JPH0526346B2 - - Google Patents

Info

Publication number
JPH0526346B2
JPH0526346B2 JP58053572A JP5357283A JPH0526346B2 JP H0526346 B2 JPH0526346 B2 JP H0526346B2 JP 58053572 A JP58053572 A JP 58053572A JP 5357283 A JP5357283 A JP 5357283A JP H0526346 B2 JPH0526346 B2 JP H0526346B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon layer
crystal silicon
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58053572A
Other languages
Japanese (ja)
Other versions
JPS59181050A (en
Inventor
Hiroshi Iwai
Hideo Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58053572A priority Critical patent/JPS59181050A/en
Publication of JPS59181050A publication Critical patent/JPS59181050A/en
Publication of JPH0526346B2 publication Critical patent/JPH0526346B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に関し、詳し
くは高密度メモリ、特に大容量ダイナミツク
RAMやスタテイツクRAMの製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device.
It is related to the manufacturing method of RAM and static RAM.

〔発明の技術的背景〕[Technical background of the invention]

大容量メモリ、特にダイナミツクRAMに適し
たウエハの性質としては以下のようなものが挙げ
られる。
The properties of wafers suitable for large-capacity memories, especially dynamic RAM, include the following.

微細加工性を良好にするため、ウエハの平坦
性が高いこと。
The wafer must have high flatness for good microfabrication.

しきい値電圧のバラツキを抑制するためにウ
エハの表面の比抵抗が均一であること。
The specific resistance of the wafer surface must be uniform to suppress variations in threshold voltage.

蓄積用キヤパシタの記憶保持特性を高めるた
めにウエハの表面に欠陥がないこと。
The surface of the wafer should be free of defects to enhance the memory retention properties of the storage capacitor.

ウエハに注入されたキヤリアによる記憶保持
劣化の防止(ソフトエラー、ホツトエレクトロ
ン対策)のためにウエハ内部におけるキヤリア
のライフタイムが短いこと。
The lifetime of the carrier inside the wafer is short in order to prevent storage deterioration due to the carrier injected into the wafer (measures against soft errors and hot electrons).

ウエハ中に電流が流れた時、そのウエハ抵抗
による電圧降下によつて電位が局所的に変動す
るのを抑制するために、ウエハの比抵抗が小さ
いこと。
When current flows through the wafer, the specific resistance of the wafer is small in order to suppress local fluctuations in potential due to voltage drop due to the wafer resistance.

上述した条件を満たすウエハとしては、従来、
エピタキシヤルウエハがある。この代表的な例を
第1図に示す。すなわち0.01μmの低い比抵抗を
有するP+型シリコンウエハ(基板)1上に例え
ば10μm程度の膜厚を有する比抵抗10ΩcmのP型
単結晶シリコン層2をエピタキシヤル成長させ
る。このとき基板1は酸素を1017/cm3以上含むよ
うにして過飽和状態にし、この後の熱処理により
酸素を析出させ、これを核にして、微小欠陥3を
発生させて基板1領域のみに微小欠陥領域が形成
される。このようなウエハーは前記条件の少なく
とも〜を満足するものと考えられ、ダイナミ
ツクRAMなどの高密度LSIにふさわしいウエハ
と考えられてきた。
Conventionally, wafers that meet the above conditions are
There is an epitaxial wafer. A typical example of this is shown in FIG. That is, a P type single crystal silicon layer 2 having a specific resistance of 10 Ωcm and a film thickness of about 10 μm, for example, is epitaxially grown on a P + type silicon wafer (substrate) 1 having a low specific resistance of 0.01 μm. At this time, the substrate 1 is brought into a supersaturated state by containing oxygen of 10 17 /cm 3 or more, and the oxygen is precipitated by subsequent heat treatment, and this is used as a nucleus to generate micro defects 3, forming a micro defect region only in the substrate 1 region. is formed. Such a wafer is considered to satisfy at least the above conditions, and has been considered to be a wafer suitable for high-density LSI such as dynamic RAM.

〔背景技術の問題点〕[Problems with background technology]

上述したエピタキシヤルウエハを用いてダイナ
ミツクRAMを試作して、エピタキシヤル成長を
行わない比抵抗10Ωcmのバルクウエハで試作した
ものと比較しながら評価すると、多くの特性が、
バルクウエハと同等あるいはそれ以上の結果を得
ることができた。しかしながらα線によつて発生
するソフトエラーに関してはエピタキシヤルウエ
ハの基板に微小欠陥がある(バルクウエハには微
小欠陥はない)にもかかわらず、バルクウエハに
比べて悪い結果を得た。この理由を第2図〜第4
図を用いて説明する。
When we prototyped a dynamic RAM using the epitaxial wafer described above and evaluated it by comparing it with a prototype made using a bulk wafer with a resistivity of 10 Ωcm without epitaxial growth, we found that many of its characteristics were
We were able to obtain results equivalent to or better than bulk wafers. However, regarding soft errors caused by alpha rays, worse results were obtained compared to bulk wafers, even though epitaxial wafers have micro defects on their substrates (bulk wafers do not have micro defects). The reason for this is shown in Figures 2 to 4.
This will be explained using figures.

エピタキシヤルウエハの深さ方向の電位分布は
第2図に示すようになり、P+型の基板1とP型
単結晶シリコン層2の界面にはP−SiとP+−Si
のフエルミレベルの差による電位障壁が存在す
る。この為α線によりP型単結晶シリコン層2内
で発生した電子はこの障壁で大部分が反射される
(第3図図示)。従つてこれらの電子はP+型の基
板1に入る確率が少なく、P+型の基板1中に存
在する微小欠陥3に補獲されることも少ない。一
方P型単結晶シリコン層2のキヤリアのライフタ
イムは通常バルクウエハのライフタイムより良好
である。従つてP型単結晶シリコン層2中で発生
した電子の多くが死なずに、そのシリコン層2表
面に設けられた記憶保持用電荷蓄積キヤパシタ
(例えば第4図に示す如く多結晶シリコン電極4
と酸化膜5から形成され、電極4に正電位印加)
に集まり、記憶保持が劣化し、ソフトエラーを発
生する結果となる。
The potential distribution in the depth direction of the epitaxial wafer is as shown in FIG.
There is a potential barrier due to the difference in Fermi levels. Therefore, most of the electrons generated in the P-type single crystal silicon layer 2 by the α rays are reflected by this barrier (as shown in FIG. 3). Therefore, these electrons have a low probability of entering the P + type substrate 1 and are less likely to be captured by the minute defects 3 existing in the P + type substrate 1. On the other hand, the carrier lifetime of the P-type single crystal silicon layer 2 is usually better than that of a bulk wafer. Therefore, many of the electrons generated in the P-type single-crystal silicon layer 2 do not die and are transferred to the storage storage charge storage capacitor (for example, the polycrystalline silicon electrode 4 as shown in FIG. 4) provided on the surface of the silicon layer 2.
and oxide film 5, and a positive potential is applied to the electrode 4)
This results in poor memory retention and soft errors.

〔発明の目的〕[Purpose of the invention]

本発明は記憶保持特性、基板電位の安定性が優
れ、かつ耐ソフトエラー性に優れた半導体メモリ
等の半導体装置の製造方法を提供しようとするも
のである。
The present invention aims to provide a method for manufacturing a semiconductor device such as a semiconductor memory which has excellent memory retention characteristics, stability of substrate potential, and excellent soft error resistance.

〔発明の概要〕[Summary of the invention]

本発明は少なくとも単結晶半導体基板上の単結
晶半導体層中に微小欠陥を存在したもので、特に
前記基板と半導体層の界面を含む領域に微小欠陥
を存在させることによつて、耐ソフトエラー性を
改善することを骨子とするものである。
The present invention provides a structure in which micro defects are present in at least a single crystal semiconductor layer on a single crystal semiconductor substrate, and in particular, by making micro defects exist in a region including the interface between the substrate and the semiconductor layer, soft error resistance can be improved. The main objective is to improve the

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の実施例を図示する製造方法を併
記して説明する。
Next, a manufacturing method illustrating an embodiment of the present invention will be described.

実施例 1 (i) まず、酸素を過飽和に含み(例えば1018
cm3)、比抵抗0.01ΩcmのP+型シリコン基板11
上に厚さ約1μm、比抵抗10Ωcm程度のP型の第
1単結晶シリコン層12をエピタキシヤル成長
させた(第5図a図示)。
Example 1 (i) First, oxygen is supersaturated (for example, 10 18 /
cm 3 ), P + type silicon substrate 11 with a specific resistance of 0.01Ωcm
A P-type first single crystal silicon layer 12 having a thickness of about 1 μm and a specific resistance of about 10 Ωcm was epitaxially grown thereon (as shown in FIG. 5a).

(ii) 次いで、第1単結晶シリコン層12に酸素を
加速電圧120keV、220keV、340keVで夫々ド
ーズ量1×1015/cm2の条件で3回イオン注入し
た(第5図b図示)。こうしたイオン注入によ
りP型の第1単結晶シリコン層12中に酸素が
ほぼ均一に分布される。なお、この工程におい
て、加速電圧を連続的に変えてもよいし、場合
によつては1回のイオン注入でもよい。
(ii) Oxygen was then ion-implanted into the first single crystal silicon layer 12 three times at acceleration voltages of 120 keV, 220 keV, and 340 keV, each at a dose of 1×10 15 /cm 2 (as shown in FIG. 5b). By such ion implantation, oxygen is distributed almost uniformly in the P-type first single crystal silicon layer 12. Note that in this step, the acceleration voltage may be changed continuously, or ion implantation may be performed once in some cases.

(iii) 次いで、第1単結晶シリコ層12上に厚さ約
5μm、比抵抗10Ωcm程度のP型の第2単結晶シ
リコン層13をエピタキシヤル成長させた(第
5図c図示)。
(iii) Next, on the first single-crystal silicon layer 12, a layer with a thickness of approximately
A P-type second single crystal silicon layer 13 having a thickness of 5 μm and a specific resistance of about 10 Ωcm was epitaxially grown (as shown in FIG. 5c).

(iv) 次いで、例えば800℃の温度下にて4時間熱
処理を施した。この熱処理は酸化性、非酸化性
いずれでもよい。この熱処理により酸素が過飽
和に含む領域(基板11、第1単結晶シリコン
層12)において、過飽和酸素が析出して微小
欠陥の核形成がなされる。つづいて、常法に従
つて第2単結晶シリコン層13にフイールド酸
化膜14を形成し、このフイールド酸化膜14
で分離された島領域にメモリセルを形成して
MOSダイナミツクRAMを製造した(第5図d
図示)。このRAMの製造工程中での熱処理
(特にフイールド形成のための900℃、10時間程
度の熱処理)において前記核を中心にしてP+
型シリコン基板11及び第1単結晶シリコン層
12に微小欠陥15……が発生される。なお、
第5図d中の16はフイールド酸化膜14で分
離された島領域に薄い酸化膜17を介して設け
られたキヤパシタ電極である。図中の18は一
部はゲート酸化膜19を介して第2単結晶シリ
コン層13表面に位置し、他端が絶縁膜20を
介して前記キヤパシタ電極16上に延出したト
ランスフアゲート電極、21は層間絶縁膜であ
る。また、図中の221,222,223は前記
キヤパシタ電極16、トランスフアゲート電極
18及び前記第2単結晶シリコン層13に形成
されたn+層23と夫々接続されたAl配線であ
る。
(iv) Next, heat treatment was performed at a temperature of, for example, 800° C. for 4 hours. This heat treatment may be either oxidizing or non-oxidizing. Through this heat treatment, supersaturated oxygen precipitates in regions containing supersaturated oxygen (substrate 11, first single crystal silicon layer 12), and microdefects are nucleated. Subsequently, a field oxide film 14 is formed on the second single crystal silicon layer 13 according to a conventional method, and this field oxide film 14 is
memory cells are formed in island regions separated by
MOS dynamic RAM was manufactured (Fig. 5d)
(Illustrated). During the heat treatment during the manufacturing process of this RAM (particularly the heat treatment at 900°C for about 10 hours for field formation), P +
Micro defects 15 are generated in the mold silicon substrate 11 and the first single crystal silicon layer 12. In addition,
Reference numeral 16 in FIG. 5d is a capacitor electrode provided in an island region separated by a field oxide film 14 with a thin oxide film 17 interposed therebetween. Reference numeral 18 in the figure denotes a transfer gate electrode 21 whose part is located on the surface of the second single crystal silicon layer 13 via the gate oxide film 19 and whose other end extends onto the capacitor electrode 16 via the insulating film 20. is an interlayer insulating film. Further, 22 1 , 22 2 , and 22 3 in the figure are Al wirings connected to the capacitor electrode 16, the transfer gate electrode 18, and the n + layer 23 formed on the second single crystal silicon layer 13, respectively.

しかして、本発明のMOSダイナミツクRAM
は第5図dに示す如くP+型シリコン基板11
とP型単結晶シリコン層12,13の界面より
シリコン層側に微小欠陥15……が存在する構
造を有するため、次のような種々の効果を発揮
し得る。
Therefore, the MOS dynamic RAM of the present invention
is a P + type silicon substrate 11 as shown in Fig. 5d.
Since it has a structure in which micro defects 15 exist on the silicon layer side from the interface between the P-type single crystal silicon layers 12 and 13, various effects as described below can be exhibited.

(イ) α線により発生した電子は基板11と単結
晶シリコン層12,13の界面のP+−Pの
電位障壁で反射される前に第1単結晶シリコ
ン層12に存在した微小欠陥15……で吸収
される。その結果、P+型シリコン基板上に
P型単結晶シリコン層をエピタキシヤル成長
した構造によるソフトエラーが多くなるとい
う欠点を解消できる。
(a) Before the electrons generated by the α rays are reflected by the P + -P potential barrier at the interface between the substrate 11 and the single crystal silicon layers 12 and 13, the micro defects 15 existing in the first single crystal silicon layer 12... It is absorbed by... As a result, it is possible to eliminate the drawback of increased soft errors due to the structure in which a P type single crystal silicon layer is epitaxially grown on a P + type silicon substrate.

(ロ) P+型シリコン基板11にP型単結晶シリ
コン層12,13を設けた構造の利点を損な
うことなく、前記第1単結晶シリコン層12
への微小欠陥15……の存在による耐ソフト
エラー性を改善できる。即ち、シリコン基板
11の比抵抗を低くできるので、基板電流に
よる電位変動を抑制できる。また、シリコン
基板11及びその界面の第1単結晶シリコン
層12中に微小欠陥15……が存在するた
め、金属などの汚染物質のゲツタリングの核
となり(イントリシツクゲツタリング)、第
2単結晶シリコン層13表面のライフタイム
の向上を達成できる。
(b) The first single - crystal silicon layer 12 is
Soft error resistance due to the presence of micro defects 15 . . . can be improved. That is, since the specific resistance of the silicon substrate 11 can be lowered, potential fluctuations due to substrate current can be suppressed. In addition, since micro defects 15 exist in the silicon substrate 11 and the first single crystal silicon layer 12 at its interface, they become a nucleus for gettering of contaminants such as metals (intensive gettering), and the second single crystal The lifetime of the surface of the silicon layer 13 can be improved.

なお、上記実施例1において単結晶シリコン層
の表面から微小欠陥が存在する領域までの深さ
は、該単結晶シリコン層表面に形成された素子か
ら延びた空乏層が前記微小欠陥の領域に到達しな
いように選ぶことが望ましい。
In Example 1, the depth from the surface of the single-crystal silicon layer to the region where the micro-defect exists is such that the depletion layer extending from the element formed on the surface of the single-crystal silicon layer reaches the region of the micro-defect. It is desirable to choose not to do so.

上記実施例1における第1単結晶シリコン層の
厚さや、このシリコン層へのイオン注入時の加速
電圧を制御することによつて、例えば第6図に示
す如く第1単結晶シリコン層12の界面から離れ
た上面側に微小欠陥15……が存在する構造にす
ることができる。
By controlling the thickness of the first single crystal silicon layer in Example 1 and the acceleration voltage during ion implantation into this silicon layer, the interface of the first single crystal silicon layer 12 can be adjusted as shown in FIG. 6, for example. It is possible to create a structure in which micro defects 15 exist on the upper surface side away from the surface.

上記実施例1においてP+型シリコン基板中の
酸素濃度を1017/cm3未満にすれば、基板中の微小
欠陥の密度を抑えることができる。
In Example 1, if the oxygen concentration in the P + type silicon substrate is less than 10 17 /cm 3 , the density of micro defects in the substrate can be suppressed.

上記実施例1において、酸素を過飽和に含んだ
P+型シリコン基板にP型の第1単結晶シリコン
層をエピタキシヤル成長する前に熱処理を施して
基板中に微小欠陥の核、或いは微小欠陥を発生さ
せてもよい。また第1単結晶シリコン層について
もP型の第2単結晶シリコン層をエピタキシヤル
成長させる前に熱処理を施して該単結晶シリコン
層中に微小欠陥の核或いは微小欠陥を発生させて
もよい、勿論、この工程でP+型シリコン基板中
に同時に微小欠陥の核或いは微小欠陥を発生させ
てもよい。
In Example 1 above, supersaturated oxygen was included.
Before epitaxially growing a P type first single crystal silicon layer on a P + type silicon substrate, heat treatment may be performed to generate micro defect nuclei or micro defects in the substrate. Further, the first single crystal silicon layer may also be subjected to heat treatment to generate micro defect nuclei or micro defects in the single crystal silicon layer before epitaxially growing the P-type second single crystal silicon layer. Of course, microdefect nuclei or microdefects may be simultaneously generated in the P + type silicon substrate in this step.

実施例 2 (i) まず、酸素を過飽和に含み(例えば1018
cm3)、比抵抗0.01ΩcmのP+型シリコン基板11
上に、酸素を過飽和に含み(例えば1018/cm3)、
比抵抗10Ωcm程度のP型単結晶シリコン層24
を厚さ8μm程度エピタキシヤル成長させた
(第7図a図示)。
Example 2 (i) First, oxygen is supersaturated (for example, 10 18 /
cm 3 ), P + type silicon substrate 11 with a specific resistance of 0.01Ωcm
contains supersaturated oxygen (e.g. 10 18 /cm 3 ),
P-type single crystal silicon layer 24 with specific resistance of about 10Ωcm
was epitaxially grown to a thickness of about 8 μm (as shown in Figure 7a).

(ii) 次いで、800℃の非酸化性雰囲気中にて2〜
5時間程度熱処理した。この時、基板11及び
単結晶シリコン層24中の過飽和酸素が析出
し、微小欠陥の核が発生する。つづいて、1100
℃の非酸化性雰囲気中にて20分間〜1時間の熱
処理を施した。この時、単結晶シリコン層24
の表面近傍の微小欠陥の核が外部に逃散(アウ
ターデイフユージヨン)することにより、該単
結晶シリコン層24の表面から深さ4〜5μm
に亘る部分に無欠陥領域25が形成される(第
7図b図示)。
(ii) Then, in a non-oxidizing atmosphere at 800°C,
Heat treatment was performed for about 5 hours. At this time, supersaturated oxygen in the substrate 11 and the single-crystal silicon layer 24 precipitates, generating nuclei of micro defects. Next, 1100
Heat treatment was performed for 20 minutes to 1 hour in a non-oxidizing atmosphere at .degree. At this time, the single crystal silicon layer 24
The nuclei of micro defects near the surface of the single crystal silicon layer 24 escape to the outside (outer diffusion) to a depth of 4 to 5 μm from the surface of the single crystal silicon layer 24.
A defect-free region 25 is formed in a portion extending over (as shown in FIG. 7b).

(iii) 次いで実施例1と同様、単結晶シリコン層2
4の無欠陥領域25にメモリセルを形成する熱
処理工程において微小欠陥の核を中心にして基
板11に微小欠陥15……及び基板11表面
(界面)から2〜3μm程度の単結晶シリコン層
24にも微小欠陥15……が形成され、MOS
ダイナミツクRAMが製造された(第7図c図
示)。
(iii) Next, as in Example 1, a single crystal silicon layer 2 is formed.
In the heat treatment process for forming a memory cell in the defect-free region 25 of No. 4, micro defects 15 are formed in the substrate 11 centering around the core of the micro defects, and in the single crystal silicon layer 24 approximately 2 to 3 μm from the surface (interface) of the substrate 11. Also, micro defects 15... are formed, and the MOS
A dynamic RAM was manufactured (as shown in Figure 7c).

上記実施例2のMOSダイナミツクRAMは実施
例1と同様耐ソフトエラー性等が改善できると共
に、メモリセルが無欠陥領域25に形成されてい
るため、更に記憶保持特性を向上される。
The MOS dynamic RAM of the second embodiment can improve the soft error resistance as in the first embodiment, and since the memory cells are formed in the defect-free region 25, the memory retention characteristics can be further improved.

なお、上記実施例2において、始めに1100℃の
高温熱処理を施してP型単結晶シリコン層の表面
近傍の過飽和酸素をアウターデイフユージヨン
し、この後800℃付近の低温熱処理を施して微小
欠陥の核生成を行なつてもよい。この熱処理をレ
ーザビーム、電子ビームなどのエネルギービーム
又はフラツシユ光により行なつてもよい。
In the above Example 2, high-temperature heat treatment at 1100°C is first performed to outer diffuse supersaturated oxygen near the surface of the P-type single crystal silicon layer, and then low-temperature heat treatment at around 800°C is performed to diffuse the supersaturated oxygen near the surface of the P-type single crystal silicon layer. Defect nucleation may also be performed. This heat treatment may be performed using an energy beam such as a laser beam, an electron beam, or flash light.

実施例 3 (i) まず、酸素を過飽和に含み(例えば1018
cm3)、比抵抗0.01ΩcmのP+型シリコン基板11
を用意し、これを800℃の酸素雰囲気中にて4
時間熱処理を施して基板11内に微小欠陥を核
を生成した後、900℃の酸素雰囲気中にて10時
間熱処理を施して同基板11中の核を中心にし
て微小欠陥15……を発生させた(第8図a図
示)。
Example 3 (i) First, oxygen is supersaturated (for example, 10 18 /
cm 3 ), P + type silicon substrate 11 with a specific resistance of 0.01Ωcm
was prepared and heated in an oxygen atmosphere at 800℃ for 4 hours.
After performing heat treatment for a time to generate nuclei of micro defects in the substrate 11, heat treatment is performed for 10 hours in an oxygen atmosphere at 900°C to generate micro defects 15... around the nuclei in the substrate 11. (as shown in Figure 8a).

(ii) 次いで、前記基板11表面に酸素を過飽和に
含み(例えば1018/cm3)、比抵抗10ΩcmのP型
の第1単結晶シリコン層12′を約1μmの厚さ
でエピタキシヤル成長せしめた(第8図b図
示)。
(ii) Next, a P-type first single crystal silicon layer 12' containing supersaturated oxygen (for example, 10 18 /cm 3 ) and having a specific resistance of 10 Ωcm is epitaxially grown on the surface of the substrate 11 to a thickness of about 1 μm. (as shown in Figure 8b).

(iii) 次いで、前記第1単結晶シリコン層12′上
に厚さ約5μm、比抵抗10Ωcm程度のP型の第2
単結晶シリコン層13をエピタキシヤル成長せ
しめた(第8図c図示)。
(iii) Next, a P-type second layer with a thickness of about 5 μm and a specific resistance of about 10 Ωcm is formed on the first single crystal silicon layer 12'.
A single crystal silicon layer 13 was grown epitaxially (as shown in FIG. 8c).

(iv) 次いで、例えば800℃の非酸化性雰囲気中に
て2〜5時間程度熱処理して第1単結晶シリコ
ン層12′中に過飽和酸素を析出させ、微小欠
陥の核を生成した。つづいて、実施例1と同
様、第2単結晶シリコン層13にメモリセルを
形成する熱処理工程において第1単結晶シリコ
ン層12′中の微小欠陥の核を中心にしてその
シリコン層12′中に微小欠陥15……を生成
し、MOSダイナミツクRAMを製造した(第8
図d図示)。
(iv) Next, a heat treatment is performed for about 2 to 5 hours in a non-oxidizing atmosphere at, for example, 800° C. to precipitate supersaturated oxygen in the first single crystal silicon layer 12' and generate nuclei of micro defects. Continuing, as in Example 1, in the heat treatment process for forming memory cells in the second single crystal silicon layer 13, microdefect nuclei in the first single crystal silicon layer 12' are centered in the silicon layer 12'. Micro defects 15... were generated and MOS dynamic RAM was manufactured (8th
Figure d shown).

上記実施例3のMOSダイナミツクRAMは実施
例1と同様、耐ソフトエラー性等が改善される。
Similar to the first embodiment, the MOS dynamic RAM of the third embodiment has improved soft error resistance.

なお、上記実施例3では第2単結晶シリコン層
のエピタキシヤル成長後に、第1単結晶シリコン
層中に微小欠陥を発生させたが、第2単結晶シリ
コン層の成長前に微小欠陥を発生させてもよい。
In Example 3 above, micro defects were generated in the first single crystal silicon layer after the epitaxial growth of the second single crystal silicon layer, but micro defects were generated before the growth of the second single crystal silicon layer. It's okay.

また、上記実施例1〜3ではP+型シリコン基
板をベースにしてその上に単結晶シリコン層を形
成したが、これに限定されない。例えば、第9図
に示す如く単結晶絶縁基板(サフアイア基板等)
26上にP型単結晶シリコン層24をエピタキシ
ヤル成長させ、該サフアイア基板26界面のシリ
コン層24付近に微小欠陥15……を存在させた
構造にしてもよい。この場合、サフアイア基板の
界面から少し離れた単結晶シリコン層内に微小欠
陥を発生させてもよい。また、第10図に示す如
くP型シリコン基板27表面に酸化膜28を形成
し、この上に単結晶シリコン層29を設け、該酸
化膜28界面のシリコン層29付近に微小欠陥1
5……を存在させた構造にしてもよい。この場
合、酸化膜28上に単結晶シリコン層をエピタキ
シヤル成長できないため、多結晶シリコン層や非
晶質シリコン層を堆積した後レーザアニール等の
熱処理によつて単結晶化すればよい。
Further, in Examples 1 to 3 above, a P + type silicon substrate is used as a base and a single crystal silicon layer is formed thereon, but the present invention is not limited thereto. For example, as shown in Figure 9, a single crystal insulating substrate (sapphire substrate, etc.)
A P-type single crystal silicon layer 24 may be epitaxially grown on the sapphire substrate 26, and micro defects 15 may be present in the vicinity of the silicon layer 24 at the interface of the sapphire substrate 26. In this case, micro defects may be generated in the single crystal silicon layer a little distance from the interface of the sapphire substrate. Further, as shown in FIG. 10, an oxide film 28 is formed on the surface of a P-type silicon substrate 27, a single crystal silicon layer 29 is provided on this, and minute defects 1 are formed near the silicon layer 29 at the interface of the oxide film 28.
5... may exist. In this case, since it is not possible to epitaxially grow a single crystal silicon layer on the oxide film 28, a polycrystalline silicon layer or an amorphous silicon layer may be deposited and then made into a single crystal by heat treatment such as laser annealing.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば優れた記憶
保持特性、基板電位の安定性を有し、かつ耐ソフ
トエラー性に優れた高性能、高信頼性の半導体メ
モリ等の半導体装置を簡便かつ量産的に製造し得
る方法を提供できる。
As described in detail above, according to the present invention, semiconductor devices such as high performance and highly reliable semiconductor memories that have excellent memory retention characteristics, stability of substrate potential, and excellent soft error resistance can be easily and easily manufactured. A method that can be mass-produced can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエピタキシヤルウエハを示す概
略図、第2図〜第4図は従来のエピタキシヤルウ
エハの問題点を示すもので、第2図はP+基板−
P型単結晶シリコン層間の電位障壁を示す説明
図、第3図はα線の入射により単結晶シリコン層
中に生成したエレクトロンの動きを説明するため
の概略図、第4図はエピタキシヤルウエハにキヤ
パシタ電極を設けた状態を示す概略図である。第
5図a〜dは本発明の実施例1におけるMOSダ
イナミツクRAMの製造工程を示す断面図、第6
図は実施例1の変形例を示す断面図、第7図a〜
cは本発明の実施例2におけるMOSダイナミツ
クRAMの製造工程を示す断面図、第8図a〜d
は本発明の実施例3におけるMOSダイナミツク
RAMの製造工程を示す断面図、第9図及び第1
0図は夫々本発明の他の実施例を示す断面図であ
る。 11……P+型シリコン基板、12,12′……
P型の第1単結晶シリコン層、13……P型の第
2単結晶シリコン層、14……フイールド酸化
膜、15……微小欠陥、16……キヤパシタ電
極、18……トランスフアゲート電極、221
223……Al配線、24,29……P型の単結晶
シリコン層、25……無欠陥領域、26……サフ
アイア基板、27……P型シリコン基板、28…
…酸化膜。
Fig. 1 is a schematic diagram showing a conventional epitaxial wafer, Figs. 2 to 4 show problems with conventional epitaxial wafers, and Fig. 2 shows a P + substrate -
An explanatory diagram showing the potential barrier between P-type single crystal silicon layers, Figure 3 is a schematic diagram to explain the movement of electrons generated in the single crystal silicon layer due to the incidence of alpha rays, and Figure 4 is a diagram showing the potential barrier between P-type single crystal silicon layers. FIG. 3 is a schematic diagram showing a state in which a capacitor electrode is provided. 5a to 5d are cross-sectional views showing the manufacturing process of the MOS dynamic RAM in Embodiment 1 of the present invention;
The figure is a cross-sectional view showing a modification of Example 1, and FIG.
c is a cross-sectional view showing the manufacturing process of the MOS dynamic RAM in Example 2 of the present invention, and FIGS. 8a to d
is the MOS dynamics in Embodiment 3 of the present invention.
Cross-sectional diagrams showing the manufacturing process of RAM, Figures 9 and 1
FIG. 0 is a sectional view showing other embodiments of the present invention. 11...P + type silicon substrate, 12, 12'...
P-type first single crystal silicon layer, 13... P-type second single crystal silicon layer, 14... Field oxide film, 15... Micro defect, 16... Capacitor electrode, 18... Transfer gate electrode, 22 1
22 3 ...Al wiring, 24, 29...P-type single crystal silicon layer, 25...defect-free region, 26...Sapphire substrate, 27...P-type silicon substrate, 28...
…Oxide film.

Claims (1)

【特許請求の範囲】 1 1017/cm3以上の不純物を含む比抵抗の低い一
導電型の単結晶半導体基板上に、前記基板より比
抵抗が高くかつ前記基板と同一導電型の第1の単
結晶半導体層をエピタキシヤル成長する工程と、 前記単結晶半導体層に不純物をイオン注入する
工程と、 前記単結晶半導体層上に前記単結晶半導体層と
同等の比抵抗で同一導電型を有する第2の単結晶
半導体層をエピタキシヤル成長する工程と、 熱処理を施して前記半導体基板に多数の微小欠
陥を形成すると共に前記不純物がイオン注入され
た前記第1の単結晶半導体層に少数キヤリアを吸
収する多数の微小欠陥を形成する工程と を具備したことを特徴とする半導体装置の製造方
法。 2 前記第1の単結晶半導体層は、1〜3μmの
厚さを有することを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。
[Claims] On a single crystal semiconductor substrate of one conductivity type having a low specific resistance and containing impurities of 1 10 17 /cm 3 or more, a first semiconductor substrate having a specific resistance higher than that of the substrate and of the same conductivity type as the substrate is provided. a step of epitaxially growing a single crystal semiconductor layer; a step of ion-implanting an impurity into the single crystal semiconductor layer; and a step of ion-implanting an impurity into the single crystal semiconductor layer; a step of epitaxially growing a second single crystal semiconductor layer, and performing heat treatment to form a large number of micro defects in the semiconductor substrate, and absorbing minority carriers into the first single crystal semiconductor layer into which the impurity ions have been implanted. 1. A method of manufacturing a semiconductor device, comprising: forming a large number of micro defects. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first single crystal semiconductor layer has a thickness of 1 to 3 μm.
JP58053572A 1983-03-31 1983-03-31 Semiconductor device and manufacture thereof Granted JPS59181050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053572A JPS59181050A (en) 1983-03-31 1983-03-31 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053572A JPS59181050A (en) 1983-03-31 1983-03-31 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59181050A JPS59181050A (en) 1984-10-15
JPH0526346B2 true JPH0526346B2 (en) 1993-04-15

Family

ID=12946544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053572A Granted JPS59181050A (en) 1983-03-31 1983-03-31 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59181050A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108765A (en) * 1986-10-27 1988-05-13 Nec Corp Mos type dynamic random access memory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538081A (en) * 1976-07-10 1978-01-25 Toshiba Corp Production of semiconductor device
JPS5662333A (en) * 1979-10-26 1981-05-28 Toshiba Corp Mos type semiconductor memory device and production thereof
JPS5687340A (en) * 1979-12-19 1981-07-15 Fujitsu Ltd Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538081A (en) * 1976-07-10 1978-01-25 Toshiba Corp Production of semiconductor device
JPS5662333A (en) * 1979-10-26 1981-05-28 Toshiba Corp Mos type semiconductor memory device and production thereof
JPS5687340A (en) * 1979-12-19 1981-07-15 Fujitsu Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPS59181050A (en) 1984-10-15

Similar Documents

Publication Publication Date Title
US4931405A (en) Method for manufacturing a semiconductor device and suppressing the generation of bulk microdefects near the substrate surface layer
US6068928A (en) Method for producing a polycrystalline silicon structure and polycrystalline silicon layer to be produced by the method
US7884000B2 (en) Method for manufacturing simox wafer
JPS5847862B2 (en) Semiconductor storage device and its manufacturing method
JPS63174355A (en) Semiconductor device
JPH0245327B2 (en)
JP2735407B2 (en) Semiconductor device and manufacturing method thereof
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
US4579601A (en) Method of growing a resistive epitaxial layer on a short lifetime epi-layer
JPS59124136A (en) Process of semiconductor wafer
JPH04130731A (en) Manufacture of semiconductor integrated circuit device
JPH0526346B2 (en)
JPH019174Y2 (en)
JP2518378B2 (en) Method for manufacturing semiconductor device
US5556793A (en) Method of making a structure for top surface gettering of metallic impurities
JPH023539B2 (en)
JPS6042839A (en) Method for processing semiconductor wafer
JPH077768B2 (en) Method for manufacturing semiconductor device
JPH10247731A (en) Semiconductor wafer, and manufacture thereof, and semiconductor integrated circuit device and manufacture thereof
JPH0629382A (en) Semiconductor device and its production
Tsuya Oxygen effect on electronic device performance
JPS62179731A (en) Semiconductor device
JPS5892212A (en) Semiconductor device and manufacture therefor
JPH0533527B2 (en)
JPS59217333A (en) Treating method of semiconductor wafer