JPH05290854A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH05290854A
JPH05290854A JP4116927A JP11692792A JPH05290854A JP H05290854 A JPH05290854 A JP H05290854A JP 4116927 A JP4116927 A JP 4116927A JP 11692792 A JP11692792 A JP 11692792A JP H05290854 A JPH05290854 A JP H05290854A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
current collector
collector sheet
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4116927A
Other languages
Japanese (ja)
Other versions
JP3263430B2 (en
Inventor
Masahisa Fujimoto
正久 藤本
Toshiyuki Noma
俊之 能間
Kazuo Moriwaki
和郎 森脇
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11692792A priority Critical patent/JP3263430B2/en
Publication of JPH05290854A publication Critical patent/JPH05290854A/en
Application granted granted Critical
Publication of JP3263430B2 publication Critical patent/JP3263430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide safety and good cycle characteristics, and prevent reduction of a battery capacity by forming a positive electrode collector sheet of tantalum. CONSTITUTION:A lithium secondary battery is composed of a positive electrode of which binding agent for positive electrode mix is laminated on a positive electrode collector sheet, a negative electrode of which binding agent for graphite powders is laminated on a negative electrode collector sheet, electrolyte comprising solute of trifluoromethane sulfonic acid lithium, and a separator. A surface of a metal sheet comprising Al, stainless, Ti, Cu, Fe, Ag, Su, platinum, Ni, Pd, Mo, Zr, lanthanum, tungsten, niobium or alloy of these is coated with tantalum coating, or a whole body is formed of tantalum to be the positive electrode collector sheet. Elution of material of a positive electrode collector into the electrolyte is thus eliminated, reduction of a battery capacity caused by this is eliminated, and a risk of a battery breakage or rupture by overreaction of graphite with the electrolyte is eliminated, thereby a high reliability lithium secondary battery can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に係
わり、特に電池容量の向上などを目的とした正極集電体
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to improvement of a positive electrode current collector for the purpose of improving battery capacity.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウムを吸蔵放出可能な負極材料として黒鉛を、正極
集電体としてアルミニウム製のシート(板や箔)を、ま
た電解液としてヘキサフルオロリン酸リチウム(LiP
6 )系非水系電解液を使用したリチウム二次電池が提
案されている。
2. Description of the Related Art In recent years,
Graphite is used as a negative electrode material capable of inserting and extracting lithium, an aluminum sheet (plate or foil) is used as a positive electrode current collector, and lithium hexafluorophosphate (LiP) is used as an electrolytic solution.
Lithium secondary battery using the F 6) based non-aqueous electrolyte has been proposed.

【0003】しかしながら、この系の電池には、次に示
す問題がある。 (1)LiPF6 と負極材料たる黒鉛とは高温下におい
て反応し易く、短絡した場合などにおいては、黒鉛内に
吸蔵されていたリチウムが急激に放出されて、これとL
iPF6 との過反応が起こるため、電池が破裂するおそ
れがあり、危険である。 (2)LiPF6 と黒鉛とはサイクルの進行に伴い徐々
に反応して負極表面に電極反応に不都合な皮膜を生成す
るため、サイクル特性の劣化を招く。
However, the battery of this system has the following problems. (1) LiPF 6 and graphite, which is a negative electrode material, easily react at high temperature, and when a short circuit occurs, the lithium occluded in the graphite is rapidly released, and the lithium and L
Overreacting with iPF 6 may cause the battery to explode, which is dangerous. (2) LiPF 6 and graphite gradually react with each other as the cycle progresses to form a film on the surface of the negative electrode, which is inconvenient for the electrode reaction, resulting in deterioration of cycle characteristics.

【0004】上記(1)及び(2)の問題は、LiPF
6 に代えてトリフルオロメタンスルホン酸リチウム(L
iCF3 SO3 )を使用すれば解消される。LiCF3
SO3 と黒鉛とは反応しにくく、また不都合な皮膜を負
極表面に形成することもないからである。
The problems (1) and (2) above are caused by LiPF
Lithium trifluoromethanesulfonate instead of 6 (L
It is solved by using iCF 3 SO 3 ). LiCF 3
This is because SO 3 and graphite are less likely to react with each other, and an inconvenient film is not formed on the surface of the negative electrode.

【0005】しかしながら、LiCF3 SO3 を使用す
ると、正極が高電位となる充電時に、正極集電体中のア
ルミニウムの電解液中への溶出が起こり、電池容量が低
下してしまうという別の問題が生じる。このため、Li
CF3 SO3 には上記(1)及び(2)の問題がないと
いう利点があるにもかかわらず、その電解液への使用は
見送られてきたのが現状である。
However, when LiCF 3 SO 3 is used, another problem is that when charging the positive electrode to a high potential, aluminum in the positive electrode current collector is eluted into the electrolytic solution, resulting in a decrease in battery capacity. Occurs. Therefore, Li
Although CF 3 SO 3 has the advantage that it does not have the problems (1) and (2), its use in the electrolytic solution has been postponed at present.

【0006】そこで、LiCF3 SO3 の実用化を実現
すべく鋭意研究した結果、本発明者らは、特定の金属か
らなる、或いは特定の金属で表面が被覆された正極集電
体をアルミニウム製の正極集電体に代えて使用すれば、
正極集電体材料の電解液中への溶出がなくなるとの知見
を得た。
Then, as a result of earnest research to realize the practical use of LiCF 3 SO 3 , the present inventors have found that the positive electrode current collector made of aluminum or having the surface coated with a specific metal is made of aluminum. If used in place of the positive electrode current collector of
It was found that the positive electrode current collector material was not dissolved in the electrolytic solution.

【0007】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、安全で、且つ、
サイクル特性に優れ、しかも正極集電体材料の溶解に起
因して電池容量が低下することのないリチウム二次電池
を提供するにある。
The present invention has been made on the basis of the above findings, and its object is to ensure safety and
It is an object of the present invention to provide a lithium secondary battery that has excellent cycle characteristics and that does not reduce the battery capacity due to the dissolution of the positive electrode current collector material.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の請求項1記載の発明に係るリチウム二次電池は、正極
合剤の結着体を正極集電体シートに積層してなる正極
と、黒鉛粉末の結着体を負極集電体シートに積層してな
る負極と、トリフルオロメタンスルホン酸リチウムを溶
質とする電解液と、セパレータとを備えてなるリチウム
二次電池であって、前記正極集電体シートがタンタルか
らなる。
To achieve the above object, a lithium secondary battery according to the invention of claim 1 is a positive electrode comprising a positive electrode mixture sheet and a positive electrode mixture binder laminated on the positive electrode current collector sheet. A lithium secondary battery comprising a negative electrode formed by stacking a binder of graphite powder on a negative electrode current collector sheet, an electrolytic solution containing lithium trifluoromethanesulfonate as a solute, and a separator, wherein the positive electrode is the positive electrode. The current collector sheet is made of tantalum.

【0009】また、請求項2記載の発明に係るリチウム
二次電池は、正極合剤の結着体を正極集電体シートに積
層してなる正極と、黒鉛粉末の結着体を負極集電体シー
トに積層してなる負極と、トリフルオロメタンスルホン
酸リチウムを溶質とする電解液と、セパレータとを備え
てなるリチウム二次電池であって、前記正極集電体シー
トは、タンタル皮膜で、アルミニウム、ステンレス、チ
タン、銅、鉄、銀、金、白金、ニッケル、パラジウム、
モリブデン、ジルコニウム、ランタン、タングステン、
ニオブ、又はこれらの合金からなる金属製シートの表面
を被覆したものである。
According to the second aspect of the present invention, in a lithium secondary battery, a positive electrode obtained by stacking a positive electrode mixture binder on a positive electrode current collector sheet and a graphite powder binder are negative electrode current collectors. A lithium secondary battery comprising a negative electrode laminated on a body sheet, an electrolyte solution containing lithium trifluoromethanesulfonate as a solute, and a separator, wherein the positive electrode current collector sheet is a tantalum film and is made of aluminum. , Stainless steel, titanium, copper, iron, silver, gold, platinum, nickel, palladium,
Molybdenum, zirconium, lanthanum, tungsten,
A metal sheet made of niobium or an alloy thereof is coated on the surface.

【0010】本発明においてタンタルを使用することと
したのは、電導度の高い種々の金属を試験した結果、充
電時に高電位(4V程度以上)にさらされても、LiC
3SO3 と反応して溶出しない金属は、アルミニウム
を除けばタンタル以外、見当たらないことが判明したか
らである。
The reason why tantalum is used in the present invention is that, as a result of testing various metals having high electric conductivity, even if the tantalum is exposed to a high potential (about 4 V or more) during charging, LiC is used.
This is because it was found that no metal other than tantalum was found except for aluminum, which was not eluted by reacting with F 3 SO 3 .

【0011】本発明電池は、電池容量などの電池特性を
向上させるために、従来のアルミニウム製シートからな
る正極集電体が有していた、充電時にアルミニウムがL
iCF3 SO3 系電解液中に溶出するという問題を、か
かる溶出の虞れが全くないタンタルからなる、もしく
は、タンタルで表面が被覆された集電体を使用した点に
特徴を有する。それゆえ、正極活物質、電解液溶媒、セ
パレータ(液体電解質を使用する場合)の種類などにつ
いては、種々の材料を制限なく使用することが可能であ
る。
In the battery of the present invention, in order to improve battery characteristics such as battery capacity, the conventional positive electrode current collector made of an aluminum sheet has aluminum which is L when charged.
The problem of elution in the iCF 3 SO 3 -based electrolytic solution is characterized in that a current collector made of tantalum having no fear of such elution or having a surface coated with tantalum is used. Therefore, it is possible to use various materials for the positive electrode active material, the electrolyte solvent, the type of the separator (when the liquid electrolyte is used), etc. without limitation.

【0012】たとえば、リチウムを吸蔵放出可能な正極
活物質としては、無機化合物として、Li2 FeO3
TiO2 、V2 5 などのトンネル状の空孔を有する酸
化物や、TiS2 、MoS2 等の層状構造を有する金属
カルコゲン化物が例示されるが、組成式Lix MO2
はLiy 2 4 (ただし、Mは遷移元素、0≦x≦
1、0≦y≦2)で表される複合酸化物が好ましく、こ
の具体例としては、LiCoO2 、LiMnO2 、Li
NiO2 、LiCrO2 、LiMn2 4 が例示され
る。これらの正極活物質は、常法により、アセチレンブ
ラック、カーボンブラック等の導電剤及びポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン等
の結着剤と混練して正極合剤として使用される。
For example, as a positive electrode active material capable of inserting and extracting lithium, an inorganic compound such as Li 2 FeO 3 ,
Examples thereof include oxides having tunnel-shaped vacancies such as TiO 2 and V 2 O 5 and metal chalcogenides having a layered structure such as TiS 2 and MoS 2 , but the composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition element, 0 ≦ x ≦
1, 0 ≦ y ≦ 2) is preferable, and specific examples thereof include LiCoO 2 , LiMnO 2 , and Li.
Examples are NiO 2 , LiCrO 2 , and LiMn 2 O 4 . These positive electrode active materials are kneaded by a conventional method with a conductive agent such as acetylene black or carbon black and a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride to be used as a positive electrode mixture.

【0013】また、LiCF3 SO3 を溶媒に溶かして
電解液を調製する際の溶媒としても、エチレンカーボネ
ート、ジメチルカーボネート、又はこれらの混合溶媒な
どの他、従来リチウム二次電池用として使用され、或い
は提案されている種々の非水系溶媒を用いることができ
る。
Further, as a solvent for preparing an electrolytic solution by dissolving LiCF 3 SO 3 in a solvent, ethylene carbonate, dimethyl carbonate, a mixed solvent thereof, etc., are conventionally used for lithium secondary batteries, Alternatively, various proposed non-aqueous solvents can be used.

【0014】[0014]

【作用】本発明電池においては、少なくとも表面がLi
CF3 SO3 系電解液に対して溶解しないタンタルで構
成されている正極集電体が使用されているので、充電時
に正極が高電位になっても、正極集電体材料が電解液中
に溶出するという問題が生じない。
In the battery of the present invention, at least the surface is Li
Since the positive electrode current collector made of tantalum that does not dissolve in the CF 3 SO 3 -based electrolyte is used, even if the positive electrode becomes a high potential during charging, the positive electrode current collector material remains in the electrolyte. There is no problem of elution.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0016】(実施例1) 〔正極の作製〕正極活物質としてのLiCoO2 に、導
電剤としてのアセチレンブラックと、結着剤としてのフ
ッ素樹脂ディスパージョンとを、重量比90:6:4の
比率で混合して正極合剤を得た。次いで、この正極合剤
を正極集電体としてのタンタル箔の両面に、ドクターブ
レード法により塗布し、予備乾燥した後、圧延し、25
0°Cで2時間真空下で加熱処理して正極を作製した。
Example 1 [Production of Positive Electrode] LiCoO 2 as a positive electrode active material, acetylene black as a conductive agent, and fluororesin dispersion as a binder were mixed at a weight ratio of 90: 6: 4. The mixture was mixed in a ratio to obtain a positive electrode mixture. Then, this positive electrode mixture was applied to both sides of a tantalum foil as a positive electrode current collector by a doctor blade method, preliminarily dried, and then rolled.
A positive electrode was produced by heat treatment under vacuum at 0 ° C. for 2 hours.

【0017】〔負極の作製〕天然黒鉛に結着剤としての
ポリフッ化ビニリデン(PVdF)を、重量比95:5
の比率で混合し、これを溶剤(N−メチルピロリドン)
に分散させてスラリーとした後、負極集電体としての銅
箔上にドクターブレード法により塗布し、乾燥して、負
極を作製した。
[Production of Negative Electrode] Polyvinylidene fluoride (PVdF) as a binder was added to natural graphite in a weight ratio of 95: 5.
Mixed in the ratio of, and this is the solvent (N-methylpyrrolidone)
After being made into a slurry to form a slurry, it was coated on a copper foil as a negative electrode current collector by a doctor blade method and dried to prepare a negative electrode.

【0018】〔電解液の調製〕エチレンカーボネートと
ジメチルカーボネートとの等体積混合溶媒に、LiCF
3 SO3 を1モル/リットル溶かして電解液を調製し
た。
[Preparation of Electrolyte Solution] LiCF was added to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
An electrolyte was prepared by dissolving 3 SO 3 at 1 mol / liter.

【0019】〔本発明電池BA1の作製〕以上の正負両
極及び電解液を用いて本発明に係る円筒型のリチウム二
次電池BA1を作製した(電池寸法:直径14.2m
m;長さ50.0mm)。なお、セパレータとしてイオ
ン透過性のポリプロピレン製の微孔性薄膜(ポリプラス
チックス社製、商品名「セルガード2400」)を用い
た。
[Preparation of Battery BA1 of the Present Invention] A cylindrical lithium secondary battery BA1 according to the present invention was prepared using the positive and negative electrodes and the electrolytic solution described above (battery size: diameter 14.2 m).
m; length 50.0 mm). An ion-permeable polypropylene microporous thin film (manufactured by Polyplastics Co., Ltd., trade name “Celgard 2400”) was used as the separator.

【0020】図1は作製した電池BA1の断面図であ
り、同図に示す電池BA1は、正極1及び負極2、これ
ら両電極を離隔するセパレータ3、正極リード4、負極
リード5、正極外部端子6、負極缶7などからなる。正
極1及び負極2は非水電解液が注入されたセパレータ3
を介して渦巻き状に巻き取られた状態で負極缶7内に収
容されており、正極1は正極リード4を介して正極外部
端子6に、また負極2は負極リード5を介して負極缶7
に接続され、電池BA1内部で生じた化学エネルギーを
電気エネルギーとして外部へ取り出し得るようになって
いる。
FIG. 1 is a cross-sectional view of the manufactured battery BA1. The battery BA1 shown in the drawing is a positive electrode 1 and a negative electrode 2, a separator 3 for separating these electrodes, a positive electrode lead 4, a negative electrode lead 5, and a positive electrode external terminal. 6, a negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 are separators 3 in which a non-aqueous electrolyte is injected.
It is housed in a negative electrode can 7 in a spirally wound state via a positive electrode 1 via a positive electrode lead 4 to a positive electrode external terminal 6, and a negative electrode 2 via a negative electrode lead 5 into a negative electrode can 7.
The chemical energy generated inside the battery BA1 can be taken out to the outside as electric energy.

【0021】(比較例1)正極集電体として、タンタル
箔に代えてアルミニウム箔を使用したこと以外は実施例
1と同様にして、比較電池BC1を作製した。
Comparative Example 1 A comparative battery BC1 was produced in the same manner as in Example 1 except that aluminum foil was used instead of tantalum foil as the positive electrode current collector.

【0022】(比較例2)電解液の溶質として、LiC
3 SO3 に代えてLiPF6 を使用したこと以外は実
施例1と同様にして、比較電池BC2を作製した。
Comparative Example 2 LiC was used as the solute of the electrolytic solution.
A comparative battery BC2 was prepared in the same manner as in Example 1 except that LiPF 6 was used instead of F 3 SO 3 .

【0023】(容量特性)本発明電池BA1及び比較電
池BC1について、充放電時の電池電圧と充放電容量と
の関係を、充電電流200mAで4.1Vまで充電した
後、放電電流200mAで3Vまで放電して、電池特性
を調べた。図2は、各電池の電池特性を、縦軸に電池電
圧(V)を、また横軸に容量(mAh)をとって示した
グラフである。
(Capacity characteristics) Regarding the battery BA1 of the present invention and the comparative battery BC1, the relationship between the battery voltage and the charge / discharge capacity during charging / discharging was charged up to 4.1 V at a charging current of 200 mA, and then up to 3 V at a discharging current of 200 mA. After discharging, the battery characteristics were examined. FIG. 2 is a graph showing the battery characteristics of each battery, with the vertical axis representing the battery voltage (V) and the horizontal axis representing the capacity (mAh).

【0024】同図より、本発明電池BA1では、正極集
電体材料たるタンタルの電解液中への溶出が起こらない
ので、500mAhもの大きな電池容量を有しているの
に対して、比較電池BC1では、正極が4V程度以上の
高電位となった時点でアルミニウムの溶解が起こり、そ
れ以上充電が進行しなくなるので260mAh程度の放
電容量しか有していないことが分かる。
From the figure, in the battery BA1 of the present invention, since tantalum as the positive electrode current collector material does not elute into the electrolytic solution, the battery BA1 has a large battery capacity of 500 mAh, whereas the comparative battery BC1. It can be seen that, when the positive electrode has a high potential of about 4 V or higher, aluminum dissolves, and charging does not proceed any further, and thus the discharge capacity is only about 260 mAh.

【0025】(短絡試験)各電池について短絡試験を行
った。図3は、短絡試験における短絡後の温度上昇の様
子を、縦軸に電池温度(°C)を、横軸に短絡開始後の
時間(分)をとって示したグラフであり、黒鉛負極に対
してLiPF6 を使用した比較電池BC2では、過反応
が起こって3分以内に300°C近くまで電池温度が上
昇して電池が破裂する虞れがあるため極めて危険である
のに対して、LiCF3 SO3 を使用した本発明電池B
A1(及び比較電池BC1)では、130°C程度まで
しか上昇せず、また1分後には30〜40°C程度に下
がるため、安全性の点において問題がないことが分か
る。
(Short Circuit Test) A short circuit test was conducted on each battery. FIG. 3 is a graph showing the temperature rise after short circuit in the short circuit test, with the vertical axis representing battery temperature (° C) and the horizontal axis representing time (minutes) after the start of short circuit. On the other hand, the comparative battery BC2 using LiPF 6 is extremely dangerous because the battery temperature may rise to near 300 ° C. within 3 minutes due to overreaction and the battery may burst. Inventive battery B using LiCF 3 SO 3
In A1 (and comparative battery BC1), the temperature rises only up to about 130 ° C., and after 1 minute it falls to about 30 to 40 ° C. Therefore, it can be seen that there is no problem in terms of safety.

【0026】叙上の実施例では本発明を円筒型電池に適
用する場合の具体例について説明したが、電池の形状に
特に制限はなく、本発明は扁平型、角型等、種々の形状
のリチウム二次電池に適用し得るものである。
In the above embodiment, a specific example in which the present invention is applied to a cylindrical battery is described, but the shape of the battery is not particularly limited, and the present invention has various shapes such as a flat type and a square type. It is applicable to a lithium secondary battery.

【0027】[0027]

【発明の効果】本発明電池においては、正極集電体材料
が電解液中に溶出するという問題がないので、これに起
因した電池容量の低下がなく、また黒鉛と電解液との過
反応による電池の破損や破裂の危険性がなく信頼性が高
いなど、本発明は優れた特有の効果を奏する。
In the battery of the present invention, there is no problem that the positive electrode current collector material is eluted in the electrolytic solution, so that there is no decrease in battery capacity due to this, and also due to overreaction between graphite and the electrolytic solution. The present invention has excellent peculiar effects such as high reliability without the risk of battery damage or rupture.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型の本発明電池BA1の断面図である。FIG. 1 is a cross-sectional view of a cylindrical battery BA1 of the present invention.

【図2】電池特性図である。FIG. 2 is a battery characteristic diagram.

【図3】短絡後の温度上昇の様子を示すグラフである。FIG. 3 is a graph showing how the temperature rises after a short circuit.

【符号の説明】[Explanation of symbols]

BA1 円筒型の本発明電池 1 正極 2 負極 3 セパレータ BA1 Cylindrical battery 1 of the present invention 1 positive electrode 2 negative electrode 3 separator

フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内Front Page Continuation (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極合剤の結着体を正極集電体シートに積
層してなる正極と、黒鉛粉末の結着体を負極集電体シー
トに積層してなる負極と、トリフルオロメタンスルホン
酸リチウムを溶質とする電解液と、セパレータとを備え
てなるリチウム二次電池であって、前記正極集電体シー
トがタンタルからなることを特徴とするリチウム二次電
池。
1. A positive electrode formed by stacking a binder of a positive electrode mixture on a positive electrode current collector sheet, a negative electrode formed by stacking a binder of graphite powder on a negative electrode current collector sheet, and trifluoromethanesulfonic acid. A lithium secondary battery comprising an electrolytic solution containing lithium as a solute and a separator, wherein the positive electrode current collector sheet is made of tantalum.
【請求項2】正極合剤の結着体を正極集電体シートに積
層してなる正極と、黒鉛粉末の結着体を負極集電体シー
トに積層してなる負極と、トリフルオロメタンスルホン
酸リチウムを溶質とする電解液と、セパレータとを備え
てなるリチウム二次電池であって、前記正極集電体シー
トは、タンタル皮膜で、アルミニウム、ステンレス、チ
タン、銅、鉄、銀、金、白金、ニッケル、パラジウム、
モリブデン、ジルコニウム、ランタン、タングステン、
ニオブ、又はこれらの合金からなる金属製シートの表面
を被覆したものであることを特徴とするリチウム二次電
池。
2. A positive electrode in which a binder of a positive electrode mixture is laminated on a positive electrode current collector sheet, a negative electrode in which a binder of graphite powder is laminated on a negative electrode current collector sheet, and trifluoromethanesulfonic acid. A lithium secondary battery comprising an electrolyte solution containing lithium as a solute, and a separator, wherein the positive electrode current collector sheet is a tantalum film, and is made of aluminum, stainless steel, titanium, copper, iron, silver, gold, platinum. , Nickel, palladium,
Molybdenum, zirconium, lanthanum, tungsten,
A lithium secondary battery comprising a metal sheet made of niobium or an alloy of these coated on the surface thereof.
JP11692792A 1992-04-09 1992-04-09 Lithium secondary battery Expired - Fee Related JP3263430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11692792A JP3263430B2 (en) 1992-04-09 1992-04-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11692792A JP3263430B2 (en) 1992-04-09 1992-04-09 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH05290854A true JPH05290854A (en) 1993-11-05
JP3263430B2 JP3263430B2 (en) 2002-03-04

Family

ID=14699135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11692792A Expired - Fee Related JP3263430B2 (en) 1992-04-09 1992-04-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3263430B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016144A1 (en) * 1997-09-19 1999-04-01 Mitsubishi Chemical Corporation Non-aqueous electrolyte cell
US6790559B2 (en) 2001-03-15 2004-09-14 Powergenix Systems, Inc. Alkaline cells having positive nickel hydroxide electrodes with fluoride salt additives
KR100650621B1 (en) * 1999-02-16 2006-11-27 쇼와 덴코 가부시키가이샤 Niobium powder, niobium sintered body, capacitor comprised of the sintered body, and method for manufacturing the capacitor
EP1553649A3 (en) * 2003-12-25 2006-12-06 SII Micro Parts Ltd. Electrochemical cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496954B (en) * 2011-07-29 2015-08-21 Furukawa Electric Co Ltd An electrolytic copper alloy foil manufacturing method, an electrolytic solution for the production of the alloy foil, a negative electrode current collector for a secondary battery, a secondary battery and an electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016144A1 (en) * 1997-09-19 1999-04-01 Mitsubishi Chemical Corporation Non-aqueous electrolyte cell
US6670078B1 (en) 1997-09-19 2003-12-30 Mitsubishi Chemical Corporation Non-aqueous electrolyte cell with a solvent including a S-O bond
KR100650621B1 (en) * 1999-02-16 2006-11-27 쇼와 덴코 가부시키가이샤 Niobium powder, niobium sintered body, capacitor comprised of the sintered body, and method for manufacturing the capacitor
US6790559B2 (en) 2001-03-15 2004-09-14 Powergenix Systems, Inc. Alkaline cells having positive nickel hydroxide electrodes with fluoride salt additives
EP1553649A3 (en) * 2003-12-25 2006-12-06 SII Micro Parts Ltd. Electrochemical cell
CN100446332C (en) * 2003-12-25 2008-12-24 精工电子有限公司 Electrochemical cell
US7749649B2 (en) 2003-12-25 2010-07-06 Seiko Instruments Inc. Electrochemical cell having container with embedded positive electrode current collector

Also Published As

Publication number Publication date
JP3263430B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
EP1119063A1 (en) Positive active material for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JPH0652887A (en) Lithium secondary battery
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
JP3059820B2 (en) Lithium secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP3768046B2 (en) Lithium secondary battery
JPH0864240A (en) Nonaqueous electrolyte battery
JP3263430B2 (en) Lithium secondary battery
JP3223051B2 (en) Lithium secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2001102051A (en) Electrode and lithium secondary cell
JP2006260786A (en) Nonaqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JP3432922B2 (en) Solid electrolyte secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JP3615416B2 (en) Lithium secondary battery
JPH06243869A (en) Nonaqueous secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP3208183B2 (en) Lithium secondary battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
JP3363547B2 (en) Non-aqueous electrolyte secondary battery
JPH0554887A (en) Nonaqueous electrolyte secondary battery
JP3349373B2 (en) Lithium secondary battery
JPH11354127A (en) Lithium secondary battery
JP2003077478A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees