JPH05267391A - Mounting of component by precipitation soldering method - Google Patents
Mounting of component by precipitation soldering methodInfo
- Publication number
- JPH05267391A JPH05267391A JP6060592A JP6060592A JPH05267391A JP H05267391 A JPH05267391 A JP H05267391A JP 6060592 A JP6060592 A JP 6060592A JP 6060592 A JP6060592 A JP 6060592A JP H05267391 A JPH05267391 A JP H05267391A
- Authority
- JP
- Japan
- Prior art keywords
- component
- substrate
- electrode
- solder
- mounting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8112—Aligning
- H01L2224/81136—Aligning involving guiding structures, e.g. spacers or supporting members
- H01L2224/81138—Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
- H01L2224/8114—Guiding structures outside the body
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/303—Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
Landscapes
- Wire Bonding (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は微細部品の基板への実装
方法に関する。通信装置等の電子機器の小型化への要求
に伴い、部品の小型化やフォトリソグラフィ技術を用い
た微細配線の形成等による高密度実装化が急ピッチで進
んでいる。これに応じて、微細化した部品電極パッドと
基板電極パッド間を接合する部品実装においても、微細
接合技術の確立が要望されている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mounting fine parts on a substrate. Along with the demand for miniaturization of electronic devices such as communication devices, miniaturization of components and high-density packaging by forming fine wiring using photolithography technology are rapidly progressing. Accordingly, there is a demand for establishment of a fine bonding technique even in the component mounting for bonding the miniaturized component electrode pad and the substrate electrode pad.
【0002】[0002]
【従来の技術】図6はコンデンサ等の小型部品の従来の
実装方法を示している。まず、図6(a)に示すよう
に、基板1の電極パッド2上に半田バンプ3を形成し、
次に(b)に示すように部品4を位置合わせして半田バ
ンプ3上に搭載し、リフローによって半田バンプ3を溶
融・固化させて、図6(c)に示すように半田7により
基板電極パッド2と部品電極パッド5との間の接合を行
っている。2. Description of the Related Art FIG. 6 shows a conventional mounting method for a small component such as a capacitor. First, as shown in FIG. 6A, solder bumps 3 are formed on the electrode pads 2 of the substrate 1,
Next, as shown in (b), the component 4 is aligned and mounted on the solder bumps 3, and the solder bumps 3 are melted and solidified by reflow, and the substrate electrodes are soldered with the solder 7 as shown in FIG. 6C. Bonding between the pad 2 and the component electrode pad 5 is performed.
【0003】また、ベアチップ実装方法の中でも、特に
実装面積の低減に効果のあるフリップチップ実装方法を
図7を参照して説明する。まず図6の従来例と同様に、
図7(a)で基板1の電極パッド2上に半田バンプ3を
形成し、次に(b)に示すように電極5上にバンプ6を
形成したベアチップ部品4をバンプ6を基板1の半田バ
ンプ3に位置合わせして基板上に搭載し、次いで、半田
バンプ3を溶融・固化させて、図7(c)に示すように
半田7により基板電極パッド2と部品電極パッド5との
間の接合を行っている。Among the bare chip mounting methods, a flip chip mounting method which is particularly effective in reducing the mounting area will be described with reference to FIG. First, as in the conventional example of FIG.
In FIG. 7A, the solder bumps 3 are formed on the electrode pads 2 of the substrate 1, and then the bare chip component 4 having the bumps 6 formed on the electrodes 5 is soldered on the substrate 1 as shown in FIG. 7B. The bumps 3 are aligned with each other and mounted on the substrate, and then the solder bumps 3 are melted and solidified. Then, as shown in FIG. 7C, the solder bumps 3 are provided between the substrate electrode pads 2 and the component electrode pads 5 with solder 7. We are joining.
【0004】上述したいずれの実装方法でも、基板又は
部品電極上に予めバンプを形成することが必要である
が、電極パッドの微細化、狭ピッチ化に対し半田ペース
トの印刷では対応が困難なため、金の転写バンプ等が使
用されるが、半田材料と比較してコストが高いこと、接
合に際して高温加熱が必要なこと等の問題があった。In any of the mounting methods described above, it is necessary to form bumps on the substrate or component electrodes in advance, but it is difficult to print solder paste for finer electrode pads and narrower pitches. Although gold transfer bumps and the like are used, there are problems such as high cost as compared with solder materials and high temperature heating required for joining.
【0005】そこで、メッキ法を用いた半田バンプ形成
方法が提案されているが、工数が多くかかったり、形成
したバンプ高さや表面形状が不均一なため位置合わせが
難しく、接続不良や半田ブリッジを起こす危険性がある
等の問題があった。Therefore, a solder bump forming method using a plating method has been proposed. However, it takes a lot of man-hours, and the bump height and surface shape formed are not uniform, which makes it difficult to perform alignment, resulting in poor connection and solder bridge. There was a problem such as the risk of causing it.
【0006】一方、微細化、狭ピッチ化した基板電極パ
ッドへの半田バンプ形成方法として、特開平1−157
796号で析出半田法が提案されている。析出半田法
は、化学反応により電極パッド上にのみ半田を析出さ
せ、半田ボールやブリッジの発生がなく、しかも微細で
狭ピッチ(75μm幅、150μmピッチ)パッドへの
対応が可能な半田形成法として注目されている。On the other hand, as a method for forming solder bumps on a substrate electrode pad which has been made finer and has a narrower pitch, Japanese Patent Laid-Open No. 157/157 has been proposed.
No. 796 proposes a deposition solder method. The deposition solder method is a solder formation method that deposits solder only on electrode pads by a chemical reaction, does not generate solder balls or bridges, and is compatible with fine and narrow pitch (75 μm width, 150 μm pitch) pads. Attention has been paid.
【0007】析出半田法は、有機酸鉛と錫粉を主成分と
するペーストを、金属パッド上に塗布し、化学反応によ
り金属パッド上のみに半田を析出させるプロセスであ
り、PbとSnのイオン化傾向の違いにより半田合金が
形成され、続いてこの合金と金属パッド(例えばCu)
上の金属塩とが反応し、金属パッド上にのみ半田を析出
させるものである。The deposition solder method is a process in which a paste containing organic lead acid and tin powder as main components is applied on a metal pad and a solder is deposited only on the metal pad by a chemical reaction, and ionization of Pb and Sn is performed. The different tendencies lead to the formation of a solder alloy, which is then followed by a metal pad (eg Cu).
It reacts with the above metal salt to deposit solder only on the metal pad.
【0008】析出半田法を用いた部品実装の従来例を図
8を用いて説明する。図8(a)に示すように基板1の
電極2上に部品4のリード電極5′を接触させ、次いで
(b)に示すように有機酸鉛と錫粉を主成分とする析出
半田用のペースト8を基板電極2上に塗布する。A conventional example of component mounting using the deposition solder method will be described with reference to FIG. As shown in FIG. 8 (a), the lead electrode 5'of the component 4 is brought into contact with the electrode 2 of the substrate 1, and then, as shown in FIG. The paste 8 is applied on the substrate electrode 2.
【0009】次いで、185〜225℃程度に加熱する
と、Cu(電極2,5′)とペースト中の活性剤とが反
応して、Cu塩が形成される。ペースト中の有機酸鉛と
錫粉との間では、そのイオン化傾向の違いにより鉛が析
出し、瞬時に錫粉中に鉛が拡散して半田合金が形成され
る。続いて、半田合金とCu塩間で拡散反応が起こり、
図8(c)に示すように基板電極2及び部品電極5′上
のみに半田9が析出する。Then, when heated to about 185 to 225 ° C., Cu (electrodes 2, 5 ') reacts with the activator in the paste to form a Cu salt. Between the organic lead acid in the paste and the tin powder, lead is deposited due to the difference in the ionization tendency, and the lead is instantly diffused in the tin powder to form a solder alloy. Then, a diffusion reaction occurs between the solder alloy and Cu salt,
As shown in FIG. 8C, the solder 9 is deposited only on the board electrode 2 and the component electrode 5 '.
【0010】ペースト残滓及び電極2,5′と未反応の
半田ボールは洗浄により容易に除去することができる。
洗浄剤としては、クロロセン系溶剤、アルコール系溶剤
のいずれも使用可能である。The paste residue and the solder balls which have not reacted with the electrodes 2 and 5'can be easily removed by washing.
As the cleaning agent, either a chlorocene-based solvent or an alcohol-based solvent can be used.
【0011】[0011]
【発明が解決しようとする課題】このように析出半田法
を用いてリード部品の半田付を半田析出と同時に行うこ
とが特開平1−157796号で提案されているが、フ
リップチップボンディングのような部品電極と基板パッ
ド間にある一定の間隔(半田高さ)が必要な実装部品の
場合は、基板電極と部品電極とを接触させる特開平1−
157796号記載の部品実装方法では対応が不可能で
あった。It has been proposed in Japanese Patent Laid-Open No. 1-157796 that soldering of lead parts is performed at the same time as solder deposition by using the deposition soldering method. In the case of a mounted component that requires a certain space (solder height) between the component electrode and the substrate pad, the substrate electrode and the component electrode are brought into contact with each other.
The component mounting method described in No. 157796 could not be used.
【0012】そこで従来と同様に、十分な半田高さを得
るために基板電極上に半田バンプを形成した後で部品を
実装しており、部品と基板との熱膨張係数の差によって
生ずる剪断応力により半田破壊を受けやすくなってしま
う欠点があった。Therefore, in the same manner as in the conventional case, the components are mounted after forming the solder bumps on the substrate electrodes in order to obtain a sufficient solder height, and the shear stress caused by the difference in the thermal expansion coefficient between the component and the substrate is generated. There was a drawback that it became vulnerable to solder destruction.
【0013】本発明はこのような点に鑑みてなされたも
のであり、その目的とするところは、所望の膜厚を有す
る半田の形成と信頼性の高い基板電極と部品電極間の接
合とを同時に行うことのできる析出半田法を用いた部品
の実装方法を提供することである。The present invention has been made in view of the above circumstances, and an object thereof is to form a solder having a desired film thickness and to bond a highly reliable substrate electrode and a component electrode. It is an object of the present invention to provide a component mounting method using a deposition solder method that can be performed at the same time.
【0014】[0014]
【課題を解決するための手段】上述した課題を解決する
ために、本発明は、析出半田法により基板上に部品を実
装する方法において、該基板の部品実装部上に析出半田
用のペーストを塗布し、基板と部品との間に半田高さ調
整用のスペーサを介在させて基板と部品とを離間させな
がら基板電極と部品電極との位置合わせを行い、所定温
度に加熱することにより、基板電極側及び部品電極側か
ら半田を析出させ、基板電極と部品電極との接合を行う
ことを特徴とする部品の実装方法を提供する。In order to solve the above-mentioned problems, the present invention provides a method for mounting a component on a substrate by a deposition solder method, wherein a paste for deposition solder is provided on a component mounting portion of the substrate. By coating, the spacer for adjusting the solder height is interposed between the substrate and the component, the substrate electrode and the component electrode are aligned while the substrate and the component are separated from each other, and the substrate electrode is heated to a predetermined temperature. Provided is a component mounting method characterized in that solder is deposited from the electrode side and the component electrode side to bond the substrate electrode and the component electrode.
【0015】基板と部品との間に半田高さ調整用のスペ
ーサを介在させる代わりに、基板上に半田高さ調整用の
突起を形成するか、又は実装すべき部品に半田高さ調整
用の突起を設けるようにしてもよい。Instead of interposing a spacer for adjusting the solder height between the substrate and the component, a protrusion for adjusting the solder height is formed on the substrate, or a component for adjusting the solder height is mounted on the component to be mounted. You may make it provide a protrusion.
【0016】[0016]
【作用】本発明は、スペーサを介して非接触とした基板
電極及び部品電極上に、それぞれ対向する電極側の半田
と接合するまで半田を析出させて両電極間の接合を行う
ため、部品電極と基板電極間にある一定の間隔が必要な
実装部品の場合に、希望する膜厚を有する半田接合を行
うことができる。According to the present invention, the solder is deposited on the substrate electrode and the component electrode which are not in contact with each other through the spacer until they are joined to the solders on the electrodes facing each other. In the case of a mounted component that requires a certain space between the substrate electrode and the substrate electrode, solder bonding having a desired film thickness can be performed.
【0017】[0017]
【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。まず図1を参照すると、本発明の第1実施
例の部品実装方法が示されている。図1(A)に示すよ
うに、基板11の電極12が形成されている部品実装部
に析出半田用ペースト17を塗布する。基板11として
はガラスエポキシ基板、アルミナ基板等、半田析出、接
合時の加熱に対して耐熱性を有する基板が使用可能であ
る。Embodiments of the present invention will now be described in detail with reference to the drawings. First, referring to FIG. 1, there is shown a component mounting method according to a first embodiment of the present invention. As shown in FIG. 1 (A), the solder paste 17 is applied to the component mounting portion of the substrate 11 where the electrode 12 is formed. As the substrate 11, a glass epoxy substrate, an alumina substrate, or the like, which has heat resistance against solder deposition and heating during bonding, can be used.
【0018】基板電極12の材料としては、Cu,Au
等の一般的な電極材料が使用でき、バンプレス基板を用
いることもできる。析出半田用ペースト17の塗布厚
は、希望する半田析出膜厚にもよるが、約50μmの半
田を析出させる場合500μm程度である。The material of the substrate electrode 12 is Cu or Au.
A general electrode material such as the above can be used, and a bumpless substrate can also be used. The coating thickness of the deposited solder paste 17 depends on the desired solder deposition film thickness, but is about 500 μm when depositing about 50 μm of solder.
【0019】次に、基板11上の部品実装部内の電極部
以外の領域に、半田高さ調整用のスペーサ16を置く。
スペーサ16は、希望半田高さ、基板及び部品形状に応
じた粒径を有する耐熱性のガラスビーズである。Next, a spacer 16 for adjusting the solder height is placed in a region other than the electrode portion in the component mounting portion on the substrate 11.
The spacer 16 is a heat-resistant glass bead having a particle diameter according to the desired solder height, the substrate and the shape of the component.
【0020】スペーサ16を介して部品14をその電極
15と基板側電極12とが対向するように位置合わせを
する。この位置合わせは例えば目視により行われる。そ
の後、析出半田に応じた温度で両極側からそれぞれの半
田が接合するまで析出反応を進行させ、図1(C)に示
すように析出半田18で基板電極12と部品電極15と
の間の接合を行う。The component 14 is aligned with the spacer 16 so that the electrode 15 and the substrate-side electrode 12 face each other. This alignment is performed visually, for example. Thereafter, the deposition reaction proceeds at a temperature corresponding to the deposited solder until the respective solders are joined from both sides, and as shown in FIG. 1 (C), the solder between the substrate electrode 12 and the component electrode 15 is joined by the deposited solder 18. I do.
【0021】図1(B)は図1(A)の透視斜視図であ
る。反応温度は、析出半田の溶融温度+30℃程度が望
ましい。即ち、溶融温度180℃程度の半田を析出させ
る場合、約210℃が望ましい。反応時間は析出半田量
にもよるが約60秒程度である。FIG. 1 (B) is a perspective view of FIG. 1 (A). The reaction temperature is preferably about the melting temperature of the precipitated solder + 30 ° C. That is, when solder having a melting temperature of about 180 ° C. is deposited, about 210 ° C. is desirable. The reaction time is about 60 seconds depending on the amount of deposited solder.
【0022】析出反応後、ペースト残滓をクロロセン
系、或いはアルコール系の溶剤で洗浄する。搭載部品
は、半田析出反応に対する耐熱性を持つことが望まれる
が、バンプレス部品、或いはバンプを形成した部品、リ
ード部品等の部品も使用可能である。After the precipitation reaction, the paste residue is washed with a chlorocene-based or alcohol-based solvent. The mounted parts are desired to have heat resistance against the solder deposition reaction, but bumpless parts, bump-formed parts, lead parts and the like can also be used.
【0023】図2を参照すると、半田高さ調整用スペー
サの第2の実施例が示されている。基板11と部品14
との間に半田高さに応じた厚さを有するポリイミド等の
耐熱性フィルムから形成した直方体スペーサ19又は1
9′を介装し、予め部品電極面の外周の一部、或いは基
板側の該当部に貼り付けておく。Referring to FIG. 2, a second embodiment of the solder height adjusting spacer is shown. Board 11 and component 14
A rectangular parallelepiped spacer 19 or 1 formed of a heat-resistant film such as polyimide having a thickness corresponding to the solder height between
9'is interposed and attached in advance to a part of the outer periphery of the component electrode surface or a corresponding portion on the substrate side.
【0024】SiC等の熱伝導率がAlと同等に高い材
料をスペーサとして用いることによって、部品の放熱効
果(基板側或いは放熱部材への熱伝導効果)を高めるこ
とも可能である。It is also possible to enhance the heat dissipation effect of the components (heat transfer effect to the substrate side or the heat dissipation member) by using a material such as SiC having a heat conductivity as high as that of Al as the spacer.
【0025】図3を参照すると、半田高さ調整用スペー
サの第3の実施例が示されており、耐熱性樹脂で作成し
た爪部材20を部品14の四隅に取り付け、この爪部材
20を介して部品14を基板11上に搭載する。この爪
部材20は、半田析出反応終了後取り外してもよいし、
また基板11に部品14を位置合わせして接着し、部品
14の固定台としても使用できる。Referring to FIG. 3, there is shown a third embodiment of the solder height adjusting spacer. Claw members 20 made of a heat-resistant resin are attached to the four corners of the component 14, and the claw members 20 are interposed therebetween. Then, the component 14 is mounted on the substrate 11. The claw member 20 may be removed after the completion of the solder deposition reaction,
Further, the component 14 can be positioned and adhered to the substrate 11 and used as a fixing base for the component 14.
【0026】図4は半田高さ調整用の第4実施例を示し
ている。この実施例は基板作成段階において基板材料の
一部で図4(A)に示すような突起21を形成し、この
突起21上に部品14を搭載したものである。フォトリ
ソグラフィによるポリイミド多層化技術を使用すれば、
微細で精度のよい突起を形成することができる。また、
このとき図4(B)に示すような段差を有する突起22
を形成すれば、位置合わせ用のガイドとしても利用する
ことができる。FIG. 4 shows a fourth embodiment for adjusting the solder height. In this embodiment, a protrusion 21 as shown in FIG. 4 (A) is formed on a part of the substrate material at the stage of producing the substrate, and the component 14 is mounted on the protrusion 21. Using the photolithographic polyimide multilayer technology,
It is possible to form fine and accurate protrusions. Also,
At this time, the protrusion 22 having a step as shown in FIG.
If formed, it can be used as a guide for alignment.
【0027】図5に半田高さ調整用の第5実施例を示
す。この第5実施例は部品側で半田高さを調整しようと
するものである。即ち、図5(A)に示すようにリード
部品24(TAB等も含む)において、リード25のフ
ォーミングでリード25と基板11の電極12間の距離
を調整する。または図5(B),(C)に示すように、
部品34の下面(基板側)に突起36又は36′を設
け、これらの突起によって部品34のリード35と基板
11の電極12との間の距離を調整する。FIG. 5 shows a fifth embodiment for adjusting the solder height. The fifth embodiment is intended to adjust the solder height on the component side. That is, as shown in FIG. 5A, in the lead component 24 (including TAB and the like), the distance between the lead 25 and the electrode 12 of the substrate 11 is adjusted by forming the lead 25. Or, as shown in FIGS. 5B and 5C,
Protrusions 36 or 36 'are provided on the lower surface (substrate side) of the component 34, and the distance between the lead 35 of the component 34 and the electrode 12 of the substrate 11 is adjusted by these protrusions.
【0028】他の実施例としては、スペーサ等を使用せ
ずに基板と部品間の距離、及び位置を制御する治具を使
用することも可能である。As another embodiment, it is possible to use a jig for controlling the distance and position between the substrate and the component without using a spacer or the like.
【0029】[0029]
【発明の効果】本発明は以上詳述したように、スペーサ
を介して非接触とした基板電極と部品電極間に析出タイ
プの半田を析出させることによって、ある一定の間隔
(半田高さ)が必要な基板電極及び部品電極間への半田
形成と電極同士の接合を同時に行うことができる。As described in detail above, according to the present invention, by depositing a deposition type solder between a substrate electrode and a component electrode which are not in contact with each other via a spacer, a certain constant interval (solder height) is maintained. It is possible to simultaneously perform the solder formation between the required substrate electrodes and component electrodes and the joining of the electrodes.
【0030】このように半田高さを制御できるため、接
続不良やブリッジ等を起こす心配がなく、接続信頼性が
向上し、また、複雑な工程を経て微細バンプを基板上、
或いは部品上に形成する必要がなくなる。Since the solder height can be controlled as described above, there is no concern of causing a defective connection or a bridge, the connection reliability is improved, and the fine bumps are formed on the substrate through complicated steps.
Alternatively, it need not be formed on the part.
【図1】本発明の第1実施例の実装方法を説明する図で
ある。FIG. 1 is a diagram illustrating a mounting method according to a first embodiment of the present invention.
【図2】第2実施例の半田高さ調整方法を示す図であ
る。FIG. 2 is a diagram showing a solder height adjusting method according to a second embodiment.
【図3】第3実施例の半田高さ調整方法を示す図であ
る。FIG. 3 is a diagram illustrating a solder height adjusting method according to a third embodiment.
【図4】第4実施例の半田高さ調整方法を示す図であ
る。FIG. 4 is a diagram showing a solder height adjusting method of a fourth embodiment.
【図5】第5実施例の半田高さ調整方法を示す図であ
る。FIG. 5 is a diagram showing a solder height adjusting method of a fifth embodiment.
【図6】従来の部品実装方法説明図である。FIG. 6 is an explanatory diagram of a conventional component mounting method.
【図7】他の従来例説明図である。FIG. 7 is an explanatory view of another conventional example.
【図8】さらに他の従来例説明図である。FIG. 8 is an explanatory view of still another conventional example.
11 基板 12 基板電極 14 部品 15 部品電極 16 ガラスビーズスペーサ 17 析出半田用ペースト 18 析出半田 19,19′ 直方体スペーサ 20 爪部材 21,22,36,36′ 突起 11 substrate 12 substrate electrode 14 component 15 component electrode 16 glass bead spacer 17 paste for deposition solder 18 deposition solder 19, 19 'rectangular parallelepiped spacer 20 claw member 21, 22, 36, 36' protrusion
Claims (5)
を実装する方法において、 該基板(11)の部品実装部上に析出半田用のペースト(17)
を塗布し、 基板(11)と部品(14)との間に半田高さ調整用のスペーサ
(16,19,20)を介在させて基板(11)と部品(14)とを離間さ
せながら基板電極(12)と部品電極(15)との位置合わせを
行い、 所定温度に加熱することにより、基板電極(12)側及び部
品電極(15)側から半田を析出させ、基板電極(12)と部品
電極(15)との接合を行うことを特徴とする部品の実装方
法。1. A component (14) on a substrate (11) by a deposition solder method.
In the method of mounting, the paste (17) for deposition solder is placed on the component mounting part of the substrate (11).
A spacer for solder height adjustment between the substrate (11) and the component (14).
By positioning the substrate electrode (12) and the component electrode (15) while separating the substrate (11) and the component (14) with (16, 19, 20) interposed, and heating them to a predetermined temperature. A method for mounting a component, characterized in that solder is deposited from the substrate electrode (12) side and the component electrode (15) side to join the substrate electrode (12) and the component electrode (15).
用いることを特徴とする請求項1記載の部品の実装方
法。2. The component mounting method according to claim 1, wherein glass beads (16) are used as the spacers.
樹脂(19,19′) を用いることを特徴とする請求項1記載
の部品の実装方法。3. The component mounting method according to claim 1, wherein a rectangular parallelepiped heat-resistant resin (19, 19 ′) is used as the spacer.
を実装する方法において、 基板(11)上に半田高さ調整用の突起(21,22) を形成し、 基板(11)の部品実装部上に析出半田用のペースト(17)を
塗布し、 実装すべき部品(14)を前記突起(21,22) 上に搭載して基
板(11)と部品(14)とを離間させながら基板電極(12)と部
品電極(15)との位置合わせを行い、 所定温度に加熱することにより、基板電極(12)側及び部
品電極(15)側から半田を析出させ、基板電極(12)と部品
電極(15)との接合を行うことを特徴とする部品の実装方
法。4. A component (14) on a substrate (11) by a deposition solder method.
In the method of mounting, the protrusions (21, 22) for solder height adjustment are formed on the substrate (11), and the paste (17) for deposition solder is applied on the component mounting part of the substrate (11), The component (14) to be mounted is mounted on the protrusions (21, 22), and the substrate electrode (12) and the component electrode (15) are aligned while the substrate (11) and the component (14) are separated from each other. It is characterized in that the solder is deposited from the board electrode (12) side and the component electrode (15) side by heating to a predetermined temperature, and the board electrode (12) and the component electrode (15) are joined. How to mount parts.
を実装する方法において、 実装すべき部品(34)に半田高さ調整用の突起(36,36′)
を設け、 基板(11)の部品実装部上に析出半田用のペースト(17)を
塗布し、 該部品(34)を前記突起(36,36′) を下にして基板(11)上
に搭載して基板電極(12)と部品電極(35)との位置合わせ
を行い、 所定温度に加熱することにより、基板電極(12)側及び部
品電極(35)側から半田を析出させ、基板電極(12)と部品
電極(35)との接合を行うことを特徴とする部品の実装方
法。5. A component (34) on a substrate (11) by a deposition solder method.
In the method of mounting, soldering height adjustment protrusions (36,36 ') are mounted on the component (34) to be mounted.
And paste (17) for deposition solder on the component mounting part of the substrate (11), and mount the component (34) on the substrate (11) with the protrusions (36, 36 ') facing down. Then, the substrate electrode (12) and the component electrode (35) are aligned, and by heating to a predetermined temperature, solder is deposited from the substrate electrode (12) side and the component electrode (35) side, and the substrate electrode ( A method for mounting a component, which comprises joining the electrode 12) to the component electrode (35).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6060592A JPH05267391A (en) | 1992-03-17 | 1992-03-17 | Mounting of component by precipitation soldering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6060592A JPH05267391A (en) | 1992-03-17 | 1992-03-17 | Mounting of component by precipitation soldering method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05267391A true JPH05267391A (en) | 1993-10-15 |
Family
ID=13147054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6060592A Withdrawn JPH05267391A (en) | 1992-03-17 | 1992-03-17 | Mounting of component by precipitation soldering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05267391A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105327913A (en) * | 2015-12-11 | 2016-02-17 | 谢文娟 | Test tube washing and spin-drying device with water level monitoring function |
WO2024155292A1 (en) * | 2023-01-18 | 2024-07-25 | Microchip Technology Incorporated | Integrated circuit package, system comprising printed circuit board and integrated circuit package, method of soldering integrated circuit package to printed circuit board |
-
1992
- 1992-03-17 JP JP6060592A patent/JPH05267391A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105327913A (en) * | 2015-12-11 | 2016-02-17 | 谢文娟 | Test tube washing and spin-drying device with water level monitoring function |
WO2024155292A1 (en) * | 2023-01-18 | 2024-07-25 | Microchip Technology Incorporated | Integrated circuit package, system comprising printed circuit board and integrated circuit package, method of soldering integrated circuit package to printed circuit board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3239335B2 (en) | Method for forming structure for electrical connection and substrate for solder transfer | |
KR100418059B1 (en) | Bump Formation Method of Semiconductor Device | |
JPH07302797A (en) | Semiconductor element, its manufacturing and method of application | |
JPH027180B2 (en) | ||
US5973406A (en) | Electronic device bonding method and electronic circuit apparatus | |
JPH09260428A (en) | Semiconductor device an mounting method thereof | |
JP2910397B2 (en) | Solder connection method | |
JPH07221105A (en) | Semiconductor device and manufacture thereof | |
US6323434B1 (en) | Circuit board and production method thereof | |
JPH0626227B2 (en) | How to attach a semiconductor chip | |
JPH05267391A (en) | Mounting of component by precipitation soldering method | |
JPH0357617B2 (en) | ||
JP2004342802A (en) | Printed board with bump electrode and manufacturing method thereof | |
JPH04263434A (en) | Formation of electric connection contact and manufacture of mounting board | |
JP3173109B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS63168028A (en) | Fine connection structure | |
JPH09148693A (en) | Flip chip mounting board and manufacture thereof | |
JPH1079403A (en) | Semiconductor device and manufacturing thereof | |
JP3397955B2 (en) | Solder bump formation method, substrate connection method using solder bump, and removal method thereof | |
JPH05136201A (en) | Electrode for semiconductor device and mounting body | |
JP2953111B2 (en) | Electrode forming method and mounting method for semiconductor device | |
JPH08115946A (en) | Flip-chip mounting method | |
JPH04356935A (en) | Bump-electrode formation and mounting structure of semiconductor device | |
JP2001085471A (en) | Method of mounting electronic component | |
JPS5868945A (en) | Flip chip bonding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990518 |