JPS62179731A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62179731A
JPS62179731A JP2232186A JP2232186A JPS62179731A JP S62179731 A JPS62179731 A JP S62179731A JP 2232186 A JP2232186 A JP 2232186A JP 2232186 A JP2232186 A JP 2232186A JP S62179731 A JPS62179731 A JP S62179731A
Authority
JP
Japan
Prior art keywords
layer
defect
oxygen
heating
recrystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2232186A
Other languages
Japanese (ja)
Other versions
JPH0795550B2 (en
Inventor
Michihiko Hasegawa
長谷川 充彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61022321A priority Critical patent/JPH0795550B2/en
Publication of JPS62179731A publication Critical patent/JPS62179731A/en
Publication of JPH0795550B2 publication Critical patent/JPH0795550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form an element on a non-defect layer by reducing the oxygen density of a surface layer by first heating, generating a crystal defective nuclide by second heating at lower temperature and forming a non-defect layer by third heating at higher temperature. CONSTITUTION:An SiO2 layer 2 as an insulation layer and a recrystalline Si layer 3 as a recrystalline semiconductor layer are formed on an Si substrate 1, oxygen is doped by implantation of oxygen ion O<+> to convert the layer 3 into a high density oxygen implanted region 3B'. First heating is executed at 1,000 deg.C or higher, the oxygen density of the surface layer is lowered, second heatng is executed at approx. 600 deg.C, and crystal defective nuclide due to the precipitate of the oxygen are formed in an inner high density oxygen implanted region. Then, third heating is performed at 1,000 deg.C or higher, and a crystalline defective nuclide are grown to form a surface non-defect layer 3A on the surface of the layer 3 and an inner defective layer 3B under the layer 3A. An SiO2 layer 4 is formed as an insulation layer in a boundary between the layers 3A and 3B by O<+> ion implanting, source, drain regions S, D are formed on the layer 3A, and a gate electrode G is formed through a gate insulation layer 5.

Description

【発明の詳細な説明】 〔概要〕 Sol(Semiconductor On In5u
lator)膜の表面に無欠陥層を、内部に欠陥層を形
成し、無欠陥層に素子形成を行う。内部の欠陥層による
有害不純物のゲッタリングにより無欠陥層の小数キャリ
アのライフタイムを大きくし、リーク電流等の素子特性
を向上する。
[Detailed Description of the Invention] [Summary] Sol (Semiconductor On In5u
(lator) A defect-free layer is formed on the surface of the film, a defect-free layer is formed inside the film, and elements are formed on the defect-free layer. Gettering of harmful impurities by the internal defect layer increases the lifetime of minority carriers in the defect-free layer, improving device characteristics such as leakage current.

〔産業上の利用分野〕[Industrial application field]

本発明はSOT膜に素子を形成してなる半導体装置に関
する。
The present invention relates to a semiconductor device in which elements are formed on an SOT film.

SOT構造は、基板の浮遊容量が小さく高速素子の形成
ができ、またCMOSデバイスで問題となっているpn
pnスイッチによるランチアップ現象がなく、さらに多
層素子の形成が可能となる。
The SOT structure has a small stray capacitance on the substrate, making it possible to form high-speed devices.
There is no launch-up phenomenon caused by a pn switch, and it is possible to form a multilayer element.

しかしながら、現状ではSolは微小欠陥が多数存在し
、前記ライフタイムが通常のバルク珪素(Si)の場合
より2桁程度小さくなる。
However, at present, Sol has many micro defects, and the lifetime is about two orders of magnitude shorter than that of ordinary bulk silicon (Si).

〔従来の技術〕[Conventional technology]

Sol膜の形成はつぎのように行う。 The formation of the Sol film is performed as follows.

例えば、Si基板上に絶縁層として二酸化珪素(StO
l)層を被着し、この上に多結晶半導体層を形成し、こ
の層にレーザビーム等を照射して局部的に溶融しながら
再結晶化して再結晶半導体層を形成する。
For example, silicon dioxide (StO) is used as an insulating layer on a Si substrate.
l) A layer is deposited, a polycrystalline semiconductor layer is formed thereon, and this layer is irradiated with a laser beam or the like to locally melt and recrystallize to form a recrystallized semiconductor layer.

この場合、再結晶半導体層の単結晶化は難しく、また単
結晶化されたとしても結晶欠陥密度が大きく、従ってこ
の層に素子を形成しても、よい特性の素子は得られなか
った。
In this case, it is difficult to make the recrystallized semiconductor layer into a single crystal, and even if it is made into a single crystal, the density of crystal defects is large, so even if an element is formed in this layer, an element with good characteristics cannot be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のsor膜は結晶欠陥数が多かった。 Conventional SOR films have a large number of crystal defects.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、絶縁層上に再結晶半導体層を形成
し、該再結晶半導体層に酸素を導入し、第1の加熱によ
り該再結晶半導体層の表面層の酸素濃度を低減し、該第
1の加熱より低温で行う第2の加熱により該再結晶半導
体層の内部の高酸素濃度領域に結晶欠陥核を生成させ、
該第2の加熱より高温で行う第3の加熱により該結晶欠
陥核を成長させ、該再結晶半導体層の表面層に無欠陥層
を形成し、該無欠陥層に素子を形成してなる半導体装置
、あるいは 絶縁層上に再結晶半導体層を形成し、該再結晶半導体層
の表面層を除いて該再結晶半導体層の内部に酸素導入領
域を形成し、第1の加熱により該酸素導入領域に結晶欠
陥核を生成させ、該第1の加熱より高温で行う第2の加
熱により該結晶欠陥核を成長させ、該再結晶半導体層の
表面層に無欠陥層を形成し、該無欠陥層に素子を形成し
てなる半導体装置により達成される。
The above problem can be solved by forming a recrystallized semiconductor layer on the insulating layer, introducing oxygen into the recrystallized semiconductor layer, and reducing the oxygen concentration in the surface layer of the recrystallized semiconductor layer by first heating. generating crystal defect nuclei in a high oxygen concentration region inside the recrystallized semiconductor layer by second heating performed at a lower temperature than the first heating;
A semiconductor in which the crystal defect nuclei are grown by third heating performed at a higher temperature than the second heating, a defect-free layer is formed in the surface layer of the recrystallized semiconductor layer, and an element is formed in the defect-free layer. A recrystallized semiconductor layer is formed on a device or an insulating layer, an oxygen introduction region is formed inside the recrystallization semiconductor layer except for the surface layer of the recrystallization semiconductor layer, and the oxygen introduction region is removed by first heating. to generate crystal defect nuclei, grow the crystal defect nuclei by second heating performed at a higher temperature than the first heating, form a defect-free layer in the surface layer of the recrystallized semiconductor layer, and form a defect-free layer in the surface layer of the recrystallized semiconductor layer. This is achieved by a semiconductor device in which elements are formed in a semiconductor device.

前記無欠陥層と酸素導入領域との境界に絶縁層を形成し
てなる半導体装1は、素子形成された無欠陥層を内部欠
陥層から絶縁するためのものであり、ちょうどSol膜
の中にさらに301構造を形成したものといえる。
The semiconductor device 1, which is formed by forming an insulating layer at the boundary between the defect-free layer and the oxygen-introduced region, is for insulating the defect-free layer in which the element is formed from the internal defect layer. Furthermore, it can be said that a 301 structure is formed.

また、無欠陥層の厚さが素子形成用としで簿すぎる場合
は、無欠陥層の上にエピタキシャル成長を行って、所望
の厚さを得ることができる。
Furthermore, if the thickness of the defect-free layer is too large for device formation, epitaxial growth can be performed on the defect-free layer to obtain the desired thickness.

〔作用〕[Effect]

Sol膜の内部に高濃度酸素導入層を形成し、熱処理を
行ってこの層に酸素の析出物による内部欠陥層を形成し
、また表面の酸素濃度を下げることにより表面を無欠陥
層とする。
A high-concentration oxygen-introduced layer is formed inside the Sol film, and heat treatment is performed to form an internal defect layer of oxygen precipitates in this layer, and the surface is made defect-free by lowering the oxygen concentration on the surface.

この内部欠陥層のゲッタリング(半導体デバイス形成に
有害な、重金属、ナトリウム等デバイス特性の劣化に関
連する原子を内部欠陥層が吸収する作用)によりデバイ
ス特性を向上させることができる。
Device characteristics can be improved by gettering of this internal defect layer (an effect in which the internal defect layer absorbs atoms harmful to semiconductor device formation and associated with deterioration of device characteristics, such as heavy metals and sodium).

また、表面無欠陥層と内部欠陥層の境界に絶縁層を挟ん
で、表面無欠陥層に形成した素子を内部欠陥層より電気
的に絶縁して、素子形成の自由度を上げることができる
。さらにこの絶縁層を介して内部欠陥層をバンクチャネ
ル制御用の第2ゲートとして用いることも可能である。
Further, by sandwiching an insulating layer between the surface defect-free layer and the internal defect-free layer, the element formed in the surface defect-free layer is electrically insulated from the internal defect layer, thereby increasing the degree of freedom in device formation. Furthermore, it is also possible to use the internal defect layer as a second gate for bank channel control via this insulating layer.

〔実施例〕〔Example〕

第1図(11〜(5)は第1の発明による半導体素子の
形成工程を説明する断面図である。
FIGS. 11-(5) are cross-sectional views illustrating the steps of forming a semiconductor element according to the first invention.

第1図(1)において、■は基板でSi基板、この上に
絶縁層としてSiO□層2、再結晶半導体層として厚さ
4000人の再結晶Si層3を形成する。
In FIG. 1 (1), ``■'' is a Si substrate, on which a SiO□ layer 2 is formed as an insulating layer, and a recrystallized Si layer 3 with a thickness of 4000 nm is formed as a recrystallized semiconductor layer.

第1図(2)において、酸素イオンO+注入等により酸
素をドープして、再結晶Si層3を酸素濃度が10IB
CI11−3程度の高濃度酸素導入領域3B’にする。
In FIG. 1 (2), the recrystallized Si layer 3 is doped with oxygen by oxygen ion O+ implantation or the like to have an oxygen concentration of 10 IB.
The high concentration oxygen introduction region 3B' has a CI of about 11-3.

第1図(3)において、 1000℃以上で数10分以上第1の加熱を行い、酸素
のアウトディフュージョンにより再結晶Si層3(高濃
度酸素導入領域3B′)の表面層の酸素濃度を下げ、5
×1017cm4以下にする。
In FIG. 1 (3), the first heating is performed at 1000° C. or higher for several tens of minutes or more, and the oxygen concentration in the surface layer of the recrystallized Si layer 3 (high-concentration oxygen introduced region 3B') is lowered by oxygen outdiffusion. ,5
x1017cm4 or less.

つぎに、600℃程度で数時間第2の加熱を行い、内部
の高濃度酸素導入領域に酸素の析出物による結晶欠陥核
を形成させ、 つぎに、1000℃以上で数10分以上第3の加熱を行
い結晶欠陥核を成長させることにより、再結晶Si層3
0表面に厚さ約1000への表面無欠陥層3A、その下
側に内部欠陥層3Bを形成する。
Next, a second heating is performed at about 600°C for several hours to form crystal defect nuclei due to oxygen precipitates in the internal high-concentration oxygen introduction region, and then a third heating is performed at 1000°C or more for several tens of minutes or more. By heating and growing crystal defect nuclei, the recrystallized Si layer 3
A surface defect-free layer 3A having a thickness of approximately 1000 mm is formed on the 0 surface, and an internal defect layer 3B is formed below the surface defect-free layer 3A.

第1図(4)において、01イオン注入により表面無欠
陥層3八と内部欠陥層3Bの境界に絶縁層としてSi0
2層4を形成する。
In FIG. 1 (4), Si0 is formed as an insulating layer at the boundary between the surface defect-free layer 38 and the internal defect layer 3B by 01 ion implantation.
Two layers 4 are formed.

0′イオン注入条件は、エネルギ60KeV 、ドーズ
量lXl0”cm−2、アニール窒素中1000℃以上
である。
The 0' ion implantation conditions are an energy of 60 KeV, a dose of 1X10'' cm-2, and annealing temperature of 1000 DEG C. or higher in nitrogen.

第1図(5)において、通常の工程を用いて表面無欠陥
層3Aにソース、ドレイン領域S、Dを形成し、ゲート
絶縁層5を介してゲート電極Gを形成する。
In FIG. 1(5), source and drain regions S and D are formed in the surface defect-free layer 3A using a normal process, and a gate electrode G is formed via the gate insulating layer 5.

第2図(11〜(5)は第2の発明による半導体素子の
形成工程を説明する断面図である。
FIGS. 2(11-5) are cross-sectional views illustrating the steps of forming a semiconductor element according to the second invention.

第2図(1)において、1は基板でSi基板、この上に
絶縁層としてSiO□層2、再結晶半導体層として厚さ
4000人の再結晶Si層3を形成する。
In FIG. 2(1), reference numeral 1 denotes a Si substrate, on which a SiO□ layer 2 is formed as an insulating layer, and a recrystallized Si layer 3 with a thickness of 4000 nm is formed as a recrystallized semiconductor layer.

第2図(2)において、酸素イオンθ′″を再結晶Si
層3に注入し、再結晶St層3の内部に酸素濃度が10
I80Ifi−3程度の高濃度酸素導入領域3B’を形
成する。
In Fig. 2 (2), oxygen ions θ''' are recrystallized into Si
The oxygen concentration inside the recrystallized St layer 3 is 10
A high concentration oxygen introduction region 3B' of about I80Ifi-3 is formed.

0′イオン注入条件は、エネルギ160Keν、ドーズ
量5X10”cm−2である。
The 0' ion implantation conditions are an energy of 160 Keν and a dose of 5.times.10" cm.sup.-2.

第2図(3)において、 600℃程度で数時間第1の加熱を行い、内部の高濃度
酸素導入領域に酸素の析出物による結晶欠陥核を形成さ
せ、 つぎに、1000℃以上で数10分以上第2の加熱を行
い結晶欠陥核を成長させることにより、再結晶Si層3
の表面に厚さ約1000人の表面無欠陥層3^、その下
側に内部欠陥層3Bを形成する。
In Fig. 2 (3), first heating is performed at about 600°C for several hours to form crystal defect nuclei due to oxygen precipitates in the internal high-concentration oxygen introduced region, and then heated at 1000°C or higher for several tens of hours. The recrystallized Si layer 3
A surface defect-free layer 3^ with a thickness of about 1000 layers is formed on the surface of the substrate, and an internal defect layer 3B is formed below the surface defect-free layer 3^.

第2図(4)において、0′イオン注入により表面無欠
陥層3Aと内部欠陥層3Bの境界に絶縁層としてSi0
2層4を形成する。
In FIG. 2 (4), Si0 is formed as an insulating layer at the boundary between the surface defect-free layer 3A and the internal defect layer 3B by 0' ion implantation.
Two layers 4 are formed.

0′イオン注入条件は、第1図(4)の場合と同様であ
る。
The 0' ion implantation conditions are the same as in the case of FIG. 1(4).

第2図(5)において、通常の工程を用いて表面無欠陥
層3Aにソース、ドレイン領域S、Dを形成し、ゲート
絶縁層5を介してゲート電極Gを形成する。
In FIG. 2(5), source and drain regions S and D are formed in the surface defect-free layer 3A using a normal process, and a gate electrode G is formed via the gate insulating layer 5.

第3図は本発明による2層構造の素子の断面図である。FIG. 3 is a cross-sectional view of a two-layer structure element according to the present invention.

図は第1図(5)、または第2図(5)のSi基板の代
わりに、素子が形成された基板を用い、その上に本発明
を適用したものである。
In the figure, a substrate on which elements are formed is used instead of the Si substrate in FIG. 1 (5) or FIG. 2 (5), and the present invention is applied thereon.

図において、31はSi基板、32はフィールド絶縁層
、33はゲート毎色縁層である。
In the figure, 31 is a Si substrate, 32 is a field insulating layer, and 33 is a gate color edge layer.

G′、S′、D′はそれぞれゲート電極、ソース領域、
ドレイン領域で基板31に通常の素子が形成され、この
上にSiO□層2を被着し、再結晶Si層3を形成後、
第1図、または第2図によりSOIデバイスを形成する
G', S', and D' are the gate electrode, source region, and
A conventional element is formed on the substrate 31 in the drain region, and after depositing the SiO□ layer 2 and forming the recrystallized Si layer 3,
An SOI device is formed according to FIG. 1 or FIG. 2.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によるSOI膜は結晶
欠陥数が低減して、小数キャリアのライフタイムが大き
くなり、リーク電流の減少等デバイスの特性が向上する
As described above in detail, the SOI film according to the present invention has a reduced number of crystal defects, a longer lifetime of minority carriers, and improved device characteristics such as reduced leakage current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)〜(5)は第1の発明による半導体素子の
形成工程を説明する断面図、 第2図(Li−(5)は第2の発明による半導体素子の
形成工程を説明する断面図、 第3図は本発明による2層構造の素子の断面図である。 図おいて、 1は基板でSi基板、 2は絶縁層でSiO□層、 3は再結晶半導体−で再結晶Si膚、 3Aは表面無欠陥層、 3Bは内部欠陥層、 3B’は高濃度酸素導入領域、 4は境界絶縁層で5i02層、 5はゲート絶縁層、 Gはゲート電極 SXDはソース、ドレイン領域 間ケち1 の オ帯ζ日Y1 σ) −11面 LンΔ
垢1図 躬2/)亀甲/11面口 第2図 本春a月1による2層素子の wrI品図 垢う図
Figures 1 (1) to (5) are cross-sectional views explaining the process of forming a semiconductor element according to the first invention; Figure 2 (Li-(5)) is a cross-sectional view explaining the process of forming a semiconductor element according to the second invention. 3 is a cross-sectional view of a device with a two-layer structure according to the present invention. In the figure, 1 is a substrate, which is a Si substrate, 2 is an insulating layer, which is an SiO□ layer, and 3 is a recrystallized semiconductor. Si layer, 3A is a surface defect-free layer, 3B is an internal defect layer, 3B' is a high concentration oxygen introduced region, 4 is a boundary insulating layer, 5i02 layer, 5 is a gate insulating layer, G is a gate electrode, SXD is a source and drain region Interval 1 O band ζ day Y1 σ) -11 plane Ln Δ
Figure 1 Figure 2/) Tortoise shell/11 sides Figure 2 Figure 2 of the two-layer element according to Honharu August 1

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁層上に再結晶半導体層を形成し、該再結晶半
導体層に酸素を導入し、第1の加熱により該再結晶半導
体層の表面層の酸素濃度を低減し、該第1の加熱より低
温で行う第2の加熱により該再結晶半導体層の内部の高
酸素濃度領域に結晶欠陥核を生成させ、該第2の加熱よ
り高温で行う第3の加熱により該結晶欠陥核を成長させ
、該再結晶半導体層の表面層に無欠陥層を形成し、該無
欠陥層に素子を形成してなることを特徴とする半導体装
置。
(1) A recrystallized semiconductor layer is formed on the insulating layer, oxygen is introduced into the recrystallized semiconductor layer, and the oxygen concentration in the surface layer of the recrystallized semiconductor layer is reduced by first heating. A second heating performed at a lower temperature than the heating generates crystal defect nuclei in a high oxygen concentration region inside the recrystallized semiconductor layer, and a third heating performed at a higher temperature than the second heating causes the crystal defect nuclei to grow. A semiconductor device comprising: forming a defect-free layer on a surface layer of the recrystallized semiconductor layer; and forming an element on the defect-free layer.
(2)絶縁層上に再結晶半導体層を形成し、該再結晶半
導体層の表面層を除いて該再結晶半導体層の内部に酸素
導入領域を形成し、第1の加熱により該酸素導入領域に
結晶欠陥核を生成させ、該第1の加熱より高温で行う第
2の加熱により該結晶欠陥核を成長させ、該再結晶半導
体層の表面層に無欠陥層を形成し、該無欠陥層に素子を
形成してなることを特徴とする半導体装置。
(2) Forming a recrystallized semiconductor layer on the insulating layer, forming an oxygen introduction region inside the recrystallization semiconductor layer except for the surface layer of the recrystallization semiconductor layer, and heating the oxygen introduction region by first heating. to generate crystal defect nuclei, grow the crystal defect nuclei by second heating performed at a higher temperature than the first heating, form a defect-free layer in the surface layer of the recrystallized semiconductor layer, and form a defect-free layer in the surface layer of the recrystallized semiconductor layer. 1. A semiconductor device comprising an element formed in a semiconductor device.
(3)前記無欠陥層と酸素導入領域との境界に絶縁層を
形成してなることを特徴とする特許請求の範囲第1項記
載の半導体装置。
(3) The semiconductor device according to claim 1, further comprising an insulating layer formed at the boundary between the defect-free layer and the oxygen-introduced region.
(4)前記無欠陥層と酸素導入領域との境界に絶縁層を
形成してなることを特徴とする特許請求の範囲第2項記
載の半導体装置。
(4) The semiconductor device according to claim 2, further comprising an insulating layer formed at the boundary between the defect-free layer and the oxygen-introduced region.
JP61022321A 1986-02-04 1986-02-04 Semiconductor device Expired - Fee Related JPH0795550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022321A JPH0795550B2 (en) 1986-02-04 1986-02-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022321A JPH0795550B2 (en) 1986-02-04 1986-02-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62179731A true JPS62179731A (en) 1987-08-06
JPH0795550B2 JPH0795550B2 (en) 1995-10-11

Family

ID=12079457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022321A Expired - Fee Related JPH0795550B2 (en) 1986-02-04 1986-02-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0795550B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222627A (en) * 1986-03-24 1987-09-30 Sharp Corp Manufacture of semiconductor device
JPS62287615A (en) * 1986-06-06 1987-12-14 Sony Corp Formation of polycrystalline silicon film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860544A (en) * 1981-10-06 1983-04-11 Mitsubishi Electric Corp Gettering method for crystal defect
JPS5892227A (en) * 1981-11-28 1983-06-01 Mitsubishi Electric Corp Gettering for crystal defect

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860544A (en) * 1981-10-06 1983-04-11 Mitsubishi Electric Corp Gettering method for crystal defect
JPS5892227A (en) * 1981-11-28 1983-06-01 Mitsubishi Electric Corp Gettering for crystal defect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222627A (en) * 1986-03-24 1987-09-30 Sharp Corp Manufacture of semiconductor device
JPS62287615A (en) * 1986-06-06 1987-12-14 Sony Corp Formation of polycrystalline silicon film

Also Published As

Publication number Publication date
JPH0795550B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
JPH02177443A (en) Manufacture of thin film transistor
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
JPH02148831A (en) Laser annealing method
JPS59124136A (en) Process of semiconductor wafer
JPH02283036A (en) Manufacture of semiconductor device
JP3890270B2 (en) Thin film transistor manufacturing method
JPS62179731A (en) Semiconductor device
JPS62104021A (en) Formation of silicon semiconductor layer
JP3810168B2 (en) Manufacturing method of semiconductor substrate
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JPH03159116A (en) Method for thermally treating thin polycrystal semiconductor film
JP3093762B2 (en) Method for manufacturing semiconductor device
JPS61127117A (en) Method for forming polycrystalline semiconductor thin film
JPH023539B2 (en)
JP2850319B2 (en) Method of forming silicon thin film
JPH01181473A (en) Semiconductor device and its manufacture
JP2922918B2 (en) Ion implantation method
JPH01276617A (en) Manufacture of semiconductor device
JPH0629382A (en) Semiconductor device and its production
JPS63136A (en) Manufacture of semiconductor device
JPH01214110A (en) Manufacture of semiconductor device
JPH07240527A (en) Manufacture of thin film transistor
JPH0526346B2 (en)
JPH0637112A (en) Manufacture of thin film transistor
JPH02252269A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees