KR940008066B1 - Making method of silicon steel plate - Google Patents

Making method of silicon steel plate Download PDF

Info

Publication number
KR940008066B1
KR940008066B1 KR1019920016960A KR920016960A KR940008066B1 KR 940008066 B1 KR940008066 B1 KR 940008066B1 KR 1019920016960 A KR1019920016960 A KR 1019920016960A KR 920016960 A KR920016960 A KR 920016960A KR 940008066 B1 KR940008066 B1 KR 940008066B1
Authority
KR
South Korea
Prior art keywords
annealing
silicon steel
steel sheet
high temperature
oriented silicon
Prior art date
Application number
KR1019920016960A
Other languages
Korean (ko)
Other versions
KR940007193A (en
Inventor
이택동
나종갑
차상윤
Original Assignee
한국과학기술연구원
서정욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 서정욱 filed Critical 한국과학기술연구원
Priority to KR1019920016960A priority Critical patent/KR940008066B1/en
Publication of KR940007193A publication Critical patent/KR940007193A/en
Application granted granted Critical
Publication of KR940008066B1 publication Critical patent/KR940008066B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

The silicon steel ingot consisting of (in wt.%) 2-4 % Si, 0.02-0.08 % C, 0.02-0.04 % Sol. Al, 0.02-0.03 % S, 0.06-0.09 % Mn, 0.006-0.008% N and balance Fe, is hot-rolled, annealed, cleaned, cold-rolled, decarbonizing-annealed, high-temp. annealed and covered with insulating coating agent and baking in turn. The high temp. annealing is carried out to use anneal separating agent composed of MgO + 5 wt.% TiO + 5.0-20.2 wt.% B2O3, and laser beam is irradiated on annealed sheet at spacings of 1-10 mm. The steel sheet has low iron loss.

Description

고배향성 규소강판의 제조방법Manufacturing method of highly oriented silicon steel sheet

제1도는 본 발명의 방법에 따라 자구미세화 처리를 수행한 실시예시편에 대하여 응력제거소둔을 한 경우의 자구형상을 보인 조직확대사진.FIG. 1 is an enlarged image showing the shape of a domain when stress relief annealing was performed on an example specimen subjected to magnetic domain micronization according to the method of the present invention.

제2도는 종래의 방법에 따라 자구미세화 처리를 비교예시편에 대하여 응력제거소둔을 한 경우의 자구형상을 보인 조직확대사진.2 is an enlarged image showing the shape of a domain when the domain micronized treatment is subjected to stress relief annealing according to a conventional method.

본 발명은 저철손의 고배향성 전기강판의 제조방법에 관한 것으로, 특히 자구세분화에 의해 응력제거소둔후에도 규소강판의 자구미세화 효과가 지속되도록 한 고배향성 규소강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a low-oriented loss-oriented high-oriented electrical steel sheet, and more particularly, to a method for manufacturing a high-oriented silicon steel sheet so that the magnetization fine effect of the silicon steel sheet persists even after the stress relief annealing by magnetic domain segmentation.

주로 대형터빈 발전기나 변압기등의 철심재료로 사용되어 이들 기기의 전력손실을 감소시키는 역할을 하는 방향성 규소강판은 2차재결정 현상을 이용한 것으로서 강판대내의 결정립들이 대분분(110)[001]의 방향성을 가지도록 제조됨에 따라 압연방향으로의 사용시 포화자화가 높고 저철손을 나타내는 특성을 지니고 있다.The oriented silicon steel sheet, which is mainly used as iron core materials such as large turbine generators or transformers, serves to reduce the power loss of these devices, and uses the secondary recrystallization phenomenon. As it is manufactured to have a high saturation magnetization when used in the rolling direction and has a low iron loss characteristics.

이와 같이 방향성 규소강판은 포화자화가 높으면서도 낮은 철손을 나타낼 것이 요구되는데, 이를 위해서는 강판내의 결정립들이 고배향성이 유지되어야 한다.As such, the grain-oriented silicon steel sheet is required to exhibit low iron loss while having high saturation magnetization. To this end, grains in the steel sheet must maintain high orientation.

고배향성 규소강판의 제조방법에 관한 종래기술로서 미국특허 제3,159,511호에는 규소강판에 대하여 열간압연, 열연판소둔, 산세, 냉간압연 및 탈산소둔등의 일련의 순차공정을 수행함에 있어서 AIN과 같은 강한 일차 재결정립 성장억제제를 사용하여 최종소둔판에서 (110)[001]결정립들의 배향성을 향상시킴으로써 압연방향으로의 B10(1000A/m의 여기자장에서의 최대자속밀도)값이 1.89Telsa 이상의 높은 값을 나타내도록 한 기술이 개시되어 있다.US Pat. No. 3,159,511 discloses a method for manufacturing a highly oriented silicon steel sheet. In the US Patent No. 3,159,511, a series of sequential processes such as hot rolling, hot rolled sheet annealing, pickling, cold rolling, and deoxygenation annealing are performed. By increasing the orientation of (110) [001] grains in the final annealing plate using the primary recrystallization growth inhibitor, the value of B 10 (maximum magnetic flux density in the excitation field of 1000 A / m) in the rolling direction is higher than 1.89 Telsa A technique for expressing is disclosed.

그러나, 위의 제조방법에 의해 제조된 규소강판은 자기유도가 높은 반면에 최종결정립이 너무 커짐에 따라 철손이 증가하는 단점이 있다.However, the silicon steel sheet produced by the above manufacturing method has a disadvantage in that the iron loss increases as the final grain becomes too large while the magnetic induction is high.

한편, 고배향성 규소강판의 자구를 미세화시켜 철손을 감소시키는 방법으로서 일본특허공보 소58-26405에는 레이저를 조사하여 변형을 유도함으로써 자구를 세분하는 방법이 나타나 있으며, 미국특허 제4,203,784호에는 기계적인 방법을 통하여 압연방향과 수직으로 스크래치(scratch)를 만들어줌으로써 자구를 미세화시켜 철손을 감소시키는 방안이 제시되어 있다.On the other hand, as a method of reducing the iron loss by miniaturizing the magnetic domain of the highly-oriented silicon steel sheet, Japanese Patent Publication No. 58-26405 shows a method of subdividing the magnetic domain by inducing deformation by irradiating a laser, US Patent No. 4,203,784 A method of reducing iron loss by miniaturizing the magnetic domain by making a scratch perpendicular to the rolling direction through the method has been proposed.

그런데, 일반적으로 변압기를 제작하는 경우에는 절단이나 타발등의 공정이 필수적으로 따르게 되고, 이와 같은 기계적인 가공의 결과 소재내부에 응력이 발생되어 철손이 증가함에 따라 이같은 잔류응력의 제거를 위하여 약 850℃ 부근에서 응력제거소둔을 행하게 되는데, 문제는 상기 레이저 조사나 기계적 스크래치를 통한 자구미세화가 이루어진 강판의 경우 이같은 응력제거소둔의 과정중에 레이저나 스크래치에 의해 생긴 잔류응력까지도 함께 제거되어 버리기 때문에 자구미세화에 의한 철손감소효과가 소멸되는 단점이 있다.However, in general, in the case of manufacturing a transformer, a process such as cutting or punching is essentially followed. As a result of such mechanical processing, stress is generated in the material and iron loss increases. The stress relief annealing is performed in the vicinity of ℃. The problem is that in the case of the steel micronized by laser irradiation or mechanical scratch, even the residual stress caused by the laser or scratch is removed during the stress relief annealing process. There is a disadvantage that the iron loss by the effect is eliminated.

또한, 응력제거소둔후에도 고배향성 규소강판의 자구미세화 효과를 지속시킬 수 있는 방법으로서 다음과 같은 세가지 형태의 기술이 알려져 있다.In addition, the following three types of techniques are known as a method capable of sustaining the micronized effect of high orientation silicon steel sheet after stress relief annealing.

먼저, 첫번째 방법으로서 일본공개특허공보 소59-100222호에는 2차 재결정 어닐링을 행한 강판을 국부적으로 열처리하여 응력제거소둔에 의해서도 철손감소효과가 그대로 유지되도록 한 방법이 나타나 있으나, 이 방법을 통하여 얻어지는 철손감소효과는 레이저조사에 의하여 얻어지는 효과에 비해 훨씬 적다는 사실이 문제점으로 지적되고 있다.First, Japanese Laid-Open Patent Publication No. 59-100222 discloses a method of maintaining the iron loss reduction effect even by stress relief annealing by locally heat-treating a steel sheet subjected to secondary recrystallization annealing. The problem is pointed out that the iron loss reduction effect is much less than the effect obtained by laser irradiation.

다음, 두번째 방법으로는 강판상에 치차형로울러등으로 국부적인 하중을 가한 다음 어닐링함으로써 미세한 재결정입자가 결정입자내에 형성되도록 하여 자구의 미세화를 도모한 기술이 한국특허공보 90-7448호에 나타나 있는바, 동 방법에 의해 얻어진 강판의 경우 상당한 철손감소는 있으나 자속밀도가 감소하는 문제점이 있다.Next, in the second method, a technique for miniaturizing magnetic domains by applying a local load on a steel plate with a toothed roller and then annealing to form fine recrystallized particles in crystal grains is disclosed in Korean Patent Publication No. 90-7448. Bar steel plate obtained by the same method has a significant iron loss, but there is a problem that the magnetic flux density is reduced.

마지막으로, 일본공개특허공보 소61-130421호에 따르면, 소둔이 완료된 방향성전자강판상의 표면피막을 제거하여 강판의 표면을 노출시킨 다음 그 위에 Sb등과 같이 원자반경이 크고 용융점이 낮은 금속을 채우고 다시 절연코팅액을 도포하여 열처리함으로써 자구의 세분화를 도모하는 방법이 제시되어 있으나, 동방법은 벗겨낸 절연피막을 재차 형성하고 열처리하여야 하는 등의 공정상의 번거로움이 따르는 단점이 있다.Lastly, according to Japanese Patent Application Laid-Open No. 61-130421, the surface coating on the oriented annealing steel sheet is removed to expose the surface of the steel sheet, and then a metal having a large atomic radius and low melting point, such as Sb, is filled thereon. Although a method of facilitating subdivision of magnetic domains has been proposed by applying an insulating coating solution and performing heat treatment, this method has a disadvantage in that it is cumbersome in the process of forming a peeled insulating film and performing heat treatment again.

따라서, 본 발명은 종래의 방법을 통하여 제조되는 방향성 규소강판이 지니고 있는 제반 문제점을 해소하기 위하여 창안된 것으로서, 고온소둔 공정시 규소강에 침입형으로 고용되는 B가 첨가된 소둔분리제를 사용하여 고온소둔한 다음 레이저를 조사함으로써 규소강판의 자구미세화를 도모하는 한편 그 자구미세화의 효과가 응력제거소둔의 후에도 지속되도록 한 고배향성 규소강판의 제조방법에 관한 것이다.Therefore, the present invention was devised to solve all the problems of the oriented silicon steel sheet produced by the conventional method, using an annealing separator added with B, which is solid-solution-infused into the silicon steel during the high-temperature annealing process. The present invention relates to a method for producing a highly oriented silicon steel sheet in which the magnetization of the silicon steel sheet is achieved by irradiation with a laser after high temperature annealing, and the effect of the magnetization is continued even after the stress relief annealing.

본 발명에서 사용되는 고배향성 규소강판의 조성은 이미 알려진 바의 일반적인 고배향성 규소강판의 조성과 동일하며, 그 제조공정은 통상적인 고배향성 규소강판 제조공정으로서의 열간압연→열판소둔 및 산세→냉간압연→탈탄소둔→고온소둔의 공정을 순차적으로 거침에 있어 고온소둔시 MgO→TiO2→B2O3계 혹은 MgO가 70%이상이고 기타 첨가물이 있는 조성을 소둔분리제로 사용하여 규소강내부에 B가 침입형으로 고용되도록 하여 고온소둔판을 제조하고, 이어서 레이저를 1-10mm 간격으로 조사한 다음 인산염, 콜로이달 실리카(colloidal silica) Cr2O3등으로 이루어진 통상의 절연피막제를 도포하여 소부함으로써 고배향성 규소강판이 얻어지게 된다.The composition of the highly-oriented silicon steel sheet used in the present invention is the same as the composition of the general high-oriented silicon steel sheet as known, the manufacturing process is hot rolling → hot plate annealing and pickling → cold rolling as a conventional high-oriented silicon steel sheet manufacturing process → In order to go through the process of de-carbon annealing → high temperature annealing, MgO → TiO 2 → B 2 O 3 system or MgO is more than 70% at high temperature annealing. The high temperature annealing plate was prepared by intrusion-type solid solution. Then, the laser was irradiated at intervals of 1-10 mm, followed by baking by coating a conventional insulating film made of phosphate, colloidal silica, Cr 2 O 3, etc. A silicon steel sheet is obtained.

상기 본 발명의 소둔분리제의 구체적인 조성은 MgO+5wt% TiO+5.0∼20.0wt% Ba2O3또는 70wt% 이상의 MgO에 5.0∼20.0wt% Ba2O3와 기타 첨가물이 첨가되어 이루어진다.The specific composition of the annealing separator of the present invention is MgO + 5wt% TiO + 5.0 to 20.0wt% Ba 2 O 3 or more than 70wt% MgO 5.0 to 20.0wt% Ba 2 O 3 and other additives are added.

본 발명에서 고온소둔공정에 사용되는 소둔분리제는 일반적인 소둔분리제인 MgO+0-10wt% TiO3혹은 기타 첨가물이 있는 조성에 Fe-Si강에 침입형으로 고용될 수 있는 원자반경이 작은 B의 유기 또는 무기화합물을 B2O3기준으로 5-20wt% 범위로 첨가하여 제조된다.In the present invention, the annealing separator used in the high temperature annealing process is a general atomic annealing separator of MgO + 0-10wt% TiO 3 or other additives in the composition of B-small atomic radius B that can be employed as an invasive type in Fe-Si steel. It is prepared by adding an organic or inorganic compound in the range of 5-20 wt% based on B 2 O 3 .

본 발명의 소둔분리제 조성중 B2O3의 함량을 5-20wt%로 한정한 이유는, B2O3가 5wt% 미만일때에는 자구미세화의 효과가 적게 나타나며 B2O3가 20wt%를 초과하는 경우 베이스코팅층이 벗겨지는 결과를 초래하기 때문이다.The reason for limiting the content of B 2 O 3 to 5-20 wt% in the composition of the annealing separator of the present invention is that when the B 2 O 3 is less than 5 wt%, the effect of magnetic micronization is less and B 2 O 3 is more than 20 wt%. This is because the base coating layer is peeled off.

상기 소둔분리제에 첨가된 원소는 고온소둔판의 베이스에 남게 되어 이후의 공정으로서 레이저조사시 국부적인 고열로 인하여 강판내부에 침입형으로 고용되어 응력제거소둔 후에도 표면근처에서 잔류응력을 발생시켜서 자구를 미세화시키게 되며 이에 따라 고배향성 규소강판의 철손감소효과를 가져오게 된다.The element added to the annealing separator is left in the base of the high temperature annealing plate, and as a subsequent process, it is dissolved into the steel sheet due to local high temperature during laser irradiation, and generates residual stress near the surface even after stress removal annealing. This results in miniaturization of iron, resulting in a reduction in iron loss of the highly-oriented silicon steel sheet.

한편, 고온소둔공정에 대한 후속공정으로서 강판상에 스크래치를 가하기 위한 레이저조사시에 사용되는 레이저는 펄스형레이저나 연속형레이저의 사용이 가능하다.On the other hand, the laser used in the laser irradiation for applying a scratch on the steel sheet as a subsequent step to the high temperature annealing process can use a pulsed laser or a continuous laser.

이하, 본 발명의 실시예를 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described.

[실시예 1]Example 1

통상의 고배향성 규소강판의 조성인 중량%로 Si : 2-4%, C : 0.02-0.08%, 산가용성 Al : 0.02-0.04%, S : 0.02-0.03%, Mn : 0.06-0.09%, N : 0.006-0.008%, Fe : 잔량인 강을 통상의 고배향성 규소강판제조공정인 열간압연, 열련판소둔 및 산세, 냉간압연, 탈탄소둔한 후, MgO+5% TiO2+5% B2O3의 조성을 갖는 소둔분리제를 도포한 다음 고온소둔하여 고온소둔판을 얻었다. 이 고온소둔판을 Q-스위치 모드의 Nd : YAG 레이저로 평균에너지가 0.6J/㎠의 조건으로 조사선의 간격이 5mm가 되도록 조사하고 인산염, 콜로이달 실리카와 Cr2O3로 이루어진 통상의 절연코팅제로 코팅한 후에 800℃에서 3시간동안 응력제거 소둔처리한 후 자성을 측정하던 바 그 측정결과는 아래의 표 1에 나타나 있다.The weight ratio of the conventional highly oriented silicon steel sheet is Si: 2-4%, C: 0.02-0.08%, acid soluble Al: 0.02-0.04%, S: 0.02-0.03%, Mn: 0.06-0.09%, N : 0.006-0.008%, Fe: After the hot-rolled, hot-rolled sheet annealing and pickling, cold rolling, decarbon annealing, which is the usual high-oriented silicon steel sheet manufacturing process, MgO + 5% TiO 2 + 5% B 2 O An annealing separator having a composition of 3 was applied and then subjected to high temperature annealing to obtain a high temperature annealing plate. The high temperature annealing plate was irradiated with a Nd: YAG laser in Q-switch mode so that the interval of the irradiation line was 5 mm under the condition of average energy of 0.6 J / cm 2, and a conventional insulating coating agent consisting of phosphate, colloidal silica and Cr 2 O 3 After coating with an anti-stress annealing for 3 hours at 800 ℃ bar was measured for magnetic results are shown in Table 1 below.

[실시예 2]Example 2

실시예 1과 동일한 방법으로 제작한 탈탄판에 MgO+5% TiO2+20% B2O3의 조성을 갖는 소둔분리제를 도포한 다음 고온소둔하여 고온소둔판을 얻었다. 이 고온소둔판을 Q-스위치 모드의 Nd : YAG 레이저로 평균에너지가 1.2J/㎠의 조건으로 조사선의 간격이 10mm가 되도록 조사하고 인산염, 콜로이달 실리카와 Cr2O3로 이루어진 통상의 절연코팅제로 도포한 후 800℃에서 3시간동안 응력제거소둔처리한 후 자성을 측정하던 바 그 결과는 표 1과 같다. 또한, 이 시편의 자구에 대한 조직확대사진은 제1도와 같다.An annealing separator having a composition of MgO + 5% TiO 2 + 20% B 2 O 3 was applied to the decarburized plate produced in the same manner as in Example 1, followed by high temperature annealing to obtain a high temperature annealing plate. The high temperature annealing plate was irradiated with Nd: YAG laser in Q-switch mode so that the interval of the irradiation line was 10mm under the condition of 1.2J / cm2 of average energy, and a conventional insulating coating agent consisting of phosphate, colloidal silica and Cr 2 O 3 After the coating was applied to the stress relief annealing treatment for 3 hours at 800 ℃ bar results are shown in Table 1. In addition, the enlarged picture of the organization of the psalms is shown in FIG.

[실시예 3]Example 3

실시예 1과 동일한 방법으로 제작한 탈탄판에 MgO+5% TiO2+5% B2O3의 조성을 갖는 소둔분리제를 도포한 다음 고온소둔하여 고온소둔판을 얻었다. 이 고온소둔판을 Q-스위치 모드의 Nd : YAG 레이저로 평균에너지가 0.3J/㎠의 조건으로 조사선의 간격이 1mm가 되도록 조사하고 인산염, 콜로이달 실리카와 Cr2O3로 이루어진 통상의 절연코팅제로 도포한 후 800℃에서 3시간동안 응력제거소둔처리한 후 자성을 측정하던 바 그 측정결과는 표 1과 같다.An annealing separator having a composition of MgO + 5% TiO 2 + 5% B 2 O 3 was applied to the decarburized plate produced in the same manner as in Example 1, followed by high temperature annealing to obtain a high temperature annealing plate. The high temperature annealing plate was irradiated with Nd: YAG laser in Q-switch mode so that the interval of the irradiation line was 1mm under the condition of 0.3J / cm2 of average energy, and a common insulating coating agent consisting of phosphate, colloidal silica and Cr 2 O 3 After the coating was applied to the stress relief annealing treatment for 3 hours at 800 ℃ bar and the measurement results are shown in Table 1.

[비교예][Comparative Example]

실시예 1과 동일한 방법으로 제작한 탈탄판에 MgO+5% TiO2의 조성을 갖는 종래의 소둔분리제를 도포한 다음 고온소둔하여 고온소둔판을 얻었다. 이 고온소둔판을 Q-스위치 모드의 Nd : YAG 레이저로 평균에너지가 0.6J/㎠의 조건으로 조사선의 간격이 5mm가 되도록 조사하고 인산염, 콜로이달 실리카와 Cr2O3로 이루어진 통상의 절연코팅제로 도포한 후 800℃에서 3시간동안 응력제거소둔처리한 후 자성을 측정하였는데 그 측정결과는 표 1에 나타나 있다. 또한, 이 시편의 자구에 대한 조직확대사진은 제2도와 같다.On the decarburized plate produced in the same manner as in Example 1, a conventional annealing separator having a composition of MgO + 5% TiO 2 was applied and then subjected to high temperature annealing to obtain a high temperature annealing plate. The high temperature annealing plate was irradiated with a Nd: YAG laser in Q-switch mode so that the interval of the irradiation line was 5 mm under the condition of average energy of 0.6 J / cm 2, and a conventional insulating coating agent consisting of phosphate, colloidal silica and Cr 2 O 3 After the coating, the magnetic properties were measured after stress relief annealing at 800 ° C. for 3 hours. The measurement results are shown in Table 1. In addition, the enlarged picture of the organization of the psalms is shown in Figure 2.

[표 3]TABLE 3

Claims (1)

통상의 고배향성 규소강판 조성인 중량%로 Si : 2∼4%, C : 0.02∼0.08%, 산가용성 Al : 0.02∼0.04%, S : 0.02∼0.03%, Mn : 0.06∼0.09%, N : 0.006∼0.008% 잔여철로 이루어진 규소강 잉곳(ingot)에 대하여 연간압연, 열연판 소둔 및 산세, 냉간압연, 탈탄소둔, 고온소둔, 절연코팅제 도포 및 소부로 이어지는 일련의 순차적인 연속공정을 수행하여 자구미세화에 의한 고배향성 규소강판의 제조방법에 있어서, 고온소둔시 MgO+5wt% TiO+5.0∼20.2wt% B2O3조성의 소둔분리제를 사용하여 고온소둔해서 고온소둔판을 얻고, 이 고온소둔판에 조사선의 간격이 1∼10mm가 되도록 레이저를 조사한 후 통상의 절연코팅제를 도포하여 소부하는 것으로 이루어짐을 특징으로 하는 고배향성 규소강판의 제조방법.By weight%, which is a typical high-oriented silicon steel sheet composition, Si: 2-4%, C: 0.02-0.08%, acid-soluble Al: 0.02-0.04%, S: 0.02-0.03%, Mn: 0.06-0.09%, N: Silicon steel ingots consisting of 0.006% to 0.008% residual iron are subjected to a series of sequential continuous processes leading to annual rolling, hot rolled sheet annealing and pickling, cold rolling, decarbonized annealing, high temperature annealing, application of insulation coating agent and baking. In the method for producing a highly oriented silicon steel sheet by miniaturization, annealing separator having a composition of MgO + 5wt% TiO + 5.0 to 20.2wt% B 2 O 3 at high temperature annealing is used to obtain a high temperature annealing plate. A method of manufacturing a highly oriented silicon steel sheet, characterized in that the annealed plate is irradiated with a laser so that the interval between the irradiation lines is 1 to 10 mm, followed by coating by baking with an ordinary insulating coating agent.
KR1019920016960A 1992-09-17 1992-09-17 Making method of silicon steel plate KR940008066B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920016960A KR940008066B1 (en) 1992-09-17 1992-09-17 Making method of silicon steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920016960A KR940008066B1 (en) 1992-09-17 1992-09-17 Making method of silicon steel plate

Publications (2)

Publication Number Publication Date
KR940007193A KR940007193A (en) 1994-04-26
KR940008066B1 true KR940008066B1 (en) 1994-09-01

Family

ID=19339713

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920016960A KR940008066B1 (en) 1992-09-17 1992-09-17 Making method of silicon steel plate

Country Status (1)

Country Link
KR (1) KR940008066B1 (en)

Also Published As

Publication number Publication date
KR940007193A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
US4363677A (en) Method for treating an electromagnetic steel sheet and an electromagnetic steel sheet having marks of laser-beam irradiation on its surface
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
WO1986002950A1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
JPH0651887B2 (en) Ultra-rapid heat treatment method and manufacturing method of grain-oriented silicon steel strip
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
EP0957180A2 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
KR100373871B1 (en) Non-oriented electrical steel sheet and core for motor or transformer with low iron loss after stress relief annealing
KR940008066B1 (en) Making method of silicon steel plate
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JPS6335684B2 (en)
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JPS5850298B2 (en) Processing method for electrical steel sheets
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2888324B2 (en) Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density
JPH11269544A (en) Manufacture of high flux density low core loss grain oriented silicon steel sheet
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
KR920008693B1 (en) Making process for electric steel plates
EP3901969A1 (en) Oriented electrical steel sheet and method for producing same
EP3901972A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JPS63186825A (en) Production of grain-orientated silicon steel plate having high magnetic flux density and low iron loss

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970829

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee