JP3461909B2 - Fuel cell surplus steam condensation type steam separator - Google Patents

Fuel cell surplus steam condensation type steam separator

Info

Publication number
JP3461909B2
JP3461909B2 JP09182294A JP9182294A JP3461909B2 JP 3461909 B2 JP3461909 B2 JP 3461909B2 JP 09182294 A JP09182294 A JP 09182294A JP 9182294 A JP9182294 A JP 9182294A JP 3461909 B2 JP3461909 B2 JP 3461909B2
Authority
JP
Japan
Prior art keywords
steam
water
fuel cell
separator
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09182294A
Other languages
Japanese (ja)
Other versions
JPH07296836A (en
Inventor
山 英 一 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP09182294A priority Critical patent/JP3461909B2/en
Publication of JPH07296836A publication Critical patent/JPH07296836A/en
Application granted granted Critical
Publication of JP3461909B2 publication Critical patent/JP3461909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電システム
に係り、特に燃料電池からの排熱を利用するための気水
分離器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system, and more particularly to a steam separator for utilizing exhaust heat from a fuel cell.

【0002】[0002]

【従来の技術】燃料電池発電システムは、都市ガスやプ
ロパンガス等の燃料が有する化学エネルギーを電気エネ
ルギーに変換するもので、燃料電池本体、都市ガスやプ
ロパンガス等の燃料から水素を生成する装置、燃料電池
本体で発電される直流電流を交流電流に変換する変換装
置、及び燃料電池本体の動作や水素生成に適した温度に
作動ガスの温度を保つための熱交換器等により構成され
ている。上記燃料電池本体は、水素生成により生成され
た水素ガスと空気中の酸素との結合エネルギーを直接電
気エネルギーに変換するものであり、この燃料電池を使
用した発電システムは化学反応による発電のため、発電
効率が高く、また大気汚染物質の排出が少なく、しかも
騒音も少ないクリーンな発電システムとして評価されて
いる。
2. Description of the Related Art A fuel cell power generation system converts chemical energy of fuel such as city gas or propane gas into electric energy, and is an apparatus for producing hydrogen from a fuel cell body, fuel such as city gas or propane gas. , A converter for converting a direct current generated in the fuel cell main body into an alternating current, and a heat exchanger for maintaining the temperature of the working gas at a temperature suitable for the operation of the fuel cell main body and hydrogen generation. . The fuel cell main body is for directly converting the binding energy of hydrogen gas generated by hydrogen generation and oxygen in the air into electric energy, and a power generation system using this fuel cell is for power generation by a chemical reaction, It has been evaluated as a clean power generation system with high power generation efficiency, low emission of air pollutants, and low noise.

【0003】ところで、燃料電池本体の電気化学反応を
効率よく行わせるためには、電池本体の温度を一定の温
度レベルに保つ必要があり、電池本体に電池冷却水等を
流し、適切な温度に冷却することが行なわれている。こ
のため、燃料電池発電システムの冷却水系には気水分離
器や熱交換器等が設けられ、熱交換器から取出される排
熱が様々な用途に熱利用される。上記排熱は一般的に温
水として取出されているが、近年では排熱利用の用途の
範囲を拡大するために蒸気取出しの要求が強くなってい
る。
By the way, in order to efficiently carry out the electrochemical reaction of the fuel cell body, it is necessary to keep the temperature of the cell body at a constant temperature level. Cooling is taking place. Therefore, the cooling water system of the fuel cell power generation system is provided with a steam separator, a heat exchanger, and the like, and the exhaust heat extracted from the heat exchanger is used for various purposes. The exhaust heat is generally taken out as hot water, but in recent years, there has been a strong demand for taking out steam in order to expand the range of uses of the exhaust heat.

【0004】図5は、燃料電池発電システムの一般的な
発電負荷と総合熱効率の関係を示す特性図であって、発
電負荷に対する発電効率は、この特性図からわかるよう
に40%程度である。しかし、温水レベルの低温排熱回
収分及び蒸気レベルの高温排熱回収分を全て利用した場
合の総合熱効率は80%以上になる。このように燃料電
池発電システムは、発電のみならず、排熱を系外で有効
に利用することができ、特に排熱のうち蒸気レベルの高
温排熱は、吸収式冷凍機の駆動源、蒸気タービンの駆動
源等の用途として利用価値は高い。
FIG. 5 is a characteristic diagram showing the relationship between general power generation load and total thermal efficiency of a fuel cell power generation system. The power generation efficiency with respect to the power generation load is about 40% as can be seen from this characteristic diagram. However, the total thermal efficiency is 80% or more when the low temperature exhaust heat recovery component of the hot water level and the high temperature exhaust heat recovery component of the steam level are all used. As described above, the fuel cell power generation system can effectively use not only power generation but also exhaust heat outside the system. Especially, high temperature exhaust heat of vapor level out of the exhaust heat is used as a drive source of the absorption chiller, steam. It is highly useful as a drive source for turbines.

【0005】図6、7は、従来のこのような排熱利用シ
ステムを取入れた電池冷却水の余剰熱を利用して、電池
冷却水系と分離された二次蒸気発生系の水を加熱して蒸
気を発生させる蒸気発生器を設けた燃料電池発電システ
ムの構成例を示す図である。図6に示すように、燃料極
1a、空気極1b、及び電池冷却器1cを備えた燃料電
池本体1で発生した反応熱が、電池冷却器1c内の電池
冷却水と熱交換することにより取り出され、この反応熱
によって加熱された電池冷却水は気液二相流となって気
水分離器2に導入される。
FIGS. 6 and 7 utilize the surplus heat of the battery cooling water incorporating the conventional exhaust heat utilization system to heat the water of the secondary steam generation system separated from the battery cooling water system. It is a figure showing an example of composition of a fuel cell power generation system provided with a steam generator which generates steam. As shown in FIG. 6, the reaction heat generated in the fuel cell body 1 including the fuel electrode 1a, the air electrode 1b, and the cell cooler 1c is extracted by exchanging heat with the cell cooling water in the cell cooler 1c. The battery cooling water heated by this reaction heat is introduced into the steam-water separator 2 as a gas-liquid two-phase flow.

【0006】この気水分離器2では気液二相流の蒸気2
aが分離液化され電池冷却水2bとなり、この気水分離
器2の下流に設けられている蒸気発生器3に導入され、
上記電池冷却水2bの余剰熱により、電池冷却水系と分
離された二次蒸気発生系の水が加熱され蒸気が発生され
る。そして、上記蒸気発生器3で温度を下げられた電池
冷却水2bは、電池冷却水循環ポンプ4によって温度調
整用熱交換器5を通って電池冷却器1cに還流される。
In the steam-water separator 2, the steam 2 of gas-liquid two-phase flow is used.
a is separated and liquefied to become the battery cooling water 2b, which is introduced into the steam generator 3 provided downstream of the steam separator 2.
The surplus heat of the battery cooling water 2b heats the water in the secondary steam generating system separated from the battery cooling water system to generate steam. Then, the battery cooling water 2b whose temperature has been lowered by the steam generator 3 is returned to the battery cooler 1c through the temperature adjusting heat exchanger 5 by the battery cooling water circulation pump 4.

【0007】一方、気水分離器2で分離された蒸気2a
は、燃料改質蒸気過熱器6に供給され、この燃料改質蒸
気過熱器6で過熱され過熱蒸気となり、この過熱蒸気が
燃料と或る一定の比率で混合され燃料改質器7内の触媒
層を通過し、この間に燃料改質器7内のバーナ燃焼ガス
により加熱される吸熱反応により、水素リッチガスに変
成される。
On the other hand, the steam 2a separated by the steam separator 2
Is supplied to the fuel reforming steam superheater 6 to be superheated by the fuel reforming steam superheater 6 to become superheated steam, and the superheated steam is mixed with fuel at a certain ratio to form a catalyst in the fuel reformer 7. The hydrogen-rich gas is converted by the endothermic reaction of passing through the layer and being heated by the burner combustion gas in the fuel reformer 7 during this period.

【0008】図6の場合、燃料改質器7内で燃焼したバ
ーナ燃焼排ガスは、燃料改質器7を出た後、燃料改質器
7のバーナ空気予熱器8の加熱源として空気と熱交換
し、その後流側で燃料電池本体1からの排空気と合流
し、一体型排ガス処理装置9に導入される。この一体型
排ガス処理装置9は、燃料電池本体1の電解質から気散
し、生成水蒸気とともに排出されるリン酸溶液を含む排
ガスからリン酸を除去回収するリン酸除去機能と、排ガ
ス中に含まれる生成水蒸気を凝縮回収する凝縮水回収機
能を具備している。
In the case of FIG. 6, the burner flue gas burned in the fuel reformer 7 leaves the fuel reformer 7 and then heats air and heat as a heating source of the burner air preheater 8 of the fuel reformer 7. It is exchanged, merges with the exhaust air from the fuel cell body 1 on the downstream side, and is introduced into the integrated exhaust gas treatment device 9. This integrated exhaust gas treatment device 9 has a phosphoric acid removing function of removing and recovering phosphoric acid from exhaust gas containing a phosphoric acid solution which is diffused from the electrolyte of the fuel cell body 1 and is discharged together with the generated steam, and is included in the exhaust gas. It has a condensed water recovery function that condenses and recovers the generated steam.

【0009】また、蒸気発生器3の二次側で発生した飽
和蒸気は蒸気供給ライン10を通って蒸気排熱利用装置
11の二次蒸気発生系に供給され、そこで利用された
後、凝縮水となり、蒸気発生器給水ポンプ12により凝
縮水戻り配管13を経て蒸気発生器3の下部に戻され
る。
The saturated steam generated on the secondary side of the steam generator 3 is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11 through the steam supply line 10, and is used there, after which condensed water is condensed. And is returned to the lower part of the steam generator 3 through the condensed water return pipe 13 by the steam generator feed water pump 12.

【0010】一体型排ガス処理装置9の一次側で生成、
回収した排ガス中の凝縮水は、凝縮水回収ライン14を
経て水処理装置15に導入され、ここで水処理された冷
却水が蒸気発生器3から流出する電池冷却水と合流され
て冷却器1cに導入される。
Generated on the primary side of the integrated exhaust gas treatment device 9,
The condensed water in the recovered exhaust gas is introduced into the water treatment device 15 via the condensed water recovery line 14, and the water-treated cooling water is combined with the battery cooling water flowing out from the steam generator 3 to cool the cooler 1c. Will be introduced to.

【0011】図7は、図6のうち気水分離器2及び蒸気
発生器3周辺の構成の他の例を示す図であって、蒸気発
生器3の二次側で発生した飽和蒸気は気水分離器2内に
設けられている伝熱管群20内に流入し、そこでさらに
加熱され過熱蒸気となり、排熱利用装置の二次蒸気発生
系に高品位な過熱蒸気として供給されるとともに、上記
伝熱管群の外表面で電池冷却水の余剰蒸気を凝縮させ、
気水分離器で発生する水蒸気量を所望の値に維持するよ
うにしてある。
FIG. 7 is a diagram showing another example of the configuration around the steam separator 2 and the steam generator 3 in FIG. 6, in which the saturated steam generated on the secondary side of the steam generator 3 is vaporized. It flows into the heat transfer tube group 20 provided in the water separator 2 and is further heated there to become superheated steam, which is supplied as high-quality superheated steam to the secondary steam generation system of the exhaust heat utilization device, and Condensate excess steam of battery cooling water on the outer surface of the heat transfer tube group,
The amount of steam generated in the steam separator is maintained at a desired value.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、従来の
このような蒸気排熱利用装置を取入れた燃料電池発電シ
ステムでは、図6のような場合、燃料電池本体1の電池
冷却器1cより気液二相流となって取出した電池冷却水
の気相分の内、燃料改質器7への必要供給量以上の余剰
蒸気分を凝縮回収させる機能がなく、電池冷却水系の温
度を燃料電池本体にとって適切な温度に維持することが
難しいという問題がある。ここで、燃料改質器7への必
要供給量以上の余剰蒸気分が気水分離器2内に発生する
ことについては、燃料電池本体1の運転性能を上げる為
に、例えば電池冷却水量を減らして、燃料電池本体1内
部の電池冷却器1cの温度分布が均一になるように、或
る飽和温度の気液二相流領域を増やそうとする場合、電
池冷却器1c出口の気相分の比率が増えること等が考え
られる。
However, in the conventional fuel cell power generation system incorporating such a steam exhaust heat utilization device, in the case as shown in FIG. There is no function of condensing and recovering the excess vapor of the cell cooling water taken out as a phase flow, which is more than the required supply amount to the fuel reformer 7, and the temperature of the cell cooling water system is controlled by the fuel cell main body. There is a problem that it is difficult to maintain an appropriate temperature. Here, in order to increase the operation performance of the fuel cell main body 1, for example, to reduce the amount of cell cooling water in order to increase the operating performance of the fuel-cell separator 2, it is necessary to reduce the amount of surplus steam that exceeds the required supply amount to the fuel reformer 7. In order to increase the gas-liquid two-phase flow region at a certain saturation temperature so that the temperature distribution of the cell cooler 1c inside the fuel cell body 1 becomes uniform, the ratio of the gas phase at the outlet of the cell cooler 1c May increase.

【0013】一方、図7に示すものでは、上記課題は解
決することができるけれども、燃料電池本体内部の構造
上、例えば、電池内部のリン酸が運転中、電池出口から
の排ガス、排空気等に混じって外部に流出することを防
止するため、電池冷却水の電池入口温度を或程度下げな
くてはならない等の制約がある。しかし、電池冷却水の
電池入口温度を下げるためには、電池冷却水系の電池入
口手前に熱交換器等を介して、電池冷却水系の熱を外部
に放出することが必要になり、高品位で利用価値の高い
電池冷却水系からの高温排熱回収量が減り、高温排熱回
収効率が下がることになり、燃料電池発電プラントの効
率低下にもつながる。
On the other hand, in the structure shown in FIG. 7, although the above problems can be solved, due to the internal structure of the fuel cell body, for example, when phosphoric acid inside the battery is operating, exhaust gas from the cell outlet, exhaust air, etc. In order to prevent the mixture from flowing out to the outside, there is a restriction that the battery inlet temperature of the battery cooling water must be lowered to some extent. However, in order to lower the battery inlet temperature of the battery cooling water, it is necessary to release the heat of the battery cooling water system to the outside through a heat exchanger etc. in front of the battery cooling water system battery inlet, which is of high quality. The amount of high-temperature exhaust heat recovery from the highly useful battery cooling water system decreases, which lowers the high-temperature exhaust heat recovery efficiency, leading to a reduction in the efficiency of the fuel cell power plant.

【0014】また、燃料電池システムを発電運転のみの
ために稼動し、高温排熱を供給する必要がない場合、即
ち、排熱利用装置の二次蒸気発生系に蒸気を供給する必
要がない場合には、燃料改質器7への必要供給量以上の
余剰蒸気分が気水分離器2で発生するために、水蒸気量
を所望の値に維持する燃料電池システム側で、上記とは
別な手段で電池冷却水系の余剰蒸気を凝縮させる必要が
ある。
Further, when the fuel cell system is operated only for power generation operation and it is not necessary to supply high temperature exhaust heat, that is, when it is not necessary to supply steam to the secondary steam generating system of the exhaust heat utilization device. In addition, since a surplus vapor content that is more than the required supply amount to the fuel reformer 7 is generated in the steam separator 2, on the fuel cell system side that maintains the steam amount at a desired value, It is necessary to condense excess steam of the battery cooling water system by means.

【0015】さらに、燃料電池システムからの排熱回収
効率を高めるために、気水分離器から改質器に供給する
蒸気量を減らし、スチーム/カーボン比(S/C)を下
げた運転を行う場合等も同様である。
Further, in order to improve the efficiency of exhaust heat recovery from the fuel cell system, the amount of steam supplied from the steam separator to the reformer is reduced, and the operation is carried out with a reduced steam / carbon ratio (S / C). The same applies to cases.

【0016】本発明は、このような点に鑑み、気水分離
器内に二次蒸気発生系に蒸気を供給するために設ける伝
熱管群等とは別に、電池冷却水系の燃料改質器への必要
供給量以上の余剰蒸気分を凝縮回収させる機能を気水分
離器にもたせることにより、燃料電池発電システムの間
接蒸気取出しに対応できるとともに、プラント設備を小
形化し、排熱利用の多様化に対応させることができる気
水分離器を得ることを目的とする。
In view of the above points, the present invention provides a fuel reformer for a cell cooling water system, in addition to a heat transfer tube group and the like provided for supplying steam to a secondary steam generation system in a steam separator. By providing the steam separator with the function of condensing and recovering excess steam of more than the required supply amount, it is possible to support indirect steam extraction of the fuel cell power generation system, downsize plant equipment, and diversify exhaust heat utilization. The purpose is to obtain a steam separator that can be adapted.

【0017】[0017]

【課題を解決するための手段】本発明は、燃料電池本体
の反応熱により加熱され二相流化した冷却水を気相と液
相に分離し、分離された冷却水を上記燃料電池本体の冷
却器に還流するようにした燃料電池発電システムにおけ
る気水分離器において、上記燃料電池を通過することに
より発生した冷却水中の余剰蒸気を凝縮させる冷却手段
と、その冷却手段で凝縮された水を処理する水処理装置
と、上記水処理装置で水処理された水を冷却水として上
記冷却手段に供給する水処理水ラインと、上記水処理水
ラインに設けられ、上記冷却手段に供給される冷却水の
流量を制御する流量制御手段とを有することを特徴とす
る。
SUMMARY OF THE INVENTION According to the present invention, cooling water that has been heated by the reaction heat of a fuel cell body and turned into a two-phase flow is separated into a gas phase and a liquid phase, and the separated cooling water is stored in the fuel cell body. In a steam separator in a fuel cell power generation system that is made to recirculate to a cooler, cooling means for condensing excess steam in cooling water generated by passing through the fuel cell, and water condensed by the cooling means Water treatment device for treatment, water treatment water line for supplying water treated by the water treatment device as cooling water to the cooling means, cooling provided in the water treatment water line and supplied to the cooling means And a flow rate control means for controlling the flow rate of water.

【0018】[0018]

【作用】気水分離器内に燃料電池に供給される冷却水の
一部が供給される冷却手段が設けられているので、上記
冷却手段等の作動によって電池冷却水系の余剰蒸気分を
液相分に戻し、気水分離器で発生する水蒸気量を所望の
値に維持することができる。したがって、気水分離器内
より電池冷却水系と分離された形で間接的の排熱利用装
置の二次蒸気発生系に過熱蒸気等を供給すること、間接
過熱蒸気取出し量を増大させることが可能となり、シス
テムからの高温排熱回収率を高めることができる。
Since the cooling means for supplying a part of the cooling water to be supplied to the fuel cell is provided in the air / water separator, the surplus vapor component of the cell cooling water system is converted into the liquid phase by the operation of the cooling means or the like. By returning to minutes, the amount of water vapor generated in the steam separator can be maintained at a desired value. Therefore, it is possible to increase the amount of indirect superheated steam taken out by supplying superheated steam to the secondary steam generation system of the indirect exhaust heat utilization device separated from the battery cooling water system from the steam separator. Therefore, the high temperature exhaust heat recovery rate from the system can be increased.

【0019】また、廃熱利用装置の二次蒸気発生系に蒸
気を供給する必要がない場合、或はスチーム/カーボン
比を下げた運転を行なうような場合にも、電池冷却水系
の余剰の蒸気分を凝縮させ、気水分離器で発生する水蒸
気量を所望の値にすることができる。したがって、余剰
蒸気分を外部に放出したり、或は余剰蒸気分を熱交換器
等を介して凝縮させる必要がなく、プラント設備をコン
パクトにきるとともに、経済的なものとすることができ
る。
Also, when it is not necessary to supply steam to the secondary steam generation system of the waste heat utilization device, or when operation is performed with a reduced steam / carbon ratio, excess steam of the battery cooling water system is used. By condensing the components, the amount of water vapor generated in the steam separator can be set to a desired value. Therefore, it is not necessary to discharge the surplus steam component to the outside or to condense the surplus steam component through a heat exchanger or the like, and the plant equipment can be made compact and economical.

【0020】[0020]

【実施例】以下、図1乃至図4を参照して本発明の実施
例について説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0021】図1において、気水分離器2には電池冷却
水入口ノズル21を介して燃料電池冷却器1cから電池
冷却水が導入され、そこで気液二相流の蒸気から分離液
化された電池冷却水が、水相出口ダウンカマー22及び
蒸気発生器入口制御弁23を経て蒸気発生器3に導入さ
れる。この蒸気発生器3の伝熱管群3cで二次蒸気発生
系の水と熱交換した電池冷却水は、電池冷却水循環ポン
プ4により温度調整用熱交換器5を介して電池冷却器1
cに環流される。なお図中符号24は蒸気発生器バイパ
スライン、25はバイパス弁である。
In FIG. 1, the cell cooling water is introduced into the gas-water separator 2 from the fuel cell cooler 1c through the cell cooling water inlet nozzle 21, and the cell is separated and liquefied from the vapor of the gas-liquid two-phase flow there. Cooling water is introduced into the steam generator 3 via the water phase outlet downcomer 22 and the steam generator inlet control valve 23. The battery cooling water that has exchanged heat with the water of the secondary steam generation system in the heat transfer tube group 3c of the steam generator 3 is transferred to the battery cooler 1 via the temperature adjusting heat exchanger 5 by the battery cooling water circulation pump 4.
is returned to c. In the figure, reference numeral 24 is a steam generator bypass line, and 25 is a bypass valve.

【0022】一方、蒸気排熱利用装置11から蒸気発生
器給水ポンプ12により凝縮水戻り配管13を経て蒸気
発生器3に導入された二次蒸気発生系の凝縮水は、上記
蒸気発生器3で加熱されて飽和蒸気となり、飽和蒸気供
給配管26を経て気水分離器伝熱管群20に供給され、
そこで加熱された後、二次蒸気圧力調整弁27を介し
て、蒸気排熱利用装置11に供給される。ここで、上記
二次蒸気圧力調整弁27は、蒸気圧力検出器28で検出
された圧力信号に応じて圧力コントローラ29によって
その開度が制御され、蒸気排熱利用装置11に導入され
る蒸気圧が制御される。
On the other hand, the condensed water of the secondary steam generation system introduced from the steam exhaust heat utilization device 11 to the steam generator 3 through the condensed water return pipe 13 by the steam generator feed water pump 12 is the steam generator 3 described above. It is heated to become saturated steam, and is supplied to the steam / water separator heat transfer tube group 20 through the saturated steam supply pipe 26,
After being heated there, it is supplied to the steam exhaust heat utilization device 11 via the secondary steam pressure adjusting valve 27. Here, the opening degree of the secondary steam pressure adjusting valve 27 is controlled by the pressure controller 29 according to the pressure signal detected by the steam pressure detector 28, and the steam pressure introduced into the steam exhaust heat utilization device 11 is controlled. Is controlled.

【0023】また、蒸気発生器3内の飽和水の一部は温
水給水管30を経て水処理装置15に導入され、その水
処理装置15で水処理された水が、水処理補給水供給ラ
イン31を経て電池冷却水循環ポンプ4の入口側で電池
冷却水に合流される。
Further, a part of the saturated water in the steam generator 3 is introduced into the water treatment device 15 through the hot water supply pipe 30, and the water treated by the water treatment device 15 is the water treatment makeup water supply line. After passing through 31, the battery cooling water circulation pump 4 joins with the battery cooling water at the inlet side.

【0024】上記構成は、図9に示す従来の装置と同一
であるが、水処理装置15には水処理ライン38が接続
されており、その水処理水ライン38の他端が前記気水
分離器2内の気相部に配設されている散水スプレーノズ
ル34に連結されている。また、上記気水分離器2内の
気相部には、散水スプレーノズル34と改質器に蒸気を
供給する蒸気ノズル35との間に、散水スプレーノズル
34から散水されたスプレー水が蒸気ノズル35に流入
するのを防止するバッフル板36が設けられている。な
お、図中符号37は流量制御弁である。
The above-mentioned structure is the same as that of the conventional apparatus shown in FIG. 9, but a water treatment line 38 is connected to the water treatment apparatus 15, and the other end of the water treatment water line 38 has the above-mentioned steam separation. It is connected to the water spray nozzle 34 which is arranged in the gas phase portion of the vessel 2. In addition, in the gas phase portion in the water / water separator 2, the spray water sprayed from the water spray nozzle 34 is provided between the water spray nozzle 34 and the steam nozzle 35 that supplies steam to the reformer. A baffle plate 36 is provided to prevent it from flowing into 35. Reference numeral 37 in the figure is a flow control valve.

【0025】しかして、まず気水分離器2には、燃料電
池本体1の電池冷却器1c内で二相流化した電池冷却水
が電池冷却水入口ノズル21を通って流入し、蒸気(上
部気相部2a)と冷却水(下部液相部2b)とに分離さ
れる。一方、上記上部気相部2a内には散水スプレーノ
ズル34からバイパス水が散水され、この気液分離液面
に向けて散水された散水と気水分離器3内で分離された
蒸気とが直接接触され、散水粒子が液面に到達する間に
蒸気が凝縮する。すなわち、低温側である電池流入前の
電池冷却水の散水粒子の表面で熱交換が行なわれ、散水
粒子と接触した部分の飽和蒸気の潜熱が奪われることに
より、蒸気の凝縮が進行する。
Therefore, first, the two-phase flow of the cell cooling water in the cell cooler 1c of the fuel cell main body 1 flows into the steam separator 2 through the cell cooling water inlet nozzle 21 and vapor (upper part) It is separated into a gas phase portion 2a) and cooling water (lower liquid phase portion 2b). On the other hand, bypass water is sprayed from the spray nozzle 34 into the upper gas phase portion 2a, and the spray water sprayed toward the liquid surface of the gas-liquid separation and the steam separated in the steam separator 3 are directly connected to each other. Upon contact, the vapor condenses while the water spray particles reach the surface. That is, heat exchange is performed on the surface of the sprayed particles of the battery cooling water on the low temperature side before inflow of the battery, and the latent heat of the saturated steam in the portion in contact with the sprayed particles is removed, so that steam condensation proceeds.

【0026】なお、図の気水分離器2は、その分離器内
での電池冷却水が上半分で蒸気(上部気相部2a)、下
半分で冷却水(下部液相部2b)とに分離し、散水スプ
レーノズル34、伝熱管群20の配置をモデル化して表
しているものであり、また散水スプレーノズル34、伝
熱管群20の設置状態、管配列、形状、種類等はその設
計手法により様々な形態が考えられることはいうまでも
ない。
In the steam-water separator 2 in the figure, the battery cooling water in the separator is steam (upper gas phase portion 2a) in the upper half and cooling water (lower liquid phase portion 2b) in the lower half. It is separated and the arrangement of the water spray nozzle 34 and the heat transfer tube group 20 is modeled and shown, and the installation state, tube arrangement, shape, type, etc. of the water spray nozzle 34 and the heat transfer tube group 20 are the design method. It goes without saying that various forms can be considered depending on.

【0027】ここで、例えば、気水分離器2内の上部気
相部2a、下部液相部2bの温度が185℃とし、理想
的な条件で蒸気発生器3の一次側に185℃の温度で流
入したとしても、蒸気発生器3の二次側の温度は、蒸気
発生器3の設計の制約(例えば、熱交換器のピンチ温度
と伝熱面積との関係で伝熱面積をむやみに増やして、蒸
気発生器3を大きなものにすることはできない)によ
り、160℃〜170℃の飽和蒸気としての蒸気取出し
ができるのみで、過熱蒸気としての蒸気取出しは難しい
が、伝熱管群20の管内側にこの飽和蒸気を流し、気水
分離器2内の上部気相部2aの熱によってさらに加熱す
ることにより過熱蒸気を発生させることができ、気水分
離器2内の運転温度にもよるが、気水分離器2内の温度
よりも僅かに下回る程度の170〜184℃の過熱蒸気
を発生させることが可能となる。一方、散水スプレーノ
ズルから散水される水処理装置において処理された水の
温度は比較的に低温であり、この低温水を気水分離器2
内に直接散水することができ、運転条件にあわせた散水
スプレーノズル34の設計を行ない、かつ流量制御弁3
7の制御によりスプレー水量を調節することにより、気
水分離器2内の余剰蒸気分を効率的に凝縮させることが
でき、気水分離器で発生する水蒸気量を所望の値に維持
することができる。
Here, for example, the temperature of the upper gas phase portion 2a and the lower liquid phase portion 2b in the steam separator 2 is 185 ° C., and the temperature of 185 ° C. on the primary side of the steam generator 3 under ideal conditions. Even if it flows in, the temperature on the secondary side of the steam generator 3 is limited by the design of the steam generator 3 (for example, the heat transfer area is unnecessarily increased due to the relationship between the pinch temperature of the heat exchanger and the heat transfer area). Therefore, the steam generator 3 cannot be made large), so that it is only possible to take out steam as saturated steam at 160 ° C. to 170 ° C., and it is difficult to take out steam as superheated steam, but the tubes of the heat transfer tube group 20. Superheated steam can be generated by flowing this saturated steam inside and further heating it with the heat of the upper gas phase portion 2a in the steam separator 2, depending on the operating temperature in the steam separator 2. , Slightly below the temperature in the steam separator 2 It is possible to generate every one hundred seventy to one hundred eighty-four ° C. superheated steam. On the other hand, the temperature of the water treated in the water treatment device that is sprinkled from the water spray nozzle is relatively low, and this low temperature water is used as the steam separator 2
Water can be sprayed directly into the interior, and the spray nozzle 34 is designed according to the operating conditions, and the flow control valve 3
By controlling the amount of spray water by the control of 7, it is possible to efficiently condense the excess steam content in the steam separator 2, and to maintain the desired amount of steam generated in the steam separator. it can.

【0028】なお、気水分離器2内の伝熱管群20の管
外側でも電池冷却水系の余剰蒸気を凝縮させることがで
きるため、この余剰蒸気量を燃料電池本体の電池冷却器
1cから出る電池冷却水の二相流比を電池冷却水量、或
は電池本体1をバイパスさせる電池バイパス水量等で調
節することにより、蒸気排熱利用装置11に供給する過
熱蒸気の量を負荷変化に対応させることができる。
Since the excess steam of the cell cooling water system can be condensed outside the heat transfer tube group 20 in the steam separator 2, the amount of this excess steam is output from the battery cooler 1c of the fuel cell main body to the battery. By adjusting the two-phase flow ratio of the cooling water by the amount of battery cooling water or the amount of battery bypass water that bypasses the battery main body 1 or the like, the amount of superheated steam supplied to the steam exhaust heat utilization device 11 can be adjusted to a load change. You can

【0029】上記実施例においては、気水分離器2の下
流側に設置された蒸気発生器3の二次側で加熱され発生
した飽和蒸気が、さらに気水分離器2内に設置された伝
熱管群20内に流れ、過熱蒸気となり、蒸気排熱利用装
置11の二次蒸気発生系に供給するようにしているが、
蒸気排熱利用形態により、蒸気発生器3で発生した飽和
蒸気をそのまま蒸気排熱利用装置11の二次蒸気発生系
に供給する系統の場合にも通用できる。
In the above embodiment, the saturated steam generated by heating on the secondary side of the steam generator 3 installed on the downstream side of the steam separator 2 is further transferred to the steam separator 2. It flows into the heat pipe group 20, becomes superheated steam, and is supplied to the secondary steam generation system of the steam exhaust heat utilization device 11,
Depending on the form of utilization of steam exhaust heat, the system can be applied to a system in which saturated steam generated in the steam generator 3 is directly supplied to the secondary steam generation system of the steam exhaust heat utilization device 11.

【0030】図2は、本発明の他の実施例を示す図であ
って、気水分離器2内の上部気相部2aには、散水用パ
レット39が設けられており、この散水用パレット39
に水処理装置15からの水処理水が供給され、散水用パ
レット39の下面に設けられた散水口より器内の液面に
散水するようにしてある。しかして、この場合も図1に
示す実施例と同様な作用を奏する。
FIG. 2 is a diagram showing another embodiment of the present invention, in which the water vapor separator 2 is provided with a water spray pallet 39 in the upper gas phase portion 2a. 39
The treated water from the water treatment device 15 is supplied to the water treatment device 15 and is sprinkled on the liquid surface in the vessel through the water spout provided on the lower surface of the sprinkling pallet 39. Therefore, also in this case, the same operation as that of the embodiment shown in FIG.

【0031】図3は、本発明のさらに他の実施例を示す
図であって、気水分離器2内の上部気相部2aには、伝
熱管群40が設けられており、この伝熱管群40に水処
理装置15からの水処理水が流通されるようにしてあ
る。しかして、この場合、伝熱管群40の外表面で、気
水分離器2内の余剰蒸気を気水分離器内で凝縮させるこ
とができる。一方、伝熱管群40内を流れる水は、気水
分離器内の温度で加熱されることにより、飽和蒸気、或
は過熱蒸気となり、蒸気排熱利用装置に二次蒸気として
供給することができる。
FIG. 3 is a view showing still another embodiment of the present invention, in which a heat transfer tube group 40 is provided in the upper gas phase part 2a in the steam separator 2, and this heat transfer tube is used. The treated water from the water treatment device 15 is circulated to the group 40. Then, in this case, the excess steam in the steam separator 2 can be condensed in the steam separator on the outer surface of the heat transfer tube group 40. On the other hand, the water flowing in the heat transfer tube group 40 becomes saturated steam or superheated steam by being heated at the temperature in the steam separator, and can be supplied to the steam exhaust heat utilization device as secondary steam. .

【0032】また、図4はさらに他の実施例であり、水
処理ライン38には、余剰蒸気凝縮機能バイパスライン
41が分岐導出されており、その分岐部には散水スプレ
ーノズル34及び上記余剰蒸気凝縮機能バイパスライン
41へ流れる電池冷却水の流量を制御する三方弁42が
設けられている。
Further, FIG. 4 shows still another embodiment, in which a surplus steam condensing function bypass line 41 is branched out to the water treatment line 38, and a water spray nozzle 34 and the surplus steam are provided in the branch portion. A three-way valve 42 that controls the flow rate of the battery cooling water flowing to the condensation function bypass line 41 is provided.

【0033】しかして、この三方弁42の開度を調節す
ることにより気水分離器で発生する水蒸気量を所望の値
に維持させることができる。また、上記バイパスライン
41を出た水は、電池冷却水系の蒸気発生器3の出口に
流入させることができる。
Therefore, by adjusting the opening of the three-way valve 42, the amount of water vapor generated in the steam separator can be maintained at a desired value. Further, the water that has left the bypass line 41 can be made to flow into the outlet of the steam generator 3 of the battery cooling water system.

【0034】[0034]

【発明の効果】以上説明したように、本発明において
は、気水分離器内に、二次蒸気発生系に蒸気を供給する
ための伝熱管群とは別に、水処理装置15からの水処理
水が供給され、燃料電池を通過することによって発生し
た冷却水中の余剰蒸気を凝縮させる冷却手段を設けたの
で、電池冷却水系の余剰蒸気を効果的に凝縮させ、気水
分離器で発生する水蒸気量を所望の値に維持することが
できる。
As described above, in the present invention, in addition to the heat transfer tube group for supplying the steam to the secondary steam generating system in the steam separator, the water treatment from the water treatment device 15 is performed. Since the cooling means is provided to condense the excess steam in the cooling water generated by the water supplied and passing through the fuel cell, the steam generated in the steam-water separator is effectively condensed by the excess steam in the cell cooling water system. The amount can be maintained at the desired value.

【0035】しかして、気水分離器内より電池冷却水系
と分離された形で間接的の排熱利用装置の二次蒸気発生
系に過熱蒸気等を供給すること、間接過熱蒸気取出量を
増大させることができ、システムからの高温排熱回収効
率を高めることができる。
Therefore, by supplying superheated steam or the like to the secondary steam generation system of the indirect exhaust heat utilization device in a form separated from the battery cooling water system from the steam separator, the indirect superheated steam extraction amount is increased. It is possible to increase the efficiency of high temperature exhaust heat recovery from the system.

【0036】また、燃料電池システムを発電運転のみの
ために稼動し、高温排熱を供給する必要がない場合、す
なわち排熱利用装置の二次蒸気発生系に蒸気を供給する
必要のない場合、さらに燃料電池システムからの排熱回
収効率を高めるために、気水分離器から改質器に供給す
る蒸気量を減らし、スチーム/カーボン比(S/C)を
下げた運転を行なう場合も、電池冷却水系の余剰蒸気分
を凝縮させ、電池冷却水系の液相部に戻し、気水分離器
で発生する水蒸気量を所望の値に維持することができ
る。
Further, when the fuel cell system is operated only for power generation operation and it is not necessary to supply high temperature exhaust heat, that is, when it is not necessary to supply steam to the secondary steam generation system of the exhaust heat utilization device, Furthermore, in order to improve the efficiency of exhaust heat recovery from the fuel cell system, the amount of steam supplied from the steam separator to the reformer is reduced, and the steam / carbon ratio (S / C) is also reduced when the operation is performed. It is possible to condense the excess steam of the cooling water system and return it to the liquid phase part of the battery cooling water system to maintain the amount of water vapor generated in the steam separator at a desired value.

【0037】さらに、余剰蒸気分を凝縮させる機能、す
なわち散水スプレーノズル、散水用パレット、及び二次
蒸気過熱器としての伝熱管群も気水分離器の中に組込む
ことにより、プラント設備をコンパクト化できる。
Further, the function of condensing the excess steam, that is, the spray nozzle, the pallet for spraying, and the heat transfer tube group as the secondary steam superheater are also incorporated in the steam separator to make the plant equipment compact. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池発電システムの余剰蒸気凝縮
型気水分離器の一例を示す図。
FIG. 1 is a diagram showing an example of a surplus vapor condensing steam / water separator of a fuel cell power generation system of the present invention.

【図2】本発明の気水分離器の他の実施例を示す図。FIG. 2 is a view showing another embodiment of the steam separator of the present invention.

【図3】本発明の気水分離器のさらに他の実施例を示す
図。
FIG. 3 is a view showing still another embodiment of the steam separator of the present invention.

【図4】本発明の気水分離器の他の実施例を示す図。FIG. 4 is a view showing another embodiment of the steam separator of the present invention.

【図5】燃料電池発電システムの発電負荷と総合熱効率
の関係を示す特性図。
FIG. 5 is a characteristic diagram showing the relationship between the power generation load and the total thermal efficiency of the fuel cell power generation system.

【図6】従来の燃料電池発電システムの概略構成を示す
図。
FIG. 6 is a diagram showing a schematic configuration of a conventional fuel cell power generation system.

【図7】従来の気水分離器の一例を示す図。FIG. 7 is a diagram showing an example of a conventional steam separator.

【符号の説明】[Explanation of symbols]

1 燃料電地本体 1c 電池冷却器 2 気水分離器 3 蒸気発生器 7 燃料改質器 11 蒸気排熱利用装置 15 水処理装置 20 伝熱管群 21 電池冷却水入口ノズル 34 散水スプレーノズル 36 バッフル板 38 水処理水ライン 39 散水用パレット 40 伝熱管群 41 余剰蒸気凝縮機能バイパスライン 42 三方弁 1 Fuel main body 1c Battery cooler 2 steam separator 3 steam generator 7 Fuel reformer 11 Steam exhaust heat utilization device 15 Water treatment equipment 20 Heat transfer tube group 21 Battery cooling water inlet nozzle 34 Water spray nozzle 36 baffle board 38 Water treatment water line 39 Watering pallet 40 heat transfer tube group 41 Surplus vapor condensation function bypass line 42 three-way valve

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池本体の反応熱により加熱され二相
流化した冷却水を気相と液相に分離し、分離された冷却
水を上記燃料電池本体の冷却器に還流するようにした燃
料電池発電システムにおける気水分離器において、上記
燃料電池を通過することにより発生した冷却水中の余剰
蒸気を凝縮させる冷却手段と、その冷却手段で凝縮され
た水を処理する水処理装置と、上記水処理装置で水処理
された水を冷却水として上記冷却手段に供給する水処理
水ラインと、上記水処理水ラインに設けられ、上記冷却
手段に供給される冷却水の流量を制御する流量制御手段
とを有することを特徴とする、燃料電池余剰蒸気凝縮型
気水分離器。
1. A two-phase flow of cooling water heated by reaction heat of a fuel cell body is separated into a gas phase and a liquid phase, and the separated cooling water is returned to a cooler of the fuel cell body. In a steam separator in a fuel cell power generation system, cooling means for condensing excess steam in cooling water generated by passing through the fuel cell, a water treatment device for treating water condensed by the cooling means, and A water treatment water line for supplying the water treated by the water treatment device as cooling water to the cooling means, and a flow rate control provided on the water treatment water line for controlling the flow rate of the cooling water supplied to the cooling means. A fuel cell surplus vapor condensing steam-water separator, comprising:
【請求項2】冷却手段は、気水分離器の器内上部の気相
部に冷却水を散水する散水スプレーノズルであることを
特徴とする、請求項1記載の燃料電池余剰蒸気凝縮型気
水分離器。
2. The fuel cell surplus vapor condensation type gas according to claim 1, wherein the cooling means is a water spray nozzle for spraying cooling water to the gas phase portion in the upper part of the steam water separator. Water separator.
【請求項3】冷却手段は、気水分離器の器内上部の気相
部に配設された伝熱管であることを特徴とする、請求項
1記載の燃料電池余剰蒸気凝縮型気水分離器。
3. The fuel cell surplus vapor condensation type steam-water separator according to claim 1, wherein the cooling means is a heat transfer tube arranged in a gas phase portion in an upper part of the steam-water separator. vessel.
【請求項4】冷却手段は、気水分離器内上部の気相部に
設けた散水用パレットであることを特徴とする、請求項
1記載の燃料電池余剰蒸気凝縮型気水分離器。
4. The fuel cell surplus vapor condensing steam / water separator according to claim 1, wherein the cooling means is a water spray pallet provided in a gas phase portion in an upper portion of the steam / water separator.
JP09182294A 1994-04-28 1994-04-28 Fuel cell surplus steam condensation type steam separator Expired - Fee Related JP3461909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09182294A JP3461909B2 (en) 1994-04-28 1994-04-28 Fuel cell surplus steam condensation type steam separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09182294A JP3461909B2 (en) 1994-04-28 1994-04-28 Fuel cell surplus steam condensation type steam separator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003165189A Division JP3936310B2 (en) 2003-06-10 2003-06-10 Fuel cell surplus steam condensing type steam separator

Publications (2)

Publication Number Publication Date
JPH07296836A JPH07296836A (en) 1995-11-10
JP3461909B2 true JP3461909B2 (en) 2003-10-27

Family

ID=14037318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09182294A Expired - Fee Related JP3461909B2 (en) 1994-04-28 1994-04-28 Fuel cell surplus steam condensation type steam separator

Country Status (1)

Country Link
JP (1) JP3461909B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925078B2 (en) * 2004-01-14 2012-04-25 株式会社Eneosセルテック Polymer electrolyte fuel cell
JP4810869B2 (en) * 2005-04-20 2011-11-09 株式会社エクォス・リサーチ Fuel cell system
JP2010169364A (en) * 2009-01-26 2010-08-05 Sumitomo Precision Prod Co Ltd Thermosiphon type steam generator

Also Published As

Publication number Publication date
JPH07296836A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
JPS59141406A (en) Rapid starting type methanol reactor
RU99128094A (en) EXHAUST GAS HEAT REGENERATION IN AN ORGANIC ENERGY CONVERTER USING THE INTERMEDIATE LIQUID CYCLE
JPH06101932A (en) Absorptive heat pump and cogeneration system using exhaust heat
JPH08502345A (en) Steam power plant for producing electrical energy
JP2004079495A (en) Fuel cell power generation system using gasified refuse gas
JP3809646B2 (en) Fuel cell device
CN108461781B (en) Method for starting up a fuel cell device and fuel cell device
JPS5828176A (en) Fuel-cell generation system
JP3461909B2 (en) Fuel cell surplus steam condensation type steam separator
JP3407747B2 (en) Fuel cell power generator with moisture separator
JPH11278806A (en) Fuel cell plant
JPH0766829B2 (en) Fuel cell system with exhaust heat energy recovery device
JP3936310B2 (en) Fuel cell surplus steam condensing type steam separator
JP2920018B2 (en) Fuel cell power generator
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JP3139574B2 (en) Fuel cell generator
JP2002053305A (en) Method for vaporizing kerosene fuel for fuel cell
JPH06103996A (en) Fuel cell power generating exhaust heat recovery system
JPH08124587A (en) Fuel cell power generating plant
JP2002100382A (en) Fuel cell power generator
JPH06283184A (en) Fuel cell indirect steam extracting type steam separator of fuel cell power generation system
JP4453226B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP3319315B2 (en) Direct contact heat exchanger system for fuel cells
JPH06283185A (en) Integrated exhaust heat recovery device of fuel cell power generation system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees