JPH05267476A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05267476A
JPH05267476A JP6464992A JP6464992A JPH05267476A JP H05267476 A JPH05267476 A JP H05267476A JP 6464992 A JP6464992 A JP 6464992A JP 6464992 A JP6464992 A JP 6464992A JP H05267476 A JPH05267476 A JP H05267476A
Authority
JP
Japan
Prior art keywords
wiring
film
insulating film
teos
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6464992A
Other languages
Japanese (ja)
Inventor
Eisuke Tanaka
英祐 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6464992A priority Critical patent/JPH05267476A/en
Publication of JPH05267476A publication Critical patent/JPH05267476A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable easy control of adhesion with an interface without using an coating insulating film in a semiconductor device having a multilayer interconnection structure. CONSTITUTION:A first wiring 3 is formed on a semiconductor substrate 1 with a foundation insulating film 2 between and a silicon nitride film is formed on the first wiring 3 as a first layer wiring insulating film 41. After a TEOS+O2 plasma oxide film is formed thereon as a second layer wiring insulating film 42, a projecting part of the TEOS+O2 plasma oxide film is removed entirely. Then, a TEOS+O2 oxide film is formed as a third layer wiring insulating film 43 and a second wiring is formed thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層配線構造を有する
半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a multilayer wiring structure.

【0002】[0002]

【従来の技術】図5は従来の多層配線構造の半導体装置
を示す断面図である。この図において、1はシリコン等
の半導体基板、2は下地絶縁膜、3はこの下地絶縁膜2
上に形成された第1の配線、6はこの第1の配線3上に
形成された配線間絶縁膜、5はこの配線間絶縁膜6上に
形成された第2の配線である。
2. Description of the Related Art FIG. 5 is a sectional view showing a conventional semiconductor device having a multilayer wiring structure. In this figure, 1 is a semiconductor substrate of silicon or the like, 2 is a base insulating film, 3 is this base insulating film 2
The first wiring is formed on the upper wiring 6, the interwiring insulating film 6 is formed on the first wiring 3, and the second wiring is formed on the interwiring insulating film 6.

【0003】図5に示す従来の半導体装置の構成におい
て、第1の配線3上に堆積する配線間絶縁膜6は、その
上に形成される第2の配線5のパターニング性を良好と
し、かつ配線の信頼性レベルを向上させるために十分な
平坦性が必要とされる。以下、上記配線間絶縁膜6の形
成方法を含め、従来の半導体装置の製造方法について図
6(a)〜(d)を参照して説明する。
In the structure of the conventional semiconductor device shown in FIG. 5, the inter-wiring insulating film 6 deposited on the first wiring 3 improves the patternability of the second wiring 5 formed thereon, and Sufficient flatness is required to improve the reliability level of the wiring. Hereinafter, a conventional method for manufacturing a semiconductor device, including the method for forming the inter-wiring insulating film 6, will be described with reference to FIGS.

【0004】図6において、第1の配線3および第2の
配線5としては、アルミ高融点金属等の金属配線や高融
点金属シリサイド配線,多結晶シリコン配線などがある
が、ここでは第1の配線3および第2の配線5がアルミ
配線の場合について述べる。まず、図6(a)のよう
に、半導体基板1上に下地絶縁膜2を介して第1の配線
3を形成し、次いで、図6(b)のように、第1の配線
3上に、例えば「有機シランと酸素を主成分とするガス
を用い、プラズマCVD法で堆積するシリコン酸化膜」
(以後、TEOS(テトラエチルオルソシリケイト)+
2 系プラズマ酸化膜という)あるいは「有機シランと
オゾンを主成分とするガスを用い、熱CVD法で堆積す
るシリコン酸化膜」(以後、TEOS+O3 系熱酸化膜
という)61をエッチバック等を行い、2000〜30
00Å厚に形成する。以後、この無機塗布絶縁膜である
シリコン酸化膜を第1層配線間絶縁膜61という。次
に、図6(c)のように、第1層配線間絶縁膜61の上
に第2層配線間絶縁膜62となるシラノールSi(O
H)4 等を主成分とする無機塗布絶縁膜を塗布し、その
後、400℃以上の温度でベークすることにより、表面
の平坦化を行う。次に、図6(d)のように、図6
(b)の工程と同様にTEOS+O2 系プラズマ酸化膜
を約5000〜6000Å厚に形成する。以後、これを
第3層配線間絶縁膜63とする。最後にこうして形成し
た第1層〜第3層配線間絶縁膜61〜63からなる配線
間絶縁膜6上に、第2の配線5として、例えばアルミ配
線を形成する。
In FIG. 6, the first wiring 3 and the second wiring 5 include metal wiring such as aluminum refractory metal, refractory metal silicide wiring, and polycrystalline silicon wiring. The case where the wiring 3 and the second wiring 5 are aluminum wirings will be described. First, as shown in FIG. 6A, the first wiring 3 is formed on the semiconductor substrate 1 with the underlying insulating film 2 interposed therebetween. Then, as shown in FIG. 6B, the first wiring 3 is formed on the first wiring 3. , "Silicon oxide film deposited by plasma CVD method using gas containing organosilane and oxygen as main components"
(Hereinafter, TEOS (tetraethyl orthosilicate) +
An O 2 type plasma oxide film) or “a silicon oxide film deposited by a thermal CVD method using a gas containing organosilane and ozone as main components” (hereinafter referred to as TEOS + O 3 type thermal oxide film) 61 is etched back or the like. Done, 2000-30
Formed to a thickness of 00Å. Hereinafter, the silicon oxide film which is the inorganic coating insulating film is referred to as a first-layer inter-wiring insulating film 61. Next, as shown in FIG. 6C, on the first-layer inter-wiring insulating film 61, silanol Si (O
H) An inorganic coating insulating film containing 4 or the like as a main component is applied, and then baked at a temperature of 400 ° C. or higher to flatten the surface. Next, as shown in FIG.
Similar to the step (b), a TEOS + O 2 system plasma oxide film is formed to a thickness of about 5000 to 6000Å. Hereinafter, this will be referred to as a third-layer inter-wiring insulating film 63. Finally, for example, aluminum wiring is formed as the second wiring 5 on the inter-wiring insulating film 6 formed of the first-third layer inter-wiring insulating films 61 to 63 thus formed.

【0005】[0005]

【発明が解決しようとする課題】上記のような方法によ
り形成された従来の半導体装置は、配線間絶縁膜6中の
第2層配線間絶縁膜62である塗布絶縁膜の塗れ性およ
び密着性は、第1層配線間絶縁膜61表面の状態に大き
く左右され、図7に示すような塗布絶縁膜中の空洞64
や、図8に示すようなクラック65の発生要因となって
いた。
In the conventional semiconductor device formed by the above method, the wettability and the adhesiveness of the coating insulating film, which is the second-layer inter-wiring insulating film 62 in the inter-wiring insulating film 6, are provided. Depends largely on the state of the surface of the first-layer inter-wiring insulating film 61, and the cavity 64 in the coating insulating film as shown in FIG.
Or, it was a cause of generation of the crack 65 as shown in FIG.

【0006】本発明は、上記のような問題点を解消する
ためになされたもので、空洞やクラックの発生しない半
導体装置の製造方法を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a method for manufacturing a semiconductor device in which no cavity or crack is generated.

【0007】[0007]

【課題を解決するための手段】本発明に係る半導体装置
の製造方法は、3層からなる配線間絶縁膜の最下層にプ
ラズマCVD法によるシリコン窒化膜を形成した後、こ
の上に熱CVD法またはプラズマCVD法により第2層
目のシリコン酸化膜を形成し、前記第2層目のシリコン
酸化膜を所定の厚さにエッチングした後、その上にプラ
ズマCVD法により第3層目のシリコン酸化膜を形成
し、さらにこの第3層目のシリコン酸化膜上に第2の配
線を形成するものである。
According to a method of manufacturing a semiconductor device according to the present invention, a silicon nitride film is formed by a plasma CVD method on the lowermost layer of an inter-wiring insulating film consisting of three layers, and then a thermal CVD method is applied thereon. Alternatively, a second-layer silicon oxide film is formed by a plasma CVD method, the second-layer silicon oxide film is etched to a predetermined thickness, and then a third-layer silicon oxide film is formed by a plasma CVD method. A film is formed, and then a second wiring is formed on the third-layer silicon oxide film.

【0008】[0008]

【作用】本発明においては、配線間絶縁膜の最下層にプ
ラズマCVD法によるシリコン窒化膜が形成されている
ので、エッチバックまたはスパッタエッチによる第1の
配線へのダメージを防ぐことができる。また、このシリ
コン窒化膜がストッパとして機能するので、エッチバッ
クまたはスパッタエッチを多用し、平坦性の良好な配線
間絶縁膜を形成することができる。
In the present invention, since the silicon nitride film formed by the plasma CVD method is formed in the lowermost layer of the inter-wiring insulating film, damage to the first wiring due to etch back or sputter etching can be prevented. Further, since this silicon nitride film functions as a stopper, it is possible to frequently use etch back or sputter etching to form an inter-wiring insulating film having good flatness.

【0009】[0009]

【実施例】以下、本発明の一実施例を図について説明す
る。図1は本発明により形成された半導体装置を示す断
面図である。この図において、1はシリコン等の半導体
基板、2はこの半導体基板1上に堆積された下地絶縁
膜、3はこの下地絶縁膜2上に形成された第1の配線、
4はこの第1の配線3上に堆積された配線間絶縁膜で、
41〜43の3層からなる。すなわち、第1層配線間絶
縁膜41はプラズマCVD法で形成されたシリコン窒化
膜で、約500〜2000Å厚に形成される。第2層配
線間絶縁膜42はTEOS系のシリコン酸化膜で、熱C
VD法あるいはプラズマCVD法で形成された後、エッ
チバックされて凹部に残った膜である。また、第3層配
線間絶縁膜43はTEOS+O2系シリコン酸化膜で、
プラズマCVD法で形成されたものである。5は前記第
3層配線間絶縁膜43上に形成された第2の配線であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a semiconductor device formed according to the present invention. In this figure, 1 is a semiconductor substrate made of silicon or the like, 2 is a base insulating film deposited on the semiconductor substrate 1, 3 is a first wiring formed on the base insulating film 2,
4 is an inter-wiring insulating film deposited on the first wiring 3,
It consists of three layers 41-43. That is, the first-layer inter-wiring insulating film 41 is a silicon nitride film formed by the plasma CVD method and has a thickness of about 500 to 2000 Å. The second-layer inter-wiring insulating film 42 is a TEOS-based silicon oxide film and has a heat
After being formed by the VD method or the plasma CVD method, the film is etched back and remains in the recess. The third-layer inter-wiring insulating film 43 is a TEOS + O 2 -based silicon oxide film,
It is formed by the plasma CVD method. Reference numeral 5 is a second wiring formed on the third-layer inter-wiring insulating film 43.

【0010】図1に示す本発明による半導体装置におけ
る配線間絶縁膜4の堆積方法を図2(a)〜(e)によ
り説明する。なお、従来技術の説明の場合と同様に、第
1の配線3および第2の配線5がアルミ配線の場合につ
いて以下説明する。
A method of depositing the inter-wiring insulating film 4 in the semiconductor device according to the present invention shown in FIG. 1 will be described with reference to FIGS. As in the case of the description of the conventional technique, the case where the first wiring 3 and the second wiring 5 are aluminum wirings will be described below.

【0011】図2(a)のように、図6(a)と同様に
第1の配線3まで形成した後、図2(b)のように、第
1の配線3上に280〜400℃の膜堆積温度でプラズ
マCVD法で第1層配線間絶縁膜41としてシリコン窒
化膜(以下、これも41という)を500〜2000Å
形成する。このシリコン窒化膜41は、ステップカバレ
ッジが良く、シリコン酸化膜とのエッチングの選択比の
コントロールが行いやすい。次に、図2(c)のよう
に、TEOSとO2 を用いて第2層配線間絶縁膜42と
してTEOS+O2 系プラズマCVDシリコン酸化膜
(以下、TEOS+O2 系プラズマ酸化膜42ともい
う)を0.2〜2.0μm形成する。次に、図2(d)
のように、シリコン窒化膜41とTEOS+O2 系プラ
ズマ酸化膜42の選択比の大きなエッチングガスを用い
たエッチバックやスパッタエッチを用いてエッチングす
る。この時、TEOS+O2 系プラズマ酸化膜42の膜
厚分をエッチバックやスパッタエッチでエッチングす
る。これにより、凸部上のTEOS+O2 系プラズマ酸
化膜42は除去されるが、凹部のTEOS+O2 系プラ
ズマ酸化膜42は残る。この場合、シリコン窒化膜41
はエッチングのダメージから第1の配線3を守る。次
に、図2(e)のように、第3層配線間絶縁膜43とし
て、例えばTEOS+O2 系プラズマ酸化膜を0.8〜
1.0μm形成する。
As shown in FIG. 2A, after forming up to the first wiring 3 as in FIG. 6A, 280 to 400 ° C. is formed on the first wiring 3 as shown in FIG. 2B. The silicon nitride film (hereinafter also referred to as 41) is used as the first-layer inter-wiring insulating film 41 by plasma CVD at the film deposition temperature of 500 to 2000Å
Form. The silicon nitride film 41 has good step coverage, and it is easy to control the etching selection ratio with respect to the silicon oxide film. Next, as shown in FIG. 2C, a TEOS + O 2 -based plasma CVD silicon oxide film (hereinafter, also referred to as TEOS + O 2 -based plasma oxide film 42) is used as the second-layer inter-wiring insulating film 42 by using TEOS and O 2. 0.2 to 2.0 μm is formed. Next, FIG. 2 (d)
As described above, etching is performed by using etch back or sputter etching using an etching gas having a large selection ratio between the silicon nitride film 41 and the TEOS + O 2 system plasma oxide film 42. At this time, the film thickness of the TEOS + O 2 system plasma oxide film 42 is etched by etch back or sputter etching. As a result, the TEOS + O 2 based plasma oxide film 42 on the convex portion is removed, but the TEOS + O 2 based plasma oxide film 42 on the concave portion remains. In this case, the silicon nitride film 41
Protects the first wiring 3 from etching damage. Next, as shown in FIG. 2E, as the third-layer inter-wiring insulating film 43, for example, a TEOS + O 2 -based plasma oxide film of 0.8 to
Form 1.0 μm.

【0012】なお、上記実施例では、第2層配線間絶縁
膜42としてTEOSとO2 を用いたTEOS+O2
プラズマ酸化膜を形成したが、他の実施例としてO3
(オゾン)とTEOSを用いた350〜450℃の低温
域でも生成できるTEOS+O3 系熱CVDシリコン酸
化膜(以下、TEOS+O3 系熱酸化膜という)を形成
してもよい。この時も、TEOS+O3 系熱酸化膜を
0.2〜2.0μm形成する。
In the above embodiment, the TEOS + O 2 type plasma oxide film using TEOS and O 2 was formed as the second-layer inter-layer insulating film 42, but as another embodiment, O 3 is used.
A TEOS + O 3 -based thermal CVD silicon oxide film (hereinafter referred to as TEOS + O 3 -based thermal oxide film) that can be formed even in a low temperature range of 350 to 450 ° C. using (ozone) and TEOS may be formed. Also at this time, a TEOS + O 3 -based thermal oxide film is formed in a thickness of 0.2 to 2.0 μm.

【0013】また、上記実施例では、第2層配線間絶縁
膜42としてTEOS+O2 系酸化膜あるいはTEOS
+O3 系熱酸化膜の単層膜の例を示したが、TEOS+
2系酸化膜とTEOS+O3 系熱酸化膜を、例えば
0.2μmずつ複数回形成してもよい。この実施例を図
3(a)〜(d)および図4(a)〜(c)により具体
的に説明する。図3(a),(b)に示すように、図2
(a),(b)と同様に第1の配線3上に第1層配線間
絶縁膜41としてシリコン窒化膜を形成した後、図3
(c)に示すように、TEOS+O2 系酸化膜71を、
例えば0.2μm形成する。次に、この上に図3(d)
に示すように、TEOS+O3 系熱酸化膜72を、例え
ば0.2μm形成する。これらTEOS+O2 系酸化膜
71とTEOS+O3 系熱酸化膜72を図4(a)に示
すように、複数回、例えば、2〜3回繰り返し、交互に
複数層形成する。次に、図4(b)に示すように、シリ
コン窒化膜41と、TEOS+O2 系酸化膜71とTE
OS+O3 系熱酸化膜72の複合膜の選択比の大きなエ
ッチングガスを用いてエッチバックを行う。この時、図
3(c),(d)〜図4(a)において形成したTEO
S+O2 系酸化膜71とTEOS+O3 系熱酸化膜72
の膜厚分をエッチングする。これにより凸部上の膜は除
去されるが、凹部の膜は残る。この時、図4(b)のシ
リコン窒化膜41はエッチングのダメージから第1の配
線3を守る。次に、図4(c)に示すように、第3層配
線間絶縁膜43として、例えばTEOS+O2 系酸化膜
を0.8〜1.0μm形成する。
Further, in the above embodiment, the TEOS + O 2 type oxide film or TEOS is used as the second-layer interlevel insulating film 42.
An example of a single layer of + O 3 -based thermal oxide film is shown, but TEOS +
The O 2 -based oxide film and the TEOS + O 3 -based thermal oxide film may be formed, for example, 0.2 μm each a plurality of times. This embodiment will be specifically described with reference to FIGS. 3A to 3D and FIGS. 4A to 4C. As shown in FIGS. 3A and 3B, as shown in FIG.
After forming a silicon nitride film as the first-layer inter-wiring insulating film 41 on the first wiring 3 in the same manner as in (a) and (b), FIG.
As shown in (c), the TEOS + O 2 -based oxide film 71 is
For example, 0.2 μm is formed. Then, on top of this, see FIG.
As shown in, the TEOS + O 3 based thermal oxide film 72 is formed to a thickness of 0.2 μm, for example. As shown in FIG. 4A, the TEOS + O 2 -based oxide film 71 and the TEOS + O 3 -based thermal oxide film 72 are repeatedly formed a plurality of times, for example, a few times, to form a plurality of layers alternately. Next, as shown in FIG. 4B, the silicon nitride film 41, the TEOS + O 2 -based oxide film 71 and the TE
Etching back is performed using an etching gas having a large selection ratio of the composite film of the OS + O 3 system thermal oxide film 72. At this time, the TEO formed in FIGS. 3C and 3D to FIG.
S + O 2 system oxide film 71 and TEOS + O 3 system thermal oxide film 72
The film thickness of is etched. As a result, the film on the convex portion is removed, but the film on the concave portion remains. At this time, the silicon nitride film 41 of FIG. 4B protects the first wiring 3 from damage due to etching. Next, as shown in FIG. 4C, a TEOS + O 2 -based oxide film, for example, having a thickness of 0.8 to 1.0 μm is formed as the third-layer inter-layer insulating film 43.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
複数層からなる配線間絶縁膜の最下層にシリコン窒化膜
を形成することにより、エッチバックのダメージより第
1の配線を保護することができる。また、エッチバック
の多用が可能な上に、従来用いていた塗布絶縁膜の使用
が不要なので、安定したプロセス状態で高歩留りの半導
体装置が得られる製造方法を提供できる。
As described above, according to the present invention,
By forming the silicon nitride film as the lowermost layer of the inter-wiring insulating film composed of a plurality of layers, the first wiring can be protected from damage due to etch back. Further, since it is possible to use the etch back abundantly and it is unnecessary to use the coating insulating film which has been used conventionally, it is possible to provide a manufacturing method capable of obtaining a semiconductor device with a high yield in a stable process state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による半導体装置を示す断面
側面図である。
FIG. 1 is a sectional side view showing a semiconductor device according to an embodiment of the present invention.

【図2】図1に示す半導体装置の製造方法の一実施例を
示す工程断面図である。
2A to 2D are process cross-sectional views showing an embodiment of a method of manufacturing the semiconductor device shown in FIG.

【図3】本発明の他の実施例を示す工程断面図である。FIG. 3 is a process sectional view showing another embodiment of the present invention.

【図4】図3に引き続く工程断面図である。FIG. 4 is a process sectional view subsequent to FIG. 3;

【図5】従来の多層配線構造の半導体装置を示す断面図
である。
FIG. 5 is a cross-sectional view showing a conventional semiconductor device having a multilayer wiring structure.

【図6】従来の半導体装置の製造方法を示す工程断面図
である。
FIG. 6 is a process cross-sectional view showing the method of manufacturing a conventional semiconductor device.

【図7】従来の絶縁膜形成方法の問題点を示す半導体装
置の断面側面図である。
FIG. 7 is a cross-sectional side view of a semiconductor device showing a problem of a conventional insulating film forming method.

【図8】従来の絶縁膜形成方法の他の問題点を示す半導
体装置の断面側面図である。
FIG. 8 is a sectional side view of a semiconductor device showing another problem of the conventional insulating film forming method.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 下地絶縁膜 3 第1の配線 4 配線間絶縁膜 5 第2の配線 41 シリコン窒化膜(第1層配線間絶縁膜) 42 TEOS+O2 系プラズマ酸化膜(第2層配線間
絶縁膜) 43 TEOS+O2 系プラズマ酸化膜(第3層配線間
絶縁膜)
1 Semiconductor Substrate 2 Base Insulating Film 3 First Wiring 4 Interwiring Insulation Film 5 Second Wiring 41 Silicon Nitride Film (First Layer Interwiring Insulation Film) 42 TEOS + O 2 System Plasma Oxide Film (Second Layer Interwiring Insulation Film) ) 43 TEOS + O 2 type plasma oxide film (third layer inter-wiring insulating film)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に下地絶縁膜を介して第1
の配線を形成する工程と、前記第1の配線をパターニン
グした後、配線間絶縁膜を構成する第1層目のシリコン
窒化膜をプラズマCVD法で形成する工程と、前記シリ
コン窒化膜上に前記配線間絶縁膜を構成する第2層目の
シリコン酸化膜を熱CVD法またはプラズマCVD法で
形成する工程と、前記第2層目のシリコン酸化膜の厚み
分を前記第1層目のシリコン窒化膜との選択比の大きい
エッチング条件でエッチングする工程と、次いで前記配
線間絶縁膜を構成する第3層目のシリコン酸化膜をプラ
ズマCVD法で形成する工程と、前記第3層目のシリコ
ン酸化膜上に第2の配線を形成する工程とを含むことを
特徴とする半導体装置の製造方法。
1. A first substrate formed on a semiconductor substrate via a base insulating film.
The step of forming the wiring, the step of patterning the first wiring, and the step of forming the first-layer silicon nitride film forming the inter-wiring insulating film by the plasma CVD method, and the step of forming the wiring on the silicon nitride film. A step of forming a second-layer silicon oxide film forming an inter-wiring insulating film by a thermal CVD method or a plasma CVD method, and a step of forming a thickness of the second-layer silicon oxide film by the first-layer silicon nitride film. A step of etching under an etching condition having a large selection ratio with respect to the film, a step of forming a third layer silicon oxide film forming the inter-wiring insulating film by a plasma CVD method, and a step of forming the third layer silicon oxide. And a step of forming a second wiring on the film.
JP6464992A 1992-03-23 1992-03-23 Manufacture of semiconductor device Pending JPH05267476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6464992A JPH05267476A (en) 1992-03-23 1992-03-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6464992A JPH05267476A (en) 1992-03-23 1992-03-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05267476A true JPH05267476A (en) 1993-10-15

Family

ID=13264306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6464992A Pending JPH05267476A (en) 1992-03-23 1992-03-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05267476A (en)

Similar Documents

Publication Publication Date Title
JPH05267476A (en) Manufacture of semiconductor device
JPH05206282A (en) Manufacturing method of multilayer wiring structure of semiconductor device
JPH0689893A (en) Semiconductor device
JPH0555199A (en) Semiconductor device
JP2606315B2 (en) Method for manufacturing semiconductor device
JPH0419707B2 (en)
JPH0330992B2 (en)
JPH036827A (en) Manufacture of semiconductor device
JP2942063B2 (en) Method for manufacturing semiconductor device
JPH05102326A (en) Semiconductor device
JPH07147281A (en) Manufacture of semiconductor integrated circuit device
JPH06349951A (en) Manufacture of semiconductor device
JPH07130732A (en) Semiconductor device and its manufacture
JPS6154645A (en) Semiconductor device
JP2776397B2 (en) Method for manufacturing semiconductor device
JPS6325952A (en) Semiconductor device
JPH03159124A (en) Manufacture of semiconductor device
JPH088249A (en) Method for forming interlayer insulation film
JPH0638456B2 (en) Method for manufacturing semiconductor device
JPH05160268A (en) Manufacturing method of semiconductor device
JPH0669038B2 (en) Method for manufacturing semiconductor device
JPH05251572A (en) Semiconductor device and manufacture thereof
JPH0246747A (en) Formation of multilayer interconnection
JPS6227745B2 (en)
JPH07106326A (en) Manufacture of semiconductor device