JPH05260106A - Carrier reproducting circuit - Google Patents

Carrier reproducting circuit

Info

Publication number
JPH05260106A
JPH05260106A JP4050973A JP5097392A JPH05260106A JP H05260106 A JPH05260106 A JP H05260106A JP 4050973 A JP4050973 A JP 4050973A JP 5097392 A JP5097392 A JP 5097392A JP H05260106 A JPH05260106 A JP H05260106A
Authority
JP
Japan
Prior art keywords
carrier
circuit
component
speed
moving average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4050973A
Other languages
Japanese (ja)
Other versions
JP2530965B2 (en
Inventor
Sei Kobayashi
聖 小林
Kazuhiko Seki
和彦 関
Masahiro Morikura
正博 守倉
Shuzo Kato
修三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4050973A priority Critical patent/JP2530965B2/en
Publication of JPH05260106A publication Critical patent/JPH05260106A/en
Application granted granted Critical
Publication of JP2530965B2 publication Critical patent/JP2530965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve C/N to obtain a flat phase characteristic and to reproduce the carrier of a high-speed modulated signal by adding a moving average circuit and taking the moving average of carrier components to slowly limit the band of carrier components. CONSTITUTION:An input modulated signal (a) is distributed to an inverse modulator (carrier component extracting circuit) 12 through an orthogonal detector 10 and a delay line 11. The inverse modulator 12 extracts a carrier component (a) and inputs it to a moving average circuit 13 which is operated at the clock speed of a frequency (f) corresponding to a signal (a). The circuit 13 converts it to a carrier component c2 obtained by taking the moving average for n clocks, and this component c2 is inputted to a latch circuit 14. The circuit 14 thins this component at the clock speed of f/n to obtain a carrier component c3, and this component c3 is inputted to a digital filter 15 operated at the clock speed of f/nHz. Thus, the digital filter constituting a carrier reproducing filter is operated at the low-speed clock signal, and high C/N and the flat phase characteristic are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル変調信号の
同期検波回路において搬送波を再生する搬送波再生回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carrier recovery circuit for recovering a carrier in a synchronous detection circuit for digitally modulated signals.

【0002】[0002]

【従来の技術】PSK(Phase Shift Keying)信号に代
表されるディジタル位相変調信号を復調する復調器をデ
ィジタル回路によって構成し、さらにLSI化によって
回路の小型化,無調整化および低消費電力化を図る回路
構成法が検討されている。このようなディジタル復調器
における搬送波再生回路の構成法の1つとして、衛星回
線のようなC/N比(信号対雑音電力比)が低い回線で
搬送波のスリップ率が小さい特長をもつ逆変調タンクリ
ミッタ方式が知られている(例えば、1990年電子情報通
信学会秋季全国大会論文集B-170)。
2. Description of the Related Art A demodulator for demodulating a digital phase-modulated signal represented by a PSK (Phase Shift Keying) signal is constructed by a digital circuit, and further downsizing, no adjustment and low power consumption are achieved by using an LSI. A circuit configuration method to be achieved is being studied. As one of the methods of constructing a carrier recovery circuit in such a digital demodulator, an inverse modulation tank having a feature that the carrier slip ratio is small in a line having a low C / N ratio (signal to noise power ratio) such as a satellite line. A limiter system is known (for example, the 1990 Autumn National Conference of the Institute of Electronics, Information and Communication Engineers B-170).

【0003】この逆変調タンクリミッタ方式を時分割多
元接続通信における復調器に用いる場合には、バースト
信号の平均周波数偏差を補償する自動周波数制御回路で
補償できないバースト信号間の周波数差があっても、符
号誤り率および搬送波のスリップ率を低く保つ必要があ
る。そのためには、逆変調器によって抽出された搬送波
成分をろ波する搬送波再生フィルタとして、高いC/N
改善比と、入力周波数がフィルタの中心周波数から離れ
ている場合でも入出力間で位相回転が小さいことが要求
される。
When the inverse modulation tank limiter system is used for a demodulator in time division multiple access communication, even if there is a frequency difference between burst signals that cannot be compensated by an automatic frequency control circuit that compensates for the average frequency deviation of burst signals. , It is necessary to keep the bit error rate and the carrier slip rate low. For that purpose, a high C / N ratio is used as a carrier recovery filter that filters the carrier component extracted by the inverse modulator.
The improvement ratio and small phase rotation between input and output are required even when the input frequency is far from the center frequency of the filter.

【0004】図4は、逆変調タンクリミッタ方式をとる
従来の位相変調信号復調器の構成例を示すブロック図で
ある。図において、入力変調信号aは、直交検波器10
と、遅延線11を介して逆変調器12に分配される。逆
変調器12は、直交検波器11から出力される復調信号
bで入力変調信号aに逆の位相で位相変調をかけて変調
成分を除去し、その搬送波成分cを抽出する。搬送波成
分cは、ディジタルフィルタ15で雑音成分が除去さ
れ、さらにリミッタ回路16で一定振幅の再生搬送波d
となる。この再生搬送波dは、直交検波器11に入力さ
れて検波処理に用いられる。なお、直交検波器10,逆
変調器12,ディジタルフィルタ15およびリミッタ回
路16は、入力変調信号aの速度に対応するクロック信
号によって動作する構成である。
FIG. 4 is a block diagram showing a configuration example of a conventional phase modulation signal demodulator which employs an inverse modulation tank limiter system. In the figure, the input modulation signal a is the quadrature detector 10
Is distributed to the inverse modulator 12 via the delay line 11. The inverse modulator 12 phase-modulates the input modulation signal a with the demodulated signal b output from the quadrature detector 11 in an opposite phase to remove the modulation component and extracts the carrier component c. The carrier component c has a noise component removed by a digital filter 15, and a limiter circuit 16 reproduces a carrier wave d having a constant amplitude.
Becomes The reproduced carrier wave d is input to the quadrature detector 11 and used for detection processing. The quadrature detector 10, the inverse modulator 12, the digital filter 15 and the limiter circuit 16 are operated by a clock signal corresponding to the speed of the input modulation signal a.

【0005】このような逆変調タンクリミッタ方式の搬
送波再生回路では、逆変調器12が搬送波成分抽出回路
に相当し、ディジタルフィルタ15およびリミッタ回路
16が搬送波再生フィルタに相当する。
In such an inverse modulation tank limiter type carrier recovery circuit, the inverse modulator 12 corresponds to a carrier component extraction circuit, and the digital filter 15 and the limiter circuit 16 correspond to a carrier recovery filter.

【0006】ここで、従来の位相変調信号復調器におけ
る搬送波成分cの周波数スペクトル、ディジタルフィル
タ15の振幅特性および位相特性、再生搬送波dの周波
数スペクトルを図5(1),(2),(3) に示す。(1) に示すよ
うに逆変調器12から出力される搬送波成分cには広帯
域の雑音成分が含まれ、(2) に示す振幅特性および位相
特性を有するディジタルフィルタ15を通過させること
により、(3) に示すように雑音成分が除去された再生搬
送波dが得られる。
Here, the frequency spectrum of the carrier component c in the conventional phase modulation signal demodulator, the amplitude characteristic and the phase characteristic of the digital filter 15, and the frequency spectrum of the reproduced carrier wave d are shown in FIGS. 5 (1), (2) and (3). ). As shown in (1), the carrier wave component c output from the inverse modulator 12 contains a wideband noise component, and by passing through the digital filter 15 having the amplitude characteristic and the phase characteristic shown in (2), ( As shown in 3), the reproduced carrier wave d from which the noise component is removed is obtained.

【0007】ところで、従来の復調器の最高動作速度
は、多ビットの乗算回路を有するディジタルフィルタ1
5の動作速度によってほぼ決定される。したがって、デ
ィジタルフィルタ15内の乗算回路の動作速度を越えて
復調器を動作させる場合には、ディジタルフィルタ15
に対しては間引いたクロックパルスを用いる必要があっ
た。
By the way, the maximum operation speed of the conventional demodulator is the digital filter 1 having a multi-bit multiplication circuit.
It is almost determined by the operating speed of 5. Therefore, when operating the demodulator beyond the operating speed of the multiplication circuit in the digital filter 15, the digital filter 15
It was necessary to use the thinned clock pulse for.

【0008】ここで、ディジタルフィルタ15を低速の
クロック信号で動作させる場合の位相変調信号復調器の
従来構成について図6に示す。図6において、逆変調器
12は、入力変調信号aに対応するf〔Hz〕のクロック
信号で動作して搬送波成分cを抽出する。一方、分周器
17は、f〔Hz〕のクロック信号をn分周してf/n
〔Hz〕のクロック信号を生成し、ラッチ回路14,ディ
ジタルフィルタ15およびリミッタ回路16に与える。
逆変調器12で抽出された搬送波成分cは、ラッチ回路
14でf/n〔Hz〕のクロック速度で間引かれた搬送波
成分c1となり、f/n〔Hz〕のクロック速度で動作す
るディジタルフィルタ15に入力される。以下同様に、
搬送波成分c1は、ディジタルフィルタ15で雑音成分
が除去され、さらにリミッタ回路16で一定振幅の再生
搬送波d1となる。
FIG. 6 shows a conventional configuration of a phase modulation signal demodulator when the digital filter 15 is operated with a low speed clock signal. In FIG. 6, the inverse modulator 12 operates with the clock signal of f [Hz] corresponding to the input modulation signal a and extracts the carrier component c. On the other hand, the frequency divider 17 divides the clock signal of f [Hz] by n to generate f / n.
A clock signal of [Hz] is generated and given to the latch circuit 14, the digital filter 15, and the limiter circuit 16.
The carrier component c extracted by the inverse modulator 12 becomes the carrier component c1 decimated at the clock speed of f / n [Hz] by the latch circuit 14, and is a digital filter operating at the clock speed of f / n [Hz]. 15 is input. Similarly,
The carrier wave component c1 has a noise component removed by the digital filter 15, and becomes a reproduced carrier wave d1 having a constant amplitude by the limiter circuit 16.

【0009】ここで、搬送波成分cの周波数スペクト
ル、n=2の場合の搬送波成分c1の周波数スペクト
ル、ディジタルフィルタ15の振幅特性および位相特
性、再生搬送波d1の周波数スペクトルを図7(1),(2),
(3),(4) に示す。間引かれた搬送波成分c1は、クロッ
ク速度がf/2に変換されたことによって雑音成分の折
り返しが生じ、(2) に示すように雑音電力密度が搬送波
成分cに比較して2倍になる。
Here, the frequency spectrum of the carrier component c, the frequency spectrum of the carrier component c1 when n = 2, the amplitude characteristic and the phase characteristic of the digital filter 15, and the frequency spectrum of the reproduced carrier d1 are shown in FIGS. 2),
Shown in (3) and (4). The decimated carrier component c1 causes a noise component to be folded due to the clock speed being converted to f / 2, and the noise power density is doubled as compared with the carrier component c as shown in (2). ..

【0010】[0010]

【発明が解決しようとする課題】図4に示す従来構成で
は、多ビットの乗算回路を有するディジタルフィルタ1
5の動作速度により、上限の動作速度が決定されるため
に復調器の高速化が困難であった。すなわち、高速変調
信号に対応することができなかった。
In the conventional configuration shown in FIG. 4, the digital filter 1 having a multi-bit multiplication circuit is used.
It was difficult to increase the speed of the demodulator because the upper limit of the operating speed was determined by the operating speed of 5. That is, it was not possible to deal with high-speed modulation signals.

【0011】一方、図6に示す従来構成では、ディジタ
ルフィルタ15の通過帯域幅を図4の構成におけるディ
ジタルフィルタと同一にすると、図7(4) に示すように
再生搬送波d1のC/N比が劣化し、その結果、復調器
の符号誤り率および搬送波のスリップ率特性が劣化す
る。また、再生搬送波d1のC/N比の劣化を防ぐため
にディジタルフィルタ15の通過帯域幅を1/n倍にし
た場合には、位相特性が急峻となり、入力信号の周波数
変動に対する位相回転の増大から同様に復調器の符号誤
り率および搬送波のスリップ率特性の劣化をもたらして
しまう。
On the other hand, in the conventional configuration shown in FIG. 6, if the pass band width of the digital filter 15 is made the same as that of the digital filter in the configuration of FIG. 4, the C / N ratio of the reproduced carrier wave d1 as shown in FIG. 7 (4). Deteriorate, and as a result, the bit error rate of the demodulator and the slip rate characteristic of the carrier deteriorate. Further, when the pass band width of the digital filter 15 is set to 1 / n times in order to prevent the deterioration of the C / N ratio of the reproduced carrier wave d1, the phase characteristic becomes steep and the phase rotation increases with respect to the frequency fluctuation of the input signal. Similarly, the bit error rate of the demodulator and the slip rate characteristic of the carrier are deteriorated.

【0012】本発明は、搬送波再生フィルタで高いC/
N改善比と平坦な位相特性を得られるとともに、高速変
調信号の搬送波再生を行うことができる搬送波再生回路
を提供することを目的とする。
The present invention is a carrier recovery filter having a high C /
An object of the present invention is to provide a carrier recovery circuit which can obtain an N improvement ratio and a flat phase characteristic and can perform carrier recovery of a high speed modulation signal.

【0013】[0013]

【課題を解決するための手段】本発明は、入力変調信号
から非線形操作により変調成分を除去して搬送波成分を
抽出する搬送波成分抽出回路と、前記搬送波成分抽出回
路の出力から搬送波成分のみを通過させ、雑音その他の
不要成分を除去して再生搬送波を出力する搬送波再生フ
ィルタとを備えた搬送波再生回路において、前記搬送波
再生フィルタは、前記入力変調信号に対応する速度fの
クロック信号で動作し、前記搬送波成分抽出回路で抽出
された搬送波成分をnクロック(nは整数)に渡って移
動平均をとる移動平均回路と、前記速度fのクロック信
号をn分周した速度f/nのクロック信号で前記移動平
均回路から出力される搬送波成分をラッチするラッチ回
路と、前記速度f/nのクロック信号で動作し、前記ラ
ッチ回路から出力される搬送波成分から前記不要成分を
除去した再生搬送波を出力するディジタルフィルタとを
備えたことを特徴とする。
According to the present invention, a carrier component extraction circuit for removing a modulation component from an input modulation signal by a non-linear operation to extract a carrier component, and only a carrier component is passed from an output of the carrier component extraction circuit. In the carrier regeneration circuit having a carrier regeneration filter that removes noise and other unnecessary components and outputs a reproduced carrier, the carrier regeneration filter operates with a clock signal at a speed f corresponding to the input modulated signal, A moving average circuit for taking a moving average of the carrier component extracted by the carrier component extracting circuit over n clocks (n is an integer), and a clock signal of a speed f / n obtained by dividing the clock signal of the speed f by n. A latch circuit for latching the carrier wave component output from the moving average circuit, and an output from the latch circuit, which operates by the clock signal of the speed f / n Characterized by comprising a digital filter for outputting a reproduced carrier wave obtained by removing the unnecessary component from the carrier wave component.

【0014】[0014]

【作用】本発明で付加される移動平均回路では、入力変
調信号に対応する速度fのクロック信号で動作し、搬送
波成分抽出回路で抽出された搬送波成分をnクロックに
渡って移動平均をとっているので、その搬送波成分を緩
やかに帯域制限してC/N比をn倍に高めることができ
る。したがって、ラッチ回路により速度f/nのクロッ
ク信号で間引き処理を行っても、移動平均回路で帯域制
限を行っている分だけ雑音電力密度の増加を防ぐことが
できる。
In the moving average circuit added in the present invention, the moving average circuit operates with the clock signal of speed f corresponding to the input modulation signal, and the moving average of the carrier components extracted by the carrier component extracting circuit is taken over n clocks. Therefore, the carrier component can be gently band-limited to increase the C / N ratio by n times. Therefore, even if the latch circuit performs the thinning-out process with the clock signal of the speed f / n, it is possible to prevent the noise power density from increasing due to the band limitation performed by the moving average circuit.

【0015】このような構成により、次段のディジタル
フィルタを速度f/nのクロック信号で動作させること
ができ、また従来と同様の通過帯域特性であっても高い
C/N改善比を実現できるとともに、さらに移動平均回
路による位相回転を極めて小さくすることができるので
平坦な位相特性を得ることができる。
With such a configuration, the digital filter in the next stage can be operated with a clock signal of speed f / n, and a high C / N improvement ratio can be realized even with pass band characteristics similar to the conventional one. At the same time, since the phase rotation by the moving average circuit can be made extremely small, a flat phase characteristic can be obtained.

【0016】[0016]

【実施例】図1は、本発明の搬送波再生回路を逆変調タ
ンクリミッタ方式に適用した場合の実施例構成を示すブ
ロック図である。
1 is a block diagram showing the construction of an embodiment in which the carrier recovery circuit of the present invention is applied to an inverse modulation tank limiter system.

【0017】図において、入力変調信号aは、直交検波
器10と遅延線11を介して逆変調器12に分配され
る。逆変調器12は、直交検波器11から出力される復
調信号bで入力変調信号aに逆の位相で位相変調をかけ
て変調成分を除去し、その搬送波成分cを抽出する。搬
送波成分cは、入力変調信号に対応するf〔Hz〕のクロ
ック速度で動作する移動平均回路13に入力され、nク
ロックにわたる移動平均をとった搬送波成分c2に変換
される。この搬送波成分c2はラッチ回路14に入力さ
れ、f/n〔Hz〕のクロック速度で間引かれた搬送波成
分c3となり、f/n〔Hz〕のクロック速度で動作する
ディジタルフィルタ15に入力される。以下同様に、搬
送波成分c3は、ディジタルフィルタ15で雑音成分が
除去され、さらにリミッタ回路16で一定振幅の再生搬
送波d2となる。この再生搬送波d2は、直交検波器1
0に入力されて検波処理に用いられる。なお、分周器1
7は、f〔Hz〕のクロック信号をn分周してf/n〔H
z〕のクロック信号を生成し、ラッチ回路14,ディジ
タルフィルタ15およびリミッタ回路16に与える。
In the figure, an input modulation signal a is distributed to an inverse modulator 12 via a quadrature detector 10 and a delay line 11. The inverse modulator 12 phase-modulates the input modulation signal a with the demodulated signal b output from the quadrature detector 11 in an opposite phase to remove the modulation component and extracts the carrier component c. The carrier wave component c is input to the moving average circuit 13 which operates at a clock speed of f [Hz] corresponding to the input modulation signal, and is converted into a carrier wave component c2 which is a moving average over n clocks. This carrier wave component c2 is input to the latch circuit 14, becomes a carrier wave component c3 thinned out at the clock speed of f / n [Hz], and is input to the digital filter 15 operating at the clock speed of f / n [Hz]. .. Similarly, the carrier component c3 has a noise component removed by the digital filter 15, and becomes a reproduced carrier d2 having a constant amplitude by the limiter circuit 16. This reproduced carrier wave d2 is used by the quadrature detector 1
It is input to 0 and used for detection processing. In addition, frequency divider 1
7 divides the clock signal of f [Hz] by n to f / n [H
The clock signal of z] is generated and given to the latch circuit 14, the digital filter 15, and the limiter circuit 16.

【0018】本実施例の搬送波再生回路では、逆変調器
12が搬送波成分抽出回路に相当し、移動平均回路1
3,ラッチ回路14,ディジタルフィルタ15およびリ
ミッタ回路16が搬送波再生フィルタに相当する。
In the carrier recovery circuit of this embodiment, the inverse modulator 12 corresponds to the carrier component extraction circuit, and the moving average circuit 1
3, the latch circuit 14, the digital filter 15, and the limiter circuit 16 correspond to a carrier wave reproduction filter.

【0019】以下、図3を参照して本実施例における搬
送波再生フィルタの機能について説明する。図3におい
て、(1) は本実施例の位相変調信号復調器における搬送
波成分cの周波数スペクトル、(2) は移動平均回路13
の振幅特性および位相特性、(3) は搬送波成分c2の周
波数スペクトル、(4) はn=2の場合の搬送波成分c3
の周波数スペクトル、(5) はディジタルフィルタ15の
振幅特性および位相特性、(6) は再生搬送波d2の周波
数スペクトルを示す。
The function of the carrier recovery filter in this embodiment will be described below with reference to FIG. In FIG. 3, (1) is the frequency spectrum of the carrier component c in the phase modulation signal demodulator of this embodiment, and (2) is the moving average circuit 13
Amplitude characteristic and phase characteristic, (3) is the frequency spectrum of the carrier component c2, and (4) is the carrier component c3 when n = 2.
, (5) shows the amplitude characteristic and phase characteristic of the digital filter 15, and (6) shows the frequency spectrum of the reproduced carrier d2.

【0020】逆変調器12から出力される搬送波成分c
は、(3) に示すようにまず移動平均回路13により緩や
かに帯域制限されてC/N比がn倍に高められた搬送波
成分c2となる。次にラッチ回路14によりf/n〔H
z〕のクロック速度で搬送波成分c2を間引くと雑音成
分の折り返しが生じるが、移動平均回路13で帯域制限
を行っているので、(4) に示すように雑音電力密度の増
加を防ぐことができる。
The carrier component c output from the inverse modulator 12
Is a carrier component c2 whose band is gradually band-limited by the moving average circuit 13 to increase the C / N ratio by n times as shown in (3). Next, the latch circuit 14 causes f / n [H
When the carrier component c2 is thinned out at the clock speed of z], the noise component is folded back, but since the moving average circuit 13 limits the band, it is possible to prevent an increase in noise power density as shown in (4). ..

【0021】したがって、この搬送波成分c3を処理す
るディジタルフィルタ15の通過帯域幅を (5)に示すよ
うに従来のディジタルフィルタの通過帯域幅(図5(2)
,図7(3) )と同一にしても、(6) に示すようにC/
N比の劣化を回避することができる。一方、位相回転
は、移動平均回路13とディジタルフィルタ15の位相
回転の和になるが、nが2のように小さい場合には移動
平均回路13による位相回転が極めて小さいので、その
影響はほとんど無視することができる。
Therefore, as shown in (5), the pass band width of the digital filter 15 for processing the carrier wave component c3 is as shown in FIG. 5 (2).
, (7) (3)), but as shown in (6), C /
It is possible to avoid the deterioration of the N ratio. On the other hand, the phase rotation is the sum of the phase rotations of the moving average circuit 13 and the digital filter 15, but when n is as small as 2, the phase rotation by the moving average circuit 13 is extremely small, so its influence is almost ignored. can do.

【0022】図2は、移動平均回路13の構成例を示す
ブロック図である。図において、n=2の場合には、移
動平均回路13は、搬送波成分cに1クロック分の遅延
を与える遅延回路20と、搬送波成分cを入力する1ビ
ットシフト回路21と、搬送波成分cを遅延回路20を
介して入力する1ビットシフト回路22と、各1ビット
シフト回路21,22の出力を加算する加算回路23と
により構成され、加算回路23から2クロックにわたる
移動平均をとった搬送波成分c2を出力する。
FIG. 2 is a block diagram showing a configuration example of the moving average circuit 13. In the figure, when n = 2, the moving average circuit 13 outputs the delay circuit 20 for delaying the carrier wave component c by one clock, the 1-bit shift circuit 21 for inputting the carrier wave component c, and the carrier wave component c. A 1-bit shift circuit 22 input through the delay circuit 20 and an adder circuit 23 that adds the outputs of the 1-bit shift circuits 21 and 22. A carrier component obtained by taking a moving average from the adder circuit 23 over two clocks. Output c2.

【0023】このように移動平均回路13は極めて簡単
な構成で実現できるので、高速な入力変調信号aに対応
するf〔Hz〕のクロック速度でも十分に動作させること
ができる。なお、ディジタルフィルタ15は、従来通り
f/n〔Hz〕の低速なクロック信号で動作させることが
できる。
As described above, the moving average circuit 13 can be realized with an extremely simple structure, and therefore can be sufficiently operated even at the clock speed of f [Hz] corresponding to the high speed input modulation signal a. The digital filter 15 can be operated with a low-speed clock signal of f / n [Hz] as in the conventional case.

【0024】[0024]

【発明の効果】以上説明したように、搬送波再生フィル
タを構成するディジタルフィルタを低速のクロック信号
で動作させることができるので、高速変調信号に対応す
る搬送波再生回路を実現することができる。さらに、搬
送波再生フィルタにおいて、入力変調信号に対応するク
ロック信号で抽出した搬送波成分を低速クロックで間引
く際に、雑音電力密度の増加を効果的に抑えることがで
きるので、高いC/N改善比と平坦な位相特性を得るこ
とができる。
As described above, since the digital filter constituting the carrier wave reproducing filter can be operated by the low speed clock signal, the carrier wave reproducing circuit corresponding to the high speed modulated signal can be realized. Furthermore, in the carrier recovery filter, when the carrier component extracted by the clock signal corresponding to the input modulation signal is thinned out by the low-speed clock, it is possible to effectively suppress an increase in noise power density, which results in a high C / N improvement ratio. A flat phase characteristic can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の搬送波再生回路を逆変調タンクリミッ
タ方式に適用した場合の実施例構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of an embodiment when a carrier recovery circuit of the present invention is applied to an inverse modulation tank limiter system.

【図2】移動平均回路13の構成例を示すブロック図で
ある。
FIG. 2 is a block diagram showing a configuration example of a moving average circuit 13.

【図3】実施例における搬送波再生フィルタの機能につ
いて説明する図である。
FIG. 3 is a diagram illustrating a function of a carrier recovery filter according to an embodiment.

【図4】逆変調タンクリミッタ方式をとる従来の位相変
調信号復調器の構成例を示すブロック図である。
FIG. 4 is a block diagram showing a configuration example of a conventional phase modulation signal demodulator that employs an inverse modulation tank limiter system.

【図5】従来の搬送波再生フィルタの機能について説明
する図である。
FIG. 5 is a diagram illustrating a function of a conventional carrier recovery filter.

【図6】ディジタルフィルタを低速のクロック信号で動
作させる場合の位相変調信号復調器の従来構成例を示す
ブロック図である。
FIG. 6 is a block diagram showing a conventional configuration example of a phase modulation signal demodulator when a digital filter is operated with a low-speed clock signal.

【図7】低速クロック信号で動作する従来の搬送波再生
フィルタの機能について説明する図である。
FIG. 7 is a diagram illustrating the function of a conventional carrier recovery filter that operates with a low-speed clock signal.

【符号の説明】[Explanation of symbols]

10 直交検波器 11 遅延線 12 逆変調器 13 移動平均回路 14 ラッチ回路 15 ディジタルフィルタ 16 リミッタ回路 17 分周器 20 遅延回路 21,22 1ビットシフト回路 23 加算回路 10 quadrature detector 11 delay line 12 inverse modulator 13 moving average circuit 14 latch circuit 15 digital filter 16 limiter circuit 17 frequency divider 20 delay circuit 21, 22 1-bit shift circuit 23 adder circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 修三 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shuzo Kato 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力変調信号から非線形操作により変調
成分を除去して搬送波成分を抽出する搬送波成分抽出回
路と、 前記搬送波成分抽出回路の出力から搬送波成分のみを通
過させ、雑音その他の不要成分を除去して再生搬送波を
出力する搬送波再生フィルタとを備えた搬送波再生回路
において、 前記搬送波再生フィルタは、 前記入力変調信号に対応する速度fのクロック信号で動
作し、前記搬送波成分抽出回路で抽出された搬送波成分
をnクロック(nは整数)に渡って移動平均をとる移動
平均回路と、 前記速度fのクロック信号をn分周した速度f/nのク
ロック信号で前記移動平均回路から出力される搬送波成
分をラッチするラッチ回路と、 前記速度f/nのクロック信号で動作し、前記ラッチ回
路から出力される搬送波成分から前記不要成分を除去し
た再生搬送波を出力するディジタルフィルタとを備えた
ことを特徴とする搬送波再生回路。
1. A carrier component extraction circuit for removing a modulation component from an input modulation signal by a non-linear operation to extract a carrier component, and only a carrier component is passed from an output of the carrier component extraction circuit to eliminate noise and other unnecessary components. In a carrier recovery circuit including a carrier recovery filter that removes and outputs a recovered carrier, the carrier recovery filter operates with a clock signal at a speed f corresponding to the input modulation signal, and is extracted by the carrier component extraction circuit. A moving average circuit for taking a moving average of the carrier component over n clocks (n is an integer), and a clock signal of a speed f / n obtained by dividing the clock signal of the speed f by n are output from the moving average circuit. A latch circuit for latching a carrier wave component; and a carrier wave component which is operated by the clock signal of the speed f / n and which is output from the latch circuit. Carrier recovery circuit, characterized in that a digital filter for outputting a reproducing carrier to remove unnecessary components.
JP4050973A 1992-03-09 1992-03-09 Carrier wave regeneration circuit Expired - Lifetime JP2530965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4050973A JP2530965B2 (en) 1992-03-09 1992-03-09 Carrier wave regeneration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4050973A JP2530965B2 (en) 1992-03-09 1992-03-09 Carrier wave regeneration circuit

Publications (2)

Publication Number Publication Date
JPH05260106A true JPH05260106A (en) 1993-10-08
JP2530965B2 JP2530965B2 (en) 1996-09-04

Family

ID=12873759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4050973A Expired - Lifetime JP2530965B2 (en) 1992-03-09 1992-03-09 Carrier wave regeneration circuit

Country Status (1)

Country Link
JP (1) JP2530965B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7831004B2 (en) 2006-06-13 2010-11-09 Panasonic Corporation Synchronous detecting circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7831004B2 (en) 2006-06-13 2010-11-09 Panasonic Corporation Synchronous detecting circuit

Also Published As

Publication number Publication date
JP2530965B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
KR100463682B1 (en) Method of transmission and device to carry out said method
JPH082060B2 (en) Carrier recovery system and digital phase demodulator
US5535245A (en) Modulation/demodulation circuit for a digital signal recorder/reproducer
US3855539A (en) Method and apparatus for noise reduction in discrete phase modulated signals
JP2530965B2 (en) Carrier wave regeneration circuit
EP0206203B1 (en) Recording and reproducing apparatus using a modulator/demodulator for Offset Quadrature Differential Phase-Shift Keying
WO1991011854A1 (en) Amplitude locked loop circuits
JPH0779363B2 (en) Delay detection circuit
JP2838962B2 (en) Carrier recovery method
JP2545882B2 (en) Data playback device
JPH05316154A (en) Carrier recovery circuit
JP2560979B2 (en) Clock synchronization circuit
KR100269257B1 (en) Carrier rocovery for a 16-qam signal
JPH06180949A (en) Digital information reproducer
US5189564A (en) Magnetic recording/reproducing method and apparatus
JP2842349B2 (en) Demodulator
JP3859324B2 (en) Carrier recovery device
JP2512021B2 (en) Digital signal recording / reproducing device
JP2689806B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2003188748A (en) Rds decoder
JP3128828B2 (en) MSK demodulation circuit
JPH0697970A (en) Carrier wave recovery circuit
JP2932288B2 (en) 4 phase demodulation circuit
JPH0563746A (en) Psk modulation circuit
JPS591023B2 (en) Low speed data communication method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 16