JPH05258935A - Low iron loss unidirectional electromagnetic steel plate and manufacturing method thereof - Google Patents

Low iron loss unidirectional electromagnetic steel plate and manufacturing method thereof

Info

Publication number
JPH05258935A
JPH05258935A JP4050932A JP5093292A JPH05258935A JP H05258935 A JPH05258935 A JP H05258935A JP 4050932 A JP4050932 A JP 4050932A JP 5093292 A JP5093292 A JP 5093292A JP H05258935 A JPH05258935 A JP H05258935A
Authority
JP
Japan
Prior art keywords
iron loss
steel plate
crystalline particles
fine crystalline
electromagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4050932A
Other languages
Japanese (ja)
Inventor
Yoshio Nakamura
吉男 中村
Takashi Mogi
尚 茂木
Morio Shiozaki
守雄 塩崎
Kishio Mochinaga
季志雄 持永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4050932A priority Critical patent/JPH05258935A/en
Publication of JPH05258935A publication Critical patent/JPH05258935A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To device the title manufacturing method of low iron loss unidirectional electromagnetic steel plate without deteriorating the magnetic characteristics even in annealing step for removing strain may be performed. CONSTITUTION:Within the title directional electromagnetic steel plate, fine crystalline particles in diameter not exceeding 1/5 of the plate thickness are linearly juxtaposed in the direction at an angle of 30-90 deg. to the rolling direction 0-80mum deep from the surface of an underneath iron. A linear trench of a depth of less than 80mum is formed on the surface of the steel plate before performing the finishing annealing step and after coating the surface with an anneal releasing agent, the finishing annealing step is performed to form fine crystalline particles. Thus, the magnetic region is finely sectioned by the existing fine crystalline particles so as to reduce the iron loss. Furthermore, the deterioration of the magnetic flux density and the space factor can be minimized by introducing the minimum requisite fine crystalline particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は歪取焼鈍を行っても磁気
特性が劣化しない低鉄損一方向性電磁鋼板とその製造法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low iron loss grain-oriented electrical steel sheet in which magnetic properties do not deteriorate even when strain relief annealing is performed, and a method for producing the same.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、近年エネルギー節約
の観点から、鉄損を低減することが要望されている。鉄
損を低減する方法としては、レーザー照射により磁区を
細分化する方法が既に特公昭58−26405号公報に
開示されている。該方法による鉄損の低減は、レーザー
により導入された歪に起因している。したがって積鉄心
用トランスとしては使用できるが、歪取焼鈍を必要とす
る巻鉄心トランス用鉄心としては使用できない。
2. Description of the Related Art In recent years, grain oriented electrical steel sheets have been required to reduce iron loss from the viewpoint of energy saving. As a method for reducing iron loss, a method of subdividing a magnetic domain by laser irradiation has already been disclosed in Japanese Patent Publication No. 58-26405. The reduction in iron loss by this method is due to the strain introduced by the laser. Therefore, it can be used as a transformer for a laminated iron core, but cannot be used as an iron core for a wound iron transformer that requires strain relief annealing.

【0003】また磁区細分化技術として、珪素鋼板表面
に溝を形成する技術が特公昭50−35679号公報、
特開昭59−28525号公報、特開昭59−1975
20号公報、特開昭61−117218号公報および特
開昭61−117284号公報などに開示され、周知の
技術となっている。しかしながら、これらの技術は溝空
間におけるフリー磁極発生により生じるサブドメインを
張力印加によって消失させながら180°磁区を細分化
させていることから、それぞれ歪取焼鈍に耐え得る方法
となってはいても、磁束密度(B8 値)を大幅に劣化さ
せること、機械的特性が劣化すること、溝の形成方法の
如何によっては、占積率を著しく劣化させること、など
の欠点を残している。
As a technique for subdividing a magnetic domain, a technique for forming a groove on the surface of a silicon steel sheet is disclosed in Japanese Patent Publication No. 50-35679.
JP-A-59-28525 and JP-A-59-1975.
It is disclosed in Japanese Patent Laid-Open No. 20 and Japanese Patent Laid-Open No. 61-117218 and Japanese Patent Laid-Open No. 61-117284, and is a well-known technique. However, since these techniques subdivide the 180 ° magnetic domains while eliminating subdomains generated by the generation of free magnetic poles in the groove space by applying tension, they are methods that can withstand strain relief annealing, respectively. However, the magnetic flux density (B 8 value) is significantly deteriorated, the mechanical characteristics are deteriorated, and the space factor is significantly deteriorated depending on the method of forming the groove.

【0004】さらに、磁区細分化を生じさせる手段とし
て特開昭56−130454号公報において、二次再結
晶粒の表面層に微細な一次再結晶粒を生成させる方法が
提案されており、特開昭59−208911号公報に
は、二次再結晶焼鈍済みの鋼板に局所的な熱処理を加え
て800℃以上の温度で焼鈍を行い、人工的粒界を導入
する方法が開示され、特開昭61−117218号公報
および特開昭62−67114号公報には、押圧により
凹部を形成した後、熱処理することによって再結晶粒を
導入する方法が開示されている。これらの方法によれ
ば、歪取焼鈍を行っても磁気特性が劣化することがな
く、また溝形成法に比べてB8 、占積率の劣化が少な
い。
Further, as a means for producing magnetic domain refinement, Japanese Patent Application Laid-Open No. 56-130454 proposes a method of producing fine primary recrystallized grains in the surface layer of secondary recrystallized grains. JP-A-59-208911 discloses a method of introducing artificial grain boundaries by locally heat-treating a steel sheet after secondary recrystallization annealing and annealing at a temperature of 800 ° C. or higher. Japanese Patent Application Laid-Open No. 61-117218 and Japanese Patent Application Laid-Open No. 62-67114 disclose a method of introducing recrystallized grains by heat treatment after forming a recess by pressing. According to these methods, the magnetic properties do not deteriorate even when strain relief annealing is performed, and the deterioration of B 8 and space factor is less than that of the groove forming method.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来法では
必然的に表面に形成される凹部による占積率の低下をさ
らに改善すべく、脱炭焼鈍から仕上焼鈍にかけて形成さ
れる被膜を利用して表面の平坦度を保ちつつ微細結晶粒
を導入し、B8 、占積率の劣化が少なく、かつ被膜密着
性の優れた低鉄損一方向性電磁鋼板およびその製造法を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention utilizes a film formed from decarburization annealing to finish annealing in order to further improve the decrease in space factor due to the concave portions necessarily formed on the surface in the conventional method. and introducing the fine grains while keeping the flatness of the surface, B 8, less deterioration of the space factor, and to provide excellent low iron loss grain-oriented electrical steel sheet and a manufacturing method for coating adhesion With the goal.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、B8 の劣化を極力少なくするために微細結晶粒の
粒径を5〜40μmと小さくすること、およびこれらの
結晶粒を地鉄表面から0〜80μmの位置に、圧延方向
となす角度が30〜90°の方向に線状に揃えることに
ある。
The gist of the present invention is to reduce the grain size of fine crystal grains to 5 to 40 μm in order to minimize the deterioration of B 8. It is to linearly align at a position of 0 to 80 μm from the iron surface in the direction of an angle of 30 to 90 ° with the rolling direction.

【0007】ここで地鉄表面から0μmの位置に結晶粒
が存在するという意味は、地鉄表面粗さによる凹凸の凹
部よりもわずかに深く意図的に導入された凹部に結晶粒
が接している状態をさし、80μmの位置に結晶粒が存
在するという意味は、鋼板表面に最も近い結晶粒界の位
置が地鉄表面の凹凸を平均した位置から80μmという
意味である。また線状とは、直線状でも点線状でも破線
状でも良い。
Here, the meaning that the crystal grains exist at a position of 0 μm from the surface of the base metal means that the crystal grains are in contact with the recesses intentionally introduced slightly deeper than the recesses of the unevenness due to the surface roughness of the base metal. The meaning that the crystal grain exists at a position of 80 μm means that the position of the crystal grain boundary closest to the steel plate surface is 80 μm from the position where the irregularities on the surface of the base steel are averaged. The linear shape may be linear, dotted or broken.

【0008】微細結晶粒による鉄損低減効果については
公知となっているが、その微細結晶粒をどのように導入
すればB8 、占積率の劣化を最小限に食い止めつつ充分
な鉄損低減効果を得られるかは不明であった。本発明者
らは、二次再結晶後の鋼板に歪を与えて結晶粒を導入す
る従来法以外に、二次再結晶焼鈍時に、粒径が大きい二
次再結晶粒に食べられて消滅することがない微細結晶粒
の形成メカニズムを詳細に調査した。その結果、焼鈍分
離剤を塗布後の仕上焼鈍中に方向性電磁鋼板表面に形成
される酸化膜を、意図的に地鉄中深く根をはらせること
により、酸化膜の根のまわりに微細結晶粒を残すことが
可能であることを見出した。本発明によれば、酸化膜の
根の深さ・分布をコントロールすることによって微細結
晶粒の位置、サイズ、分布を制御することが可能にな
る。同時に被膜密着性も向上し、かつ表面歪導入法など
に比べて表面の平坦度に優れる。なお、二次再結晶焼鈍
以前の工程で鋼板中に溝を形成する技術が特開昭59−
197520号公報に示されているが、この技術は溝形
成により仕上焼鈍時の純化促進を狙いとしており、本発
明の微細結晶粒導入とは思想を異にするものである。
Although the effect of reducing iron loss by fine crystal grains is well known, how to introduce the fine crystal grains B 8 is sufficient to reduce iron loss while suppressing deterioration of space factor to a minimum. It was unclear whether the effect could be obtained. The present inventors, in addition to the conventional method of introducing a crystal grain by giving a strain to the steel sheet after secondary recrystallization, during secondary recrystallization annealing, it is eaten by the secondary recrystallized grain having a large grain size and disappears. The detailed formation mechanism of the fine crystal grains which never existed was investigated. As a result, the oxide film formed on the grain-oriented electrical steel sheet surface during finish annealing after the application of the annealing separator intentionally has roots deeply embedded in the base iron, thereby forming fine crystals around the roots of the oxide film. It has been found that it is possible to leave grains. According to the present invention, it becomes possible to control the position, size and distribution of fine crystal grains by controlling the depth and distribution of the roots of the oxide film. At the same time, the coating adhesion is improved, and the surface flatness is superior to the surface strain introduction method. A technique for forming grooves in a steel sheet in the step before secondary recrystallization annealing is disclosed in Japanese Patent Laid-Open No. 59-59-
As disclosed in Japanese Patent Laid-Open No. 197520, this technique aims at promoting purification during finish annealing by forming grooves, which is different from the idea of the introduction of fine crystal grains of the present invention.

【0009】以下、本発明が導かれた実施例に従って具
体的に説明する。図1は、板厚0.23mmの脱炭板の表
面に、圧延方向と直角方向に深さ5μmの溝を形成した
場合に導入された微細結晶粒の大きさと磁束密度
(B8 )の劣化代、鉄損の改善代を示す図である。溝同
士の間隔は5mmとした。この図から、粒径が大きくなる
に従いB8 が低下すること、粒径が40〜50μmあれ
ば鉄損の改善代として充分であることがわかる。ただ
し、板厚が薄くなれば必要とする粒径も小さくなり、板
厚が厚くなれば必要とする結晶粒径が大きくなると考え
られるので、鉄損改善およびB8 劣化を抑えるとの観点
から本発明では粒径が板厚の1/5以下であるとした。
なお図1における結晶粒径とは、板断面光学顕微鏡観察
により観察される微細結晶粒の平均粒径である。
Hereinafter, the present invention will be specifically described with reference to an embodiment. Fig. 1 shows the deterioration of the size and magnetic flux density (B 8 ) of the fine crystal grains introduced when a groove having a depth of 5 µm was formed on the surface of a decarburized plate having a plate thickness of 0.23 mm in the direction perpendicular to the rolling direction. It is a figure which shows the cost and the improvement cost of iron loss. The distance between the grooves was 5 mm. From this figure, it can be seen that B 8 decreases as the particle size increases and that the particle size of 40 to 50 μm is sufficient as an allowance for improving iron loss. However, it is considered that the thinner the plate thickness, the smaller the required grain size, and the thicker the plate grain, the larger the required grain size. Therefore, from the viewpoint of improving iron loss and suppressing B 8 deterioration, In the invention, the grain size is set to be ⅕ or less of the plate thickness.
The crystal grain size in FIG. 1 is the average grain size of fine crystal grains observed by plate cross-section optical microscope observation.

【0010】図2は溝深さと磁束密度(B8 )の劣化
代、鉄損の改善代を示している。いずれの条件において
も溝底部に微細結晶粒が導入されたが、溝深さが深くな
りすぎると鉄損が改善されるどころかむしろ悪化する傾
向がある。したがって、本発明の溝深さとしては80μ
m以下とした。図3は溝形成方向と圧延方向との角度と
鉄損の改善代を示す図である。圧延方向となす角度が3
0°以上になると鉄損の改善が見られることがわかる。
FIG. 2 shows the groove depth, the magnetic flux density (B 8 ) deterioration margin, and the iron loss improvement margin. Under any of the conditions, fine crystal grains were introduced into the bottom of the groove, but if the groove depth becomes too deep, iron loss tends to deteriorate rather than improve. Therefore, the groove depth of the present invention is 80 μm.
It was set to m or less. FIG. 3 is a diagram showing an angle between a groove forming direction and a rolling direction and an improvement margin of iron loss. The angle with the rolling direction is 3
It can be seen that an improvement in iron loss can be seen at 0 ° or more.

【0011】本発明は実施例記載の熱延板を用いている
が、この微細結晶粒による鉄損改善効果は、特にこの材
料に限られたものではない。すなわち、二次再結晶し得
る成分系であれば、Siを含まなくてもあるいは6.5
wt%程度まで含んでいても構わないし、また二次再結晶
粒が発生し得る処理を施せば熱延、冷延、焼鈍方法を特
に限定するものでない。さらに酸化被膜が仕上焼鈍中に
一度形成されれば、その後の高温反応あるいは研磨など
により被膜を除去し、鏡面化処理を施すことも構わな
い。
Although the present invention uses the hot-rolled sheet described in the examples, the effect of improving the iron loss by the fine crystal grains is not particularly limited to this material. That is, if it is a component system capable of secondary recrystallization, it does not contain Si or 6.5
The content may be up to about wt%, and the hot rolling, cold rolling, and annealing methods are not particularly limited as long as a treatment that can generate secondary recrystallized grains is performed. Further, once the oxide film is formed during the finish annealing, the film may be removed by subsequent high temperature reaction or polishing, and the mirror surface treatment may be performed.

【0012】溝の幅については焼鈍分離剤が侵入し得る
幅があればよく、本発明の意図とする充分な鉄損改善と
8 劣化代の低減の両立を妨げない範囲で溝の幅を広げ
ることは許される。
The width of the groove may be any width so long as the annealing separating agent can penetrate into the groove, and the width of the groove is set within a range that does not prevent both improvement of iron loss and reduction of B 8 deterioration allowance, which is the intention of the present invention. Spreading is allowed.

【0013】[0013]

【実施例】C:0.05wt%、Si:3.25wt%、M
n:0.15wt%、S:0.006wt%、Al:0.0
28wt%、N:0.007wt%を含み、残部が鉄よりな
る熱延板を焼鈍、冷延、脱炭焼鈍後、鋼板表面に深さ:
25μm、幅:20μmの溝を形成し、MgO塗布、仕
上焼鈍を行い図1、図2、図3に示す結果を得た。
EXAMPLES C: 0.05 wt%, Si: 3.25 wt%, M
n: 0.15 wt%, S: 0.006 wt%, Al: 0.0
Hot-rolled sheet containing 28 wt% and N: 0.007 wt% with the balance being iron is annealed, cold-rolled, and decarburized-annealed.
A groove having a width of 25 μm and a width of 20 μm was formed, MgO coating and finish annealing were performed, and the results shown in FIGS. 1, 2 and 3 were obtained.

【0014】[0014]

【発明の効果】本発明によれば、磁束密度(B8 )、占
積率の劣化を最小限に保ちつつ、鉄損改善を図れるの
で、その工業的効果は甚大である。
According to the present invention, the iron loss can be improved while keeping the deterioration of the magnetic flux density (B 8 ) and the space factor to a minimum, so that the industrial effect thereof is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】結晶粒径と鉄損改善代、B8劣化代の関係を示
す図である。
FIG. 1 is a diagram showing a relationship between a crystal grain size, an iron loss improvement margin, and a B 8 deterioration margin.

【図2】溝深さと鉄損改善代、B8劣化代の関係を示す
図である。
FIG. 2 is a diagram showing the relationship between groove depth, iron loss improvement margin, and B 8 deterioration margin.

【図3】溝形成方向と圧延方向とがなす角度と鉄損改善
代の関係を示す図である。
FIG. 3 is a diagram showing a relationship between an angle formed by a groove forming direction and a rolling direction and an iron loss improving margin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 持永 季志雄 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kishio Mochinaga 2-6-3 Otemachi, Chiyoda-ku, Tokyo Shin Nippon Steel Corp.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 地鉄表面から0〜80μmの位置に、粒
径が板厚の1/5以下の微細結晶粒を、圧延方向となす
角度が30〜90°の方向に線状に揃えた低鉄損一方向
性電磁鋼板。
1. Fine crystal grains having a grain size of ⅕ or less of the plate thickness are linearly aligned at a position of 0 to 80 μm from the surface of the base metal in a direction of an angle of 30 to 90 ° with the rolling direction. Low iron loss unidirectional electrical steel sheet.
【請求項2】 仕上焼鈍工程前の鋼板表面に80μm以
下の深さの線状溝を形成し、焼鈍分離剤を塗布した後、
仕上焼鈍を行うことを特徴とする請求項1記載の低鉄損
一方向性電磁鋼板の製造法。
2. A linear groove having a depth of 80 μm or less is formed on the surface of the steel sheet before the finish annealing step, and after applying an annealing separating agent,
Finishing annealing is performed, The manufacturing method of the low iron loss unidirectional electrical steel sheet of Claim 1 characterized by the above-mentioned.
JP4050932A 1992-03-09 1992-03-09 Low iron loss unidirectional electromagnetic steel plate and manufacturing method thereof Withdrawn JPH05258935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4050932A JPH05258935A (en) 1992-03-09 1992-03-09 Low iron loss unidirectional electromagnetic steel plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4050932A JPH05258935A (en) 1992-03-09 1992-03-09 Low iron loss unidirectional electromagnetic steel plate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH05258935A true JPH05258935A (en) 1993-10-08

Family

ID=12872595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4050932A Withdrawn JPH05258935A (en) 1992-03-09 1992-03-09 Low iron loss unidirectional electromagnetic steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH05258935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195470A1 (en) * 2022-04-04 2023-10-12 日本製鉄株式会社 Oriented electromagnetic steel sheet and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195470A1 (en) * 2022-04-04 2023-10-12 日本製鉄株式会社 Oriented electromagnetic steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
KR960010811B1 (en) Process for production of grain oriented electrical steel sheet having excellent magnetic properties
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
US4897131A (en) Grain-oriented electrical steel sheet having improved glass film properties and low watt loss
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPS6344804B2 (en)
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP3846064B2 (en) Oriented electrical steel sheet
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JPS6335684B2 (en)
JPH05258935A (en) Low iron loss unidirectional electromagnetic steel plate and manufacturing method thereof
JP3081118B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss
US4906530A (en) Grain oriented electromagnetic steel sheets having a very low iron loss
JPH03260020A (en) Method for radiating eb
JP4272576B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
KR100544615B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics
JP2001164344A (en) Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
JPH0218392B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518