JPS6344804B2 - - Google Patents
Info
- Publication number
- JPS6344804B2 JPS6344804B2 JP60206385A JP20638585A JPS6344804B2 JP S6344804 B2 JPS6344804 B2 JP S6344804B2 JP 60206385 A JP60206385 A JP 60206385A JP 20638585 A JP20638585 A JP 20638585A JP S6344804 B2 JPS6344804 B2 JP S6344804B2
- Authority
- JP
- Japan
- Prior art keywords
- strain
- steel sheet
- steel plate
- iron loss
- recess
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 41
- 238000000137 annealing Methods 0.000 claims description 27
- 229910052742 iron Inorganic materials 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- 239000010953 base metal Substances 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 33
- 239000010959 steel Substances 0.000 description 33
- 230000005381 magnetic domain Effects 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 238000003825 pressing Methods 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
〔産業上の利用分野〕
本発明は人為的に磁区を制御した一方向性電磁
鋼板で歪取焼鈍を行なつても磁気特性の劣化しな
い超低鉄損一方向性電磁鋼板の製造方法に関する
ものである。
〔従来の技術〕
方向性電磁鋼板において近年エネルギー節約の
観点から鉄損を低減することが要望されている。
鉄損を低減する方法としてはレーザー照射により
磁区を細分化する方法が既に特公昭58−26405号
公報に開示されている。該方法による鉄損の低減
はレーザーにより導入された歪に起因している。
したがつて歪取り焼鈍を必要としない積鉄心トラ
ンス用としては使用出来るが歪取り焼鈍を必要と
する巻き鉄心トランス用としては使用出来ない。
また特開昭59−100222号公報において二次再結晶
焼鈍ずみの鋼板に局所的な熱処理を加えて800℃
以上の温度で焼なましを行ない、人工的粒界を導
入する方法が開示されている。該方法は鉄損値の
低減が、鋼板に導入された人工粒界により磁区細
分化をはかることによつて達成される。800℃以
上の温度で焼なましするため、歪取り焼鈍により
効果が消失することはないが、実施例からみて上
記レーザー照射による鉄損値低減方法なみの鉄損
を得ることは困難である。
この他特公昭60−14827号及び特願昭59−
236974号に示すような一方向性電磁鋼板の2次再
結晶粒の表面層に微細な1次再結晶粒を生成させ
る事によつて磁区を細分化し鉄損を低減させる方
法等が提案されている。
〔本発明が解決しようとする問題点〕
本発明は特に押圧によつて凹部を形成する際、
例えば前記特願昭59−236974号で記載している押
圧加工法などで溝を形成する際に発生する双晶及
び被膜の劣化を防止する事によつて鋼板の品質向
上を図ることを狙いとするものである。
〔問題点を解決するための手段〕
本発明は仕上げ焼鈍済又は絶縁被膜処理済の鋼
板に、例えば歯車型ロールにより平均荷重70〜
220Kg/mm2で線状又は点状、破線状等の凹部を形
成する際、鋼板の温度を50℃〜500℃にして加工
しその後、750℃以上の温度で熱処理することに
より結晶粒内に微細再結晶粒を生じさせて磁区の
細分化を図ろうとするもので、これにより歪取焼
鈍を行なつてもレーザー照射並の優れた鉄損値を
示す一方向性電磁鋼板を提供しようとするもので
ある。
以下本発明を詳細に説明する。
Si4%以下を含むスラブを加熱し、中間板厚ま
で熱間圧延し、必要に応じてこの段階で熱処理を
行ない一回或いは中間焼鈍をはさむ二回の冷間圧
延を行なつて最終板厚にし、得られた冷延板を脱
炭焼鈍し、焼鈍分離剤を塗布した後高温長時間の
仕上げ焼鈍を施し(110)〈001〉方位の二次再結
晶粒を発達させた鋼板或いはこれに張力付与被膜
等の絶縁被膜形成用コーテイング液を塗布し、焼
付けた鋼板に応力印加部分の平均荷重(板面法線
方向からみた板面上の応力付与面積で印加応力を
割つた値)が70〜220Kg/mm2である加工を加える。
一方向性電磁鋼板は周知の通りその結晶粒は粒
径が通常3〜10mmと大きくしかもその表面には絶
縁性の被膜が形成されている。従つてこの鋼板に
局部加工を加えると歪が導入されることはもとよ
りであるが常温においては双晶が発生し被膜の劣
化を招き歪取焼鈍後の磁気特性の向上率も低い。
発明者等はこれを解決するために種々検討した結
果鋼板の温度を高めて加工する事が最も効果的で
ある事を見い出した。
第1図は歯車型ロールで加工した後800℃4時
間の歪取焼鈍をした後の鋼板(被膜の上)を光学
顕微鏡で観察したものである。第1図aは本発明
の方法である鋼板の温度を300℃に加熱して加工
したものであり同図bは室温で加工したものであ
る。これらの図から判る様に同図aで被膜の損傷
が少ないが同図bでは双晶が発生しそれに伴なう
被膜の亀裂が起つている。この双晶は変形によつ
て生じるものであるが双晶は歪量が少ないため焼
鈍後においてほとんど消滅する。しかし加工時の
鋼板温度が低い場合或いはSi含有量が多い場合な
ど双晶の発生量が増すと双晶部から磁気特性改善
に好ましくない再結晶が起る。第2図は加工時の
鋼板温度と歪取焼鈍後の磁気特性との関係を示し
たものである。130Kg/mm2の押圧加工時の鋼板温
度は室温より高くする事が鉄損特性に効果がある
ことが判るが500℃を越すことは好ましくない。
第3図は歪取焼鈍後の鋼板表面層に生成した微
細再結晶粒をみたものである。同図aは加工時の
鋼板温度が約300℃であり同図bは室温である。
鋼板に印加した平均荷重はどちらも130Kg/mm2で
ある。室温に比べ300℃で加工したものが再結晶
粒が小さい事が判る。これは加工時の歪量が室温
で加工したものに比べ小さいためと考えられるが
鉄損低減には微細再結晶粒は必要以上に粗大化さ
せない事が重要といえる。
次に鋼板に印加する平均荷重と鉄損の関係を第
4図に示す。
加工時の鋼板温度は50℃、300℃、500℃であ
る。これから鉄損の向上する平均荷重は70〜220
Kg/mm2の範囲であるといえる。即ち平均加重が70
Kg/mm2より小さい場合には、歪導入量が小さいた
め細粒が発生しないか或いは発生しても磁区に影
響を与えない。
一方220Kg/mm2を超えると比較的低温加工(50
〜100℃)においては歪量が増し再結晶粒が粗大
化する。また鋼板温度が450℃〜500℃では鋼板が
軟らかくなるため凹部が深くなり磁束密度が低下
し特性向上がみられない。
このような平均荷重を鋼板に与える際の応力印
加部分即ち凹部の最適な形状は次の通りである。
先ず、圧延方向に対する凹部と凹部との間隔は1
〜20mmが好ましい。次に凹部の巾は10〜300μm好
ましくは50〜200μmである。加工上の凹部巾の最
小値は10μmであり300μmを超すと再結晶粒が大
きくなりすぎ特性上好ましくない。凹部の形状は
特にこだわるものではない。凹部の深さは鋼板地
鉄部において5μmより大きいことが好ましい。こ
の深さは加工時の荷重の増加とともに或いは鋼板
の温度が高くなる程深くなる。
凹部が深くなりすぎると磁束密度の低下を招き
好ましくない。好ましい範囲は5〜20μmである。
凹部の方向は圧延方向に対して45゜〜90゜の方向が
よい。また、凹部の平面視形状は線状、点線状又
は破線状でも良い。
本発明では歪導入後750℃以上の熱処理を施す
が、歪導入後種々の熱処理を行なつたときの鉄損
値(W17/50w/Kg)の変化を第5図に示す。こ
の図から判るように歪導入前の鉄損値は歪導入後
一旦悪くなるが、短時間の熱処理により極めて低
い鉄損値を示す。
このことから仕上焼鈍後、歪導入をし次いで行
なう絶縁被膜処理の焼付時の熱処理を利用して歪
導入部の再結晶を図り鉄損値を歪取焼鈍前より低
減することが可能である。この場合は歪取焼鈍を
行なわない積鉄心用トランス材としても使用でき
る。
本発明における歪導入は鋼板温度を50℃〜500
℃の範囲で行なうため鋼板を再加熱する必要があ
るが絶縁被膜処理の焼付焼鈍後の冷却過程で行な
うとエネルギー的に効率が良い。なお、本発明に
おける実施例では歯車型ロールにより凹部を形成
する例を示したが、この例に限らず、本発明で言
う荷重を局部的に加えることができる方法があれ
ばいかなる方法でもよい。
ここでは最も経済的に製品をつくることを意識
して、仕上焼鈍の被膜あるいはリン酸系張力付与
被膜のついた鋼板を対象として説明したが、全く
被膜のない二次再結晶した鋼板に本発明の方法を
適用しても鉄損低減の効果が期待できる。
実施例 1
Si:3.2%を含む板厚0.23mmの高磁束密度一方向
性電磁鋼板製品(張力コーテイング付)に歯車ピ
ツチ5mm、歯車先端の刃幅50μm、刃先形状平坦、
刃の傾が歯車軸方向に対して15度である歯車型ロ
ールにより荷重150Kg/mm2で線状の凹部を形成し
て歪導入を行なつた。
歪導入時の鋼板温度は室温、100℃、200
℃であつた。
歪導入後850℃×4時間の歪取り焼鈍を行なつ
た。第1表にその磁気特性を示す。
[Industrial Application Field] The present invention relates to a method for producing an ultra-low iron loss unidirectional electrical steel sheet whose magnetic properties do not deteriorate even when strain relief annealing is performed using a unidirectional electrical steel sheet whose magnetic domains are artificially controlled. It is. [Prior Art] In recent years, it has been desired to reduce iron loss in grain-oriented electrical steel sheets from the viewpoint of energy conservation.
As a method for reducing iron loss, a method of subdividing magnetic domains by laser irradiation has already been disclosed in Japanese Patent Publication No. 58-26405. The reduction in core loss by this method is due to the strain introduced by the laser.
Therefore, it can be used for laminated core transformers that do not require strain relief annealing, but cannot be used for wound core transformers that require strain relief annealing.
Furthermore, in Japanese Patent Application Laid-Open No. 59-100222, a secondary recrystallization annealed steel plate was subjected to local heat treatment at 800°C.
A method of introducing artificial grain boundaries by performing annealing at a temperature above is disclosed. In this method, a reduction in core loss is achieved by refining magnetic domains using artificial grain boundaries introduced into the steel sheet. Since the annealing is performed at a temperature of 800° C. or higher, the effect of strain relief annealing is not lost, but from the perspective of the examples, it is difficult to obtain an iron loss equivalent to the iron loss value reduction method using laser irradiation described above. In addition, Special Publication No. 14827 (1982) and Special Application No. 14827 (1982)
As shown in No. 236974, a method has been proposed in which fine primary recrystallized grains are generated in the surface layer of secondary recrystallized grains in a grain-oriented electrical steel sheet to subdivide the magnetic domain and reduce iron loss. There is. [Problems to be solved by the present invention] In particular, the present invention solves the following problems when forming a recessed portion by pressing.
For example, the aim is to improve the quality of steel sheets by preventing twins and film deterioration that occur when forming grooves using the pressing method described in the above-mentioned Japanese Patent Application No. 59-236974. It is something to do. [Means for Solving the Problems] The present invention applies an average load of 70 to
When forming recesses in the form of lines, dots, broken lines, etc. at 220Kg/ mm2 , the temperature of the steel plate is set to 50℃ to 500℃, and then heat treatment is performed at a temperature of 750℃ or higher to form inside the grains. The aim is to create fine recrystallized grains to refine the magnetic domains, thereby providing a unidirectional electrical steel sheet that exhibits an iron loss value comparable to that of laser irradiation even after strain relief annealing. It is something. The present invention will be explained in detail below. A slab containing 4% Si or less is heated and hot-rolled to an intermediate thickness. If necessary, heat treatment is performed at this stage and cold-rolled once or twice with intermediate annealing in between to achieve the final thickness. The obtained cold-rolled sheet is decarburized and annealed, coated with an annealing separator, and then subjected to high-temperature, long-term finish annealing to develop secondary recrystallized grains with (110) <001> orientation, or to create a steel sheet under tension. A coating liquid for forming an insulating film such as a coating is applied and baked, and the average load of the stress-applied area (the value obtained by dividing the applied stress by the stress-applied area on the plate surface viewed from the normal direction of the plate surface) is 70~ Add processing that is 220Kg/mm 2 . As is well known, unidirectional electrical steel sheets have large grain sizes, usually 3 to 10 mm, and have an insulating film formed on their surfaces. Therefore, when this steel sheet is subjected to local processing, not only strain is introduced, but also twinning occurs at room temperature, resulting in deterioration of the coating, and the rate of improvement in magnetic properties after strain relief annealing is also low.
In order to solve this problem, the inventors conducted various studies and found that the most effective method is to process the steel plate at a higher temperature. Figure 1 shows a steel plate (on top of the coating) observed with an optical microscope after being processed with a gear roll and then subjected to strain relief annealing at 800°C for 4 hours. Figure 1a shows a steel plate processed by heating it to 300°C using the method of the present invention, and Figure 1b shows a steel plate processed at room temperature. As can be seen from these figures, there is little damage to the coating in figure a, but in figure b, twins have occurred and cracks have occurred in the coating. These twins are generated due to deformation, but since the amount of strain in the twins is small, they almost disappear after annealing. However, if the amount of twins increases, such as when the steel sheet temperature during processing is low or the Si content is high, recrystallization occurs from the twin portions, which is unfavorable for improving magnetic properties. Figure 2 shows the relationship between the steel plate temperature during processing and the magnetic properties after strain relief annealing. It can be seen that raising the temperature of the steel sheet during pressing at 130Kg/mm 2 to a temperature higher than room temperature has an effect on iron loss characteristics, but it is not preferable to exceed 500℃. Figure 3 shows fine recrystallized grains formed on the surface layer of the steel sheet after stress relief annealing. In figure a, the steel plate temperature during processing is about 300°C, and in figure b, it is room temperature.
The average load applied to the steel plates was 130Kg/mm 2 in both cases. It can be seen that the recrystallized grains of the specimen processed at 300°C are smaller than at room temperature. This is thought to be because the amount of strain during processing is smaller than when processed at room temperature, but it is important to not make the fine recrystallized grains coarser than necessary in order to reduce iron loss. Next, Figure 4 shows the relationship between the average load applied to the steel plate and iron loss. The steel plate temperatures during processing are 50℃, 300℃, and 500℃. From now on, the average load that will improve iron loss will be 70 to 220.
It can be said that it is in the range of Kg/mm 2 . That is, the average weight is 70
When it is smaller than Kg/mm 2 , the amount of introduced strain is small, so fine grains are not generated, or even if they are generated, they do not affect the magnetic domains. On the other hand, if it exceeds 220Kg/ mm2 , relatively low temperature processing (50
~100°C), the amount of strain increases and the recrystallized grains become coarser. Further, when the steel plate temperature is 450°C to 500°C, the steel plate becomes soft, the recesses become deep, the magnetic flux density decreases, and no improvement in characteristics is observed. The optimum shape of the stress applying portion, that is, the recess, when applying such an average load to the steel plate is as follows.
First, the distance between the recesses in the rolling direction is 1
~20mm is preferred. Next, the width of the recess is 10 to 300 μm, preferably 50 to 200 μm. The minimum value of the recess width for processing is 10 μm, and if it exceeds 300 μm, the recrystallized grains will become too large, which is not desirable in terms of characteristics. The shape of the recess is not particularly important. The depth of the recess is preferably greater than 5 μm in the steel plate base portion. This depth becomes deeper as the load during processing increases or as the temperature of the steel plate becomes higher. If the recesses are too deep, the magnetic flux density will decrease, which is undesirable. The preferred range is 5-20 μm.
The direction of the recess is preferably 45° to 90° with respect to the rolling direction. Further, the shape of the recessed portion in plan view may be linear, dotted, or broken. In the present invention, heat treatment is performed at 750° C. or higher after introducing strain, and FIG. 5 shows changes in iron loss value (W17/50w/Kg) when various heat treatments are performed after introducing strain. As can be seen from this figure, the iron loss value before the introduction of strain deteriorates once after the introduction of strain, but after a short heat treatment, the iron loss value becomes extremely low. From this, after final annealing, it is possible to recrystallize the strain-introduced portion by utilizing the heat treatment during baking of the insulating coating treatment, which is performed after strain introduction, to reduce the iron loss value compared to before strain-relief annealing. In this case, it can also be used as a transformer material for stacked iron cores without strain relief annealing. In the present invention, strain is introduced at a temperature of 50°C to 500°C.
℃ range, so it is necessary to reheat the steel plate, but it is more energy efficient if it is carried out during the cooling process after baking annealing for insulation coating treatment. In addition, although the example of this invention showed the example which formed a recessed part with a gear type|mold roll, it is not limited to this example and any method which can apply the load referred to in this invention locally may be used. In order to manufacture the product most economically, we have explained the steel sheet with a finish annealing coating or a phosphoric acid tension imparting coating, but the present invention applies to secondary recrystallized steel sheets with no coating at all. Even if this method is applied, the effect of reducing iron loss can be expected. Example 1 A high magnetic flux density unidirectional electrical steel sheet product (with tension coating) with a plate thickness of 0.23 mm containing 3.2% Si, a gear pitch of 5 mm, a tooth width at the tip of the gear of 50 μm, a flat blade shape,
Strain was introduced by forming a linear recess under a load of 150 kg/mm 2 using a gear-shaped roll whose blades are inclined at 15 degrees with respect to the gear axis direction. The steel plate temperature at the time of strain introduction is room temperature, 100℃, 200℃
It was warm at ℃. After introducing strain, strain relief annealing was performed at 850°C for 4 hours. Table 1 shows its magnetic properties.
【表】
歪導入時の鋼板温度を高める方が鉄損特性が向
上する。
実施例 2
Si:3.2%を含む板厚0.20mmの高磁束密度一方向
性電磁鋼板に歯車ピツチ8mm、歯車先端曲率半径
100μm、刃の傾が歯車軸方向に対して15度である
歯車型ロールにより荷重150Kg/mm2で歪導入を行
なつた。
歪導入時の鋼板温度は室温、200℃、400
℃であつた。
歪導入後リン酸系張力被膜付与溶液をコーテイ
ングし、850℃、30秒の焼付け焼鈍を行なつた。
その後800℃×4時間の焼鈍を行なつた。
磁気特性を第2表に示す。[Table] Increasing the temperature of the steel plate when strain is introduced improves iron loss characteristics. Example 2 A high magnetic flux density unidirectional electrical steel sheet with a thickness of 0.20 mm containing 3.2% Si, a gear pitch of 8 mm, and a gear tip curvature radius.
Strain was introduced at a load of 150 Kg/mm 2 using a gear-shaped roll with a diameter of 100 μm and a blade inclination of 15 degrees with respect to the gear axis direction. The steel plate temperature at the time of strain introduction is room temperature, 200℃, 400℃
It was warm at ℃. After introducing strain, it was coated with a phosphoric acid-based tension coating solution, and baked and annealed at 850°C for 30 seconds.
Thereafter, annealing was performed at 800°C for 4 hours. The magnetic properties are shown in Table 2.
【表】
実施例 3
仕上げ焼鈍後の板厚0.20mmの高磁束密度一方向
性電磁鋼板に歯車ピツチ5mm、歯車先端の刃幅
50μm、刃先形状平坦、刃の傾きが歯車軸方向に
対して15度である歯車型ロールにより荷重130
Kg/mm2で歪導入を行なつた。歪導入時の鋼板温度
は室温、200℃であつた。この後リン酸系張
力被膜溶液をコーテイングし850℃、60秒の熱処
理を行なつた。
その時の磁気特性を第3表に示す。[Table] Example 3 A high magnetic flux density unidirectional electrical steel sheet with a plate thickness of 0.20 mm after finish annealing, a gear pitch of 5 mm, and a tooth width at the tip of the gear.
50μm, flat cutting edge shape, gear-shaped roll with a blade inclination of 15 degrees to the gear axis direction allows a load of 130
Strain was introduced at Kg/ mm2 . The steel plate temperature at the time of strain introduction was room temperature, 200°C. Thereafter, it was coated with a phosphoric acid-based tension coating solution and heat-treated at 850°C for 60 seconds. The magnetic properties at that time are shown in Table 3.
本発明は押圧による磁区制御技術において、従
来の技術に比し、一層、磁気特性を向上せしめう
るものであるから、その工業的効果は甚大であ
る。
The present invention is capable of improving magnetic properties even more than conventional techniques in magnetic domain control technology by pressing, so its industrial effects are enormous.
第1図は本発明aと従来法bで押圧加工した
後、歪取焼鈍を施した鋼板の光学金属顕微鏡写
真、第2図は加工時の鋼板温度と歪取焼鈍後の磁
気特性との関係を示す図、第3図は本発明aと従
来法bにおける鋼板表面層の光学金属顕微鏡写
真、第4図は加工温度が平均荷重及び鉄損に与え
る関係を示す図。第5図は本発明法における歪取
焼鈍条件と鉄損との関係を示す図である。
Figure 1 is an optical metallurgical micrograph of a steel plate that has been subjected to stress relief annealing after being pressed by the present invention a and conventional method b. Figure 2 is the relationship between the steel plate temperature during processing and the magnetic properties after strain relief annealing. FIG. 3 is an optical metallurgical micrograph of the surface layer of a steel plate in the present invention a and conventional method b. FIG. 4 is a diagram showing the relationship between processing temperature and average load and iron loss. FIG. 5 is a diagram showing the relationship between strain relief annealing conditions and iron loss in the method of the present invention.
Claims (1)
した一方向性電磁鋼板に、圧延方向に対し直角か
ら45゜の範囲内で、70〜220Kg/mm2の荷重で地鉄部
分に深さ5μm超の凹部(溝)を形成した後、750
℃以上の温度域で加熱処理する一方向性電磁鋼板
の製造方法であつて、前記地鉄部分への深さ5μm
超の凹部(溝)の形成を50〜500℃の温度域で行
うことを特徴とする低鉄損一方向性電磁鋼板の製
造方法。 2 間隔が圧延方向に1〜20mm、幅が10〜300μm
である凹部(溝)を形成する特許請求の範囲第1
項記載の方法。 3 凹部(溝)が、点線状または破線状のもので
ある特許請求の範囲第1項記載の方法。[Claims] 1. A unidirectional electrical steel sheet that has been finish annealed or that has been treated with an insulating coating after finish annealing is subjected to a load of 70 to 220 Kg/mm 2 within a range of 45° from a right angle to the rolling direction. After forming a recess (groove) with a depth of more than 5 μm in the base metal part, 750
A method for producing a unidirectional electrical steel sheet in which heat treatment is performed in a temperature range of ℃ or higher, the method comprising: heating the substrate at a depth of 5 μm to the base metal portion;
A method for producing a low iron loss unidirectional electrical steel sheet, characterized in that ultra-high concave portions (grooves) are formed in a temperature range of 50 to 500°C. 2 The spacing is 1 to 20 mm in the rolling direction, and the width is 10 to 300 μm.
Claim 1 forming a recess (groove) that is
The method described in section. 3. The method according to claim 1, wherein the recess (groove) has a dotted or broken line shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60206385A JPS6267114A (en) | 1985-09-20 | 1985-09-20 | Production of low iron loss grain oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60206385A JPS6267114A (en) | 1985-09-20 | 1985-09-20 | Production of low iron loss grain oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6267114A JPS6267114A (en) | 1987-03-26 |
JPS6344804B2 true JPS6344804B2 (en) | 1988-09-07 |
Family
ID=16522465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60206385A Granted JPS6267114A (en) | 1985-09-20 | 1985-09-20 | Production of low iron loss grain oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6267114A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152806U (en) * | 1988-04-13 | 1989-10-20 | ||
JPH056170Y2 (en) * | 1988-12-26 | 1993-02-17 | ||
EP0992591A3 (en) * | 1998-10-06 | 2001-02-07 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and production method thereof |
JP2018024087A (en) * | 2016-07-29 | 2018-02-15 | 新日鐵住金株式会社 | Tooth type roll manufacturing method, and steel plate processing method |
JP2021039963A (en) * | 2019-08-30 | 2021-03-11 | 東芝産業機器システム株式会社 | Manufacturing apparatus of wound core and manufacturing method of wound core |
WO2021235094A1 (en) | 2020-05-19 | 2021-11-25 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet and method for manufacturing same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2505481B2 (en) * | 1987-08-27 | 1996-06-12 | 日鉱金属株式会社 | Copper alloy foil for flexible circuit boards |
US5129965A (en) * | 1990-07-20 | 1992-07-14 | Nippon Steel Corporation | Method of producing grain oriented silicon steel sheets each having a low watt loss and a mirror surface |
JP5298874B2 (en) * | 2009-01-21 | 2013-09-25 | 新日鐵住金株式会社 | Low iron loss unidirectional electrical steel sheet manufacturing method |
KR101141283B1 (en) * | 2009-12-04 | 2012-05-04 | 주식회사 포스코 | Grain-oriented electrical steel sheet having low core loss and high magnetic flux density |
CN103305682B (en) * | 2013-06-20 | 2014-11-05 | 东北大学 | Device and method for improving orientation silicon steel permeability |
JP6372581B1 (en) | 2017-02-17 | 2018-08-15 | Jfeスチール株式会社 | Oriented electrical steel sheet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6253579A (en) * | 1985-09-03 | 1987-03-09 | Seiko Epson Corp | Portable receiver |
-
1985
- 1985-09-20 JP JP60206385A patent/JPS6267114A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6253579A (en) * | 1985-09-03 | 1987-03-09 | Seiko Epson Corp | Portable receiver |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152806U (en) * | 1988-04-13 | 1989-10-20 | ||
JPH056170Y2 (en) * | 1988-12-26 | 1993-02-17 | ||
EP0992591A3 (en) * | 1998-10-06 | 2001-02-07 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and production method thereof |
JP2018024087A (en) * | 2016-07-29 | 2018-02-15 | 新日鐵住金株式会社 | Tooth type roll manufacturing method, and steel plate processing method |
JP2021039963A (en) * | 2019-08-30 | 2021-03-11 | 東芝産業機器システム株式会社 | Manufacturing apparatus of wound core and manufacturing method of wound core |
WO2021235094A1 (en) | 2020-05-19 | 2021-11-25 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JPS6267114A (en) | 1987-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4770720A (en) | Method for producing a grain-oriented electrical steel sheet having a low watt-loss | |
JP7245285B2 (en) | Grain-oriented electrical steel sheet and its magnetic domain refinement method | |
JP6496412B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
US4909864A (en) | Method of producing extra-low iron loss grain oriented silicon steel sheets | |
EP3748019A1 (en) | Stress relief annealing-resistant method for manufacturing low-iron-loss oriented silicon steel | |
JPS6344804B2 (en) | ||
JPH0369968B2 (en) | ||
KR102133909B1 (en) | Grain oriented electrical steel sheet and method for manufacturing the same | |
JPS6254873B2 (en) | ||
JP7561194B2 (en) | Grain-oriented electrical steel sheet and method for refining magnetic domains therein | |
JPS60255926A (en) | Manufacture of grain oriented electrical steel sheet low in iron loss | |
JPS6335684B2 (en) | ||
CN113243034B (en) | Oriented electrical steel sheet and method for manufacturing same | |
JPH01191744A (en) | Manufacture of grain-oriented electrical steel sheet with low iron loss | |
JPS6046325A (en) | Treatment of electromagnetic steel plate | |
JPH01252726A (en) | Manufacture of grain-oriented silicon steel sheet with low iron loss | |
CN113196423B (en) | Oriented electrical steel sheet and method for manufacturing same | |
JP2647322B2 (en) | Low iron loss grain-oriented electrical steel sheet and method of manufacturing the same | |
JP2562253B2 (en) | Method for manufacturing low iron loss grain-oriented electrical steel sheet | |
JPH05247538A (en) | Manufacture of low iron loss grain-oriented electrical steel sheet | |
KR940008066B1 (en) | Making method of silicon steel plate | |
JPH01283323A (en) | Production of low-iron loss grain-oriented electrical steel sheet | |
JPH0218392B2 (en) | ||
JPS6089545A (en) | Grain-oriented silicon steel sheet causing small iron loss | |
JPH02433B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |