184A (en) Fuel cell indirect steam extracting type steam separator of fuel cell power generation system
JP2920018B2 (en) Fuel cell power generator
JP3461909B2 (en) Fuel cell surplus steam condensation type steam separator
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JPH06103996A (en) Fuel cell power generating exhaust heat recovery system
JP5371842B2 (en) Fuel cell system
JPH07324809A (en) Waste heat-recovering hot-water supply system
JP3936310B2 (en) Fuel cell surplus steam condensing type steam separator
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JPH0541229A (en) Fuel cell power generating system
JP3670467B2 (en) Fuel cell power generation system
JP2002100382A (en) Fuel cell power generator
JPS6027317Y2 (en) Solar thermal steam generator
JPH06283185A (en) Integrated exhaust heat recovery device of fuel cell power generation system
JPH0443567A (en) Waste heat recovery device for fuel cell power generating plant
JPH0652874A (en) Fuel cell power generation system
JPH08255623A (en) Power generating system for fuel cell
CN116291782A (en) Steam turbine-molten salt heat storage parallel deep peak regulation system and peak regulation method