JP2021039963A - Manufacturing apparatus of wound core and manufacturing method of wound core - Google Patents

Manufacturing apparatus of wound core and manufacturing method of wound core Download PDF

Info

Publication number
JP2021039963A
JP2021039963A JP2019158365A JP2019158365A JP2021039963A JP 2021039963 A JP2021039963 A JP 2021039963A JP 2019158365 A JP2019158365 A JP 2019158365A JP 2019158365 A JP2019158365 A JP 2019158365A JP 2021039963 A JP2021039963 A JP 2021039963A
Authority
JP
Japan
Prior art keywords
magnetic domain
fine magnetic
domain processing
hoop material
electromagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019158365A
Other languages
Japanese (ja)
Other versions
JP7274987B2 (en
Inventor
霜村 英二
Eiji Shimomura
英二 霜村
増田 剛
Takeshi Masuda
剛 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Industrial Products and Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Industrial Products and Systems Corp filed Critical Toshiba Industrial Products and Systems Corp
Priority to JP2019158365A priority Critical patent/JP7274987B2/en
Publication of JP2021039963A publication Critical patent/JP2021039963A/en
Application granted granted Critical
Publication of JP7274987B2 publication Critical patent/JP7274987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a manufacturing apparatus of a wound core and a manufacturing method of a wound core for manufacturing a wound core that is configured by winding up a multiple electromagnetic steel sheets, which are capable of performing efficient manufacturing while applying fine magnetic domain processing to reduce loss to electromagnetic steel sheets.SOLUTION: A manufacturing apparatus of a wound core according to an embodiment includes: a transport mechanism which sequentially transports a hoop material of an electromagnetic steel sheet from a supply source of the hoop material along a transport path; a fine magnetic domain processing unit which is provided in an intermediate portion of the transport path and which applies fine magnetic domain processing to a portion of the hoop material, the portion being a cut end of the electromagnetic steel sheet; a cutting mechanism which is provided in an intermediate portion of the transport path and which cuts the hoop material to obtain electromagnetic steel sheets with predetermined dimensions; and a winding mechanism which winds up electromagnetic steel sheets having been cut by the cutting mechanism.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、静止誘導機器用の巻鉄心を製造するための巻鉄心の製造装置及び巻鉄心の製造方法に関する。 An embodiment of the present invention relates to a winding core manufacturing apparatus and a winding core manufacturing method for manufacturing a wound core for a stationary induction device.

静止誘導機器例えば変圧器の鉄心においては、ケイ素鋼板等の帯板状の電磁鋼板を、一巻きごとに少なくとも1箇所の突合せ接合部を設けながら複数枚巻き重ねて構成される、いわゆるワンターンカット型の巻鉄心と称されるものがある(例えば特許文献1参照)。このものでは、ワンターン毎の電磁鋼板の突合せ接合部において、電磁鋼板を階段状にずらしていきながら巻き重ねることが行われる。このとき、例えば、接合部に非磁性のシート部材が配置され、一定の幅のエアギャップが設けられる。 Static induction equipment For example, in the iron core of a transformer, a so-called one-turn cut type is constructed by winding a plurality of strip-shaped electromagnetic steel plates such as silicon steel plates while providing at least one butt joint for each winding. There is what is called a winding iron core (see, for example, Patent Document 1). In this product, at the butt joint portion of the electromagnetic steel sheet for each turn, the electromagnetic steel sheet is wound while being shifted in a stepwise manner. At this time, for example, a non-magnetic sheet member is arranged at the joint portion, and an air gap having a constant width is provided.

特開2016−28406号公報Japanese Unexamined Patent Publication No. 2016-28406

ところが、上記のように階段状にずれながら設けられた接合部ひいてはエアギャップを有する巻鉄心にあっては、鉄心を流れる磁束が、エアギャップ部分で積層方向に隣り合う電磁鋼板に渡るようにしながら流れることになる。そのため、接合部で磁気抵抗が大きくなって損失即ち鉄損が生ずる問題がある。そこで、近年では、損失の低減を図るために、鉄心を構成する電磁鋼板の表面に対し、その圧延方向に関して縦横方向に格子状にレーザ照射を行う微細磁区加工を施すことが提案されている。この場合、巻鉄心を製造する際に、微細磁区加工を施した上で効率的に製造することが望まれる。 However, in the case of a wound steel core having a joint portion and an air gap provided while shifting in a stepped manner as described above, the magnetic flux flowing through the iron core is spread over the electromagnetic steel sheets adjacent to each other in the stacking direction at the air gap portion. It will flow. Therefore, there is a problem that the magnetic resistance becomes large at the joint and a loss, that is, an iron loss occurs. Therefore, in recent years, in order to reduce the loss, it has been proposed that the surface of the electromagnetic steel sheet constituting the iron core is subjected to fine magnetic domain processing in which laser irradiation is performed in a grid pattern in the vertical and horizontal directions with respect to the rolling direction. In this case, when the wound iron core is manufactured, it is desired that the wound iron core is efficiently manufactured after being subjected to fine magnetic domain processing.

そこで、電磁鋼板を複数枚巻き重ねて構成される巻鉄心を製造するものにあって、損失の低減を図るための微細磁区加工を電磁鋼板に施すことを含めながら、効率的な製造を行うことが可能な巻鉄心の製造装置及び巻鉄心の製造方法を提供する。 Therefore, in the case of manufacturing a wound iron core formed by winding a plurality of electromagnetic steel sheets, efficient manufacturing is performed while including applying fine magnetic domain processing to the electrical steel sheet in order to reduce loss. Provided is an apparatus for manufacturing a wound steel core and a method for manufacturing a wound steel core.

実施形態に係る巻鉄心の製造装置は、フープ材から所定寸法に切断された電磁鋼板を複数枚巻き重ねて静止誘導機器用の巻鉄心を製造するための装置であって、前記電磁鋼板のフープ材の供給源から、該フープ材を搬送路を順送りに搬送する搬送機構と、前記搬送路の途中部に設けられ、該フープ材のうち前記電磁鋼板の切断端部となる部分に微細磁区加工を施す微細磁区加工装置と、前記搬送路の途中部に設けられ、前記フープ材を切断して所定寸法の電磁鋼板とする切断機構と、前記切断機構により切断された電磁鋼板を巻き重ねる巻回機構とを備えている。 The winding iron core manufacturing apparatus according to the embodiment is an apparatus for manufacturing a wound iron core for a static induction device by winding a plurality of electromagnetic steel sheets cut to a predetermined size from a hoop material, and is a device for manufacturing a wound steel core for a stationary induction device. A transport mechanism for sequentially transporting the hoop material from the material supply source through the transport path, and a fine magnetic zone processing on a portion of the hoop material that is provided in the middle of the transport path and is a cut end portion of the electromagnetic steel sheet. A fine magnetic zone processing device for applying the above, a cutting mechanism provided in the middle of the transport path to cut the hoop material into an electromagnetic steel sheet having a predetermined size, and a winding mechanism for winding the electromagnetic steel sheet cut by the cutting mechanism. It has a mechanism.

実施形態に係る巻鉄心の製造方法は、フープ材から所定寸法に切断された電磁鋼板を複数枚巻き重ねて静止誘導機器用の巻鉄心を製造するための方法であって、前記電磁鋼板のフープ材の供給源から、該フープ材を搬送路を順送りに搬送しながら、前記搬送路の途中部において前記電磁鋼板の切断端部となる部分に微細磁区加工を施す微細磁区加工工程と、前記フープ材を切断して所定寸法の電磁鋼板とする切断工程とを含んでいる。 The method for manufacturing a wound steel core according to the embodiment is a method for manufacturing a wound steel core for a static induction device by winding a plurality of electromagnetic steel sheets cut to a predetermined size from a hoop material, and the hoop of the electromagnetic steel sheet. A fine magnetic domain processing step in which a fine magnetic domain processing is performed on a portion to be a cut end portion of the electrical steel sheet in the middle of the transport path while sequentially transporting the hoop material from a material supply source, and the hoop. It includes a cutting step of cutting a material into an electromagnetic steel sheet having a predetermined size.

第1の実施形態を示すもので、製造装置の全体構成を概略的に示す図The figure which shows the 1st Embodiment and shows outline | summary of the whole structure of the manufacturing apparatus. 微細磁区加工装置及び切断機構部分の構成を概略的に示す斜視図Perspective view schematically showing the configuration of the fine magnetic domain processing apparatus and the cutting mechanism portion. プレス型の加工面の拡大底面図Enlarged bottom view of the machined surface of the press mold 第2の実施形態を示すもので、微細磁区加工装置及び切断機構部分の構成を概略的に示す斜視図The second embodiment is shown, and the perspective view which shows the structure of the fine magnetic domain processing apparatus and the cutting mechanism part schematicly. 第3の実施形態を示すもので、微細磁区加工装置及び切断機構部分の構成を概略的に示す斜視図The third embodiment is shown, and the perspective view which shows the structure of the fine magnetic domain processing apparatus and the cutting mechanism part schematicly. 第4の実施形態を示すもので、微細磁区加工装置及び切断機構部分の構成を概略的に示す斜視図The fourth embodiment is shown, and the perspective view which shows the structure of the fine magnetic domain processing apparatus and the cutting mechanism part schematicly. 第5の実施形態を示すもので、微細磁区加工装置及び切断機構部分の構成を概略的に示す斜視図FIG. 5 is a perspective view schematically showing a configuration of a fine magnetic domain processing apparatus and a cutting mechanism portion, showing a fifth embodiment. フープ材の微細磁区加工部分の拡大斜視図Enlarged perspective view of the fine magnetic domain processed part of the hoop material 第6の実施形態を示すもので、微細磁区加工装置部分の斜視図A sixth embodiment is shown, and is a perspective view of a fine magnetic domain processing apparatus portion. 第7の実施形態を示すもので、微細磁区加工装置部分の斜視図The seventh embodiment is shown, and is a perspective view of a fine magnetic domain processing apparatus portion. 第8の実施形態を示すもので、微細磁区加工装置部分の斜視図8th embodiment is shown, and is a perspective view of a fine magnetic domain processing apparatus portion.

以下、静止誘導機器としての変圧器用の巻鉄心の製造に適用したいくつかの実施形態について、図面を参照しながら説明する。尚、複数の実施形態間で共通する部分については、同一の符号を付して、新たな図示や繰り返しの説明を省略する。 Hereinafter, some embodiments applied to the manufacture of a wound iron core for a transformer as a static induction device will be described with reference to the drawings. The parts common to the plurality of embodiments are designated by the same reference numerals, and new illustrations and repetitive explanations will be omitted.

(1)第1の実施形態
以下、第1の実施形態について、図1から図3を参照しながら説明する。まず、本実施形態に係る巻鉄心の製造装置及び製造方法により製造される巻鉄心1について簡単に述べておく。図1に傾斜状態で一部示すように、この巻鉄心1は、上下方向に延びる2本の脚部2、2と、それら脚部2、2の上端部同士、下端部同士を左右につなぐ継鉄部3、3とを有した、コーナー部が丸みを帯びた矩形環状に構成されている。各脚部2、2には、夫々図示しない巻線が装着されて変圧器とされる。
(1) First Embodiment Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 3. First, the winding core 1 manufactured by the winding core manufacturing apparatus and manufacturing method according to the present embodiment will be briefly described. As shown in a partially inclined state in FIG. 1, the wound iron core 1 connects the two legs 2 and 2 extending in the vertical direction and the upper ends and lower ends of the legs 2 and 2 to the left and right. The corner portion is formed in a rectangular ring shape having a rounded corner portion having the joint iron portions 3 and 3. Windings (not shown) are attached to the legs 2 and 2 to form a transformer.

この巻鉄心1は、いわゆるワンターンカット型のものとされている。即ち、巻鉄心1は、例えばケイ素鋼板等の帯状のフープ材を一巻きごとの所要寸法に切断して電磁鋼板5とし、それら1枚1枚の電磁鋼板5を、端部同士が突き合わされる接合部6を設けながら、内外周方向に複数枚巻き重ねて構成される。電磁鋼板5には方向性電磁鋼板が用いられ、長手方向つまり巻回方向が圧延方向とされている。前記接合部6は、下部の継鉄部3のほぼ中央部分に来るように構成される。このとき、一巻き毎の接合部6を、電磁鋼板5の巻き重ね方向(径方向)に階段状に一定のピッチでずらしてラップさせながら積層するように構成される。巻き重ね方向に電磁鋼板5の数枚程度を1ブロックとして繰り返すように、接合部6を、内周側から外周側に向けて図で左側に順にずらして配置していくことが行われる。 The wound iron core 1 is a so-called one-turn cut type. That is, in the wound steel core 1, for example, a strip-shaped hoop material such as a silicon steel plate is cut to a required size for each winding to obtain an electromagnetic steel plate 5, and the ends of each of the electromagnetic steel plates 5 are abutted against each other. It is configured by winding a plurality of sheets in the inner and outer peripheral directions while providing the joint portion 6. A grain-oriented electrical steel sheet 5 is used as the electrical steel sheet 5, and the longitudinal direction, that is, the winding direction is the rolling direction. The joint portion 6 is configured so as to come to substantially the central portion of the lower joint iron portion 3. At this time, the joint portion 6 for each winding is configured to be laminated while being wound by shifting the electromagnetic steel sheet 5 in the winding direction (diameter direction) in a stepwise manner at a constant pitch. The joints 6 are arranged so as to be sequentially shifted to the left side in the drawing from the inner peripheral side to the outer peripheral side so that several sheets of the electromagnetic steel sheets 5 are repeated as one block in the winding direction.

このとき、本実施形態では、図2に示すように、前記各電磁鋼板5の先端部表面における他の電磁鋼板5の接合部6とラップしている部分に位置して、歪みにより微細磁区加工の処理がなされた微細磁区加工処理部7が設けられている。図2に便宜上網目状の線で示すように、微細磁区加工処理部7は、電磁鋼板5のうち、電磁鋼板5の幅方向全体に渡り、一定の範囲例えば接合部6のずれのピッチの2倍程度の長さ寸法の範囲で設けられている。この範囲は、電磁鋼板5の端部の表面のうち、重なり合う別の電磁鋼板5に対し磁束が渡る範囲とされている。 At this time, in the present embodiment, as shown in FIG. 2, the fine magnetic domain processing is performed by strain at the portion of the tip surface of each of the electrical steel sheets 5 that wraps with the joint 6 of the other electrical steel sheets 5. The fine magnetic domain processing unit 7 which has been subjected to the above-mentioned processing is provided. As shown by a mesh-like line in FIG. 2 for convenience, the fine magnetic domain processing unit 7 covers the entire width direction of the electrical steel sheet 5 among the electrical steel sheets 5, and has a certain range, for example, a deviation pitch of 2 of the joint portion 6. It is provided in the range of about twice the length dimension. This range is defined as the range in which the magnetic flux passes over another overlapping electromagnetic steel sheet 5 on the surface of the end portion of the electrical steel sheet 5.

ここで、上記巻鉄心1を製造するための本実施形態に係る製造装置11について以下説明する。図1は、本実施形態に係る製造装置11の全体的な構成を概略的に示している。この製造装置11は、大きく分けて、電磁鋼板5となるフープ材12を搬送する搬送機構13と、フープ材12のうち電磁鋼板5の切断端部となる部分に微細磁区加工を施す微細磁区加工装置14と、フープ材12を切断して所定寸法の電磁鋼板5とする切断機構15と、切断された電磁鋼板5を巻き重ねて巻鉄心1とする巻回機構16とを備える。尚、この製造装置11の各機構は、コンピュータ等からなる制御装置(図示せず)により制御される。 Here, the manufacturing apparatus 11 according to the present embodiment for manufacturing the wound iron core 1 will be described below. FIG. 1 schematically shows the overall configuration of the manufacturing apparatus 11 according to the present embodiment. The manufacturing apparatus 11 is roughly divided into a transport mechanism 13 that conveys the hoop material 12 to be the electromagnetic steel sheet 5, and a fine magnetic domain processing that performs fine magnetic domain processing on a portion of the hoop material 12 that is the cut end portion of the electromagnetic steel sheet 5. The device 14 includes a cutting mechanism 15 that cuts the hoop material 12 to form an electromagnetic steel sheet 5 having a predetermined size, and a winding mechanism 16 that winds the cut electromagnetic steel sheet 5 into a wound iron core 1. Each mechanism of the manufacturing apparatus 11 is controlled by a control apparatus (not shown) including a computer or the like.

前記搬送機構13は、長尺なフープ材12をロール状に巻いたものがセットされた供給源17から、巻回機構16までの搬送路18を、フープ材12を矢印A方向に順送りに搬送するものである。図1に模式的に示すように、搬送機構13は、フープ材12を供給源17から引き出して微細磁区加工装置14側に送る第1の搬送ローラ19、切断機構15を経たフープ材12(電磁鋼板5)を巻回機構16側に送る第2の搬送ローラ20、それらを駆動するためのモータを含む駆動機構(図示せず)等を備えている。 The transport mechanism 13 sequentially transports the hoop material 12 in the direction of arrow A through the transport path 18 from the supply source 17 in which the long hoop material 12 is wound in a roll shape to the winding mechanism 16. Is what you do. As schematically shown in FIG. 1, the transport mechanism 13 draws the hoop material 12 from the supply source 17 and sends it to the fine magnetic domain processing device 14 side, and the hoop material 12 (electromagnetic) passes through the first transport roller 19 and the cutting mechanism 15. It is provided with a second transfer roller 20 for feeding the steel plate 5) to the winding mechanism 16 side, a drive mechanism (not shown) including a motor for driving them, and the like.

前記微細磁区加工装置14は、搬送路18の途中部の第1の搬送ローラ19の下流部に設けられ、本実施形態では、フープ材12の表面に対して熱プレス装置による微細磁区加工を行うように構成されている。即ち、微細磁区加工装置14は、図2にも示すように、例えば平坦なベッド21、このベッド21に対して上下動するラム22、このラム22の下面に取付けられたプレス型23を備え、プレス型23の加熱状態でフープ材12に対する圧印加工を行う。 The fine magnetic domain processing device 14 is provided in the downstream portion of the first transfer roller 19 in the middle of the transfer path 18, and in the present embodiment, the surface of the hoop material 12 is subjected to fine magnetic domain processing by a heat pressing device. It is configured as follows. That is, as shown in FIG. 2, the fine magnetic domain processing apparatus 14 includes, for example, a flat bed 21, a ram 22 that moves up and down with respect to the bed 21, and a press mold 23 attached to the lower surface of the ram 22. Imprinting is performed on the hoop material 12 in the heated state of the press mold 23.

この場合、図3に示すように、前記プレス型23の表面には、全面に渡って多数の針状の突起23aが設けられている。この微細磁区加工装置14における圧印加工により、フープ材12の表面の所定範囲に対し、熱的なストレス及び機械的なストレスが付与され、突起23aによる無数の微細な刻印が施される。これによって、フープ材12の表面に微細磁区加工処理部7が設けられ、その微細磁区加工処理部7においては、磁気抵抗が減少することが知られている。 In this case, as shown in FIG. 3, a large number of needle-shaped protrusions 23a are provided on the surface of the press mold 23 over the entire surface. By the imprinting process in the fine magnetic domain processing device 14, thermal stress and mechanical stress are applied to a predetermined range on the surface of the hoop material 12, and innumerable fine markings are made by the protrusions 23a. As a result, it is known that the fine magnetic domain processing unit 7 is provided on the surface of the hoop material 12, and the magnetic resistance is reduced in the fine magnetic domain processing unit 7.

前記切断機構15は、図1及び図2に示すように、ダイス24と、そのダイス24に対して上下動する切断刃25とを備え、搬送路18を搬送されるフープ材12の先端部を、所定長さで裁断して、1ターン分の長さ寸法の電磁鋼板5を得るように構成されている。このとき、図2に示すように、微細磁区加工処理部7の手前端部の位置でフープ材12が切断され、次に切断される電磁鋼板5の先端部に微細磁区加工処理部7が位置されるようになっている。切断機構15において切断された電磁鋼板5は、更に巻回機構16に送られ、巻鉄心1の巻回作業が行われる。 As shown in FIGS. 1 and 2, the cutting mechanism 15 includes a die 24 and a cutting blade 25 that moves up and down with respect to the die 24, and provides a tip portion of a hoop material 12 that is conveyed through a transfer path 18. , It is configured to be cut to a predetermined length to obtain an electromagnetic steel plate 5 having a length dimension for one turn. At this time, as shown in FIG. 2, the hoop material 12 is cut at the position of the front end portion of the fine magnetic domain processing unit 7, and the fine magnetic domain processing unit 7 is located at the tip of the electromagnetic steel sheet 5 to be cut next. It is supposed to be done. The electromagnetic steel sheet 5 cut by the cutting mechanism 15 is further sent to the winding mechanism 16 to perform the winding operation of the winding iron core 1.

次に、上記構成の製造装置11における巻鉄心1の製造手順について述べる。上記構成の巻鉄心1の製造装置11においては、搬送機構13により、フープ材12の供給源17から、該フープ材12が搬送路18を矢印A方向に順送りに搬送される。そして、搬送路18の途中部において、微細磁区加工装置14により、フープ材12のうち電磁鋼板5の切断端部となる部分に微細磁区加工が施されて微細磁区加工処理部7が形成される(微細磁区加工工程)。この後、搬送路18を送られるフープ材12は、切断機構15により、切断されて所定寸法の電磁鋼板5とされる(切断工程)。 Next, the manufacturing procedure of the wound iron core 1 in the manufacturing apparatus 11 having the above configuration will be described. In the manufacturing apparatus 11 of the wound iron core 1 having the above configuration, the hoop material 12 is sequentially transported along the transport path 18 in the direction of arrow A from the supply source 17 of the hoop material 12 by the transport mechanism 13. Then, in the middle of the transport path 18, the fine magnetic domain processing apparatus 14 performs fine magnetic domain processing on the portion of the hoop material 12 that becomes the cut end portion of the electromagnetic steel sheet 5 to form the fine magnetic domain processing unit 7. (Micromagnetic domain processing process). After that, the hoop material 12 fed through the transport path 18 is cut by the cutting mechanism 15 to obtain an electromagnetic steel plate 5 having a predetermined size (cutting step).

これにより、先端部の所定範囲に微細磁区加工処理部7が設けられた電磁鋼板5が得られる。この後、巻回機構16により、電磁鋼板5が巻き重ねられて巻鉄心1が得られる。この場合、製造装置11においては、フープ材12が搬送路18を搬送される途中で、フープ材12の必要な位置に微細磁区加工の処理がなされ、そのまま切断されて所定寸法の電磁鋼板5となって巻回機構16に送られる。このとき、巻回機構16に送られる電磁鋼板5は、所定寸法に切断されると共に、その切断端部に微細磁区加工処理部7が設けられたものとなる。 As a result, an electromagnetic steel sheet 5 in which the fine magnetic domain processing portion 7 is provided in a predetermined range of the tip portion can be obtained. After that, the electromagnetic steel plate 5 is wound by the winding mechanism 16 to obtain the wound iron core 1. In this case, in the manufacturing apparatus 11, while the hoop material 12 is being conveyed through the transport path 18, a fine magnetic domain processing process is performed at a required position of the hoop material 12, and the hoop material 12 is cut as it is to form an electromagnetic steel sheet 5 having a predetermined size. Is sent to the winding mechanism 16. At this time, the electrical steel sheet 5 sent to the winding mechanism 16 is cut to a predetermined size, and the fine magnetic domain processing section 7 is provided at the cut end portion thereof.

このように本実施形態によれば、フープ材12を供給源17から巻回機構16まで搬送する搬送機構13を備えると共に、搬送路18の途中部に微細磁区加工装置14及び切断機構15を備え、搬送路18の途中部において電磁鋼板5の切断端部となる部分に微細磁区加工を施す微細磁区加工工程と、フープ材12を切断して所定寸法の電磁鋼板5とする切断工程とを含む。従って、フープ材12の送り出しから巻鉄心1として巻回されるまでの一連の工程中に、損失の低減を図るための微細磁区加工を電磁鋼板5に施すことを含めることができ、効率的な製造を行うことが可能となるという優れた効果を奏する。 As described above, according to the present embodiment, the transport mechanism 13 for transporting the hoop material 12 from the supply source 17 to the winding mechanism 16 is provided, and the fine magnetic domain processing device 14 and the cutting mechanism 15 are provided in the middle of the transport path 18. Including a fine magnetic domain processing step of performing fine magnetic domain processing on a portion to be a cut end portion of the electromagnetic steel plate 5 in the middle portion of the transport path 18, and a cutting step of cutting the hoop material 12 into an electromagnetic steel plate 5 having a predetermined size. .. Therefore, in a series of steps from feeding out the hoop material 12 to winding it as the wound iron core 1, it is possible to include applying fine magnetic domain processing to the electromagnetic steel sheet 5 in order to reduce the loss, which is efficient. It has an excellent effect of being able to be manufactured.

特に本実施形態では、切断機構15は、微細磁区加工装置14の下流において、フープ材12のうち、微細磁区加工処理部7の端部で切断加工を行う構成とした。これにより、フープ材12に対して、微細磁区加工装置14による微細磁区加工が行われた後、切断機構15による切断加工が行われる。従って、微細磁区加工及び切断加工を夫々確実に行うことができる。また本実施形態では、微細磁区加工装置14は、フープ材12の表面に対して熱プレス装置による微細磁区加工を行うように構成した。これにより、加熱状態のプレス型23をフープ材12の表面に押付けることによって微細磁区加工を施すことができ、比較的簡単な構成で済むと共に、簡単な処理で必要な微細磁区加工処理部7を形成することができる。 In particular, in the present embodiment, the cutting mechanism 15 is configured to perform cutting at the end of the fine magnetic domain processing unit 7 of the hoop material 12 downstream of the fine magnetic domain processing apparatus 14. As a result, the hoop material 12 is subjected to the fine magnetic domain processing by the fine magnetic domain processing apparatus 14, and then the cutting process is performed by the cutting mechanism 15. Therefore, the fine magnetic domain processing and the cutting processing can be reliably performed respectively. Further, in the present embodiment, the fine magnetic domain processing device 14 is configured to perform fine magnetic domain processing on the surface of the hoop material 12 by a hot press device. As a result, the fine magnetic domain processing can be performed by pressing the heated press mold 23 against the surface of the hoop material 12, which requires a relatively simple configuration and the fine magnetic domain processing unit 7 required for simple processing. Can be formed.

(2)第2、第3の実施形態
図4は、第2の実施形態を示している。この第2の実施形態の巻鉄心の製造装置が、上記第1の実施形態の製造装置11と異なるところは、次の構成にある。即ち、本実施形態では、搬送路18の途中部の第1の搬送ローラ19の下流部には、やはり熱プレス装置からなる微細磁区加工装置31が設けられている。この微細磁区加工装置31は、多数の突起を有するプレス型32を備えているのであるが、このプレス型32は、上記第1の実施形態のプレス型23と比較して、フープ材12の搬送方向つまり長手方向に2倍の大きさを備えている。この微細磁区加工装置31により、フープ材12の表面には、上記第1の実施形態と比較して長手方向に2倍の範囲で微細磁区加工処理部33が設けられる。
(2) Second and Third Embodiments FIG. 4 shows a second embodiment. The winding iron core manufacturing apparatus of the second embodiment is different from the manufacturing apparatus 11 of the first embodiment in the following configuration. That is, in the present embodiment, a fine magnetic domain processing device 31 also also composed of a heat press device is provided in the downstream portion of the first transport roller 19 in the middle portion of the transport path 18. The fine magnetic domain processing apparatus 31 includes a press mold 32 having a large number of protrusions, and the press mold 32 conveys the hoop material 12 as compared with the press mold 23 of the first embodiment. It has twice the size in the direction, that is, the longitudinal direction. By the fine magnetic domain processing apparatus 31, the fine magnetic domain processing unit 33 is provided on the surface of the hoop material 12 in a range twice as long as that in the first embodiment.

そして本実施形態では、微細磁区加工装置31の下流に切断機構15が設けられているのであるが、この切断機構15は、フープ材12のうち、微細磁区加工装置31による微細磁区加工処理部33の加工範囲の中間部分で切断を行う構成とされている。これによれば、フープ材12のうち、微細磁区加工装置31によって加工された範囲の中間部分で、切断機構15による切断加工が行われる。従って、フープ材12から切離される電磁鋼板5の終端部と、次にフープ材12から切離されるべき電磁鋼板5の先端部との双方に、一回の加工動作によって、微細磁区加工が施されることになる。 In the present embodiment, the cutting mechanism 15 is provided downstream of the fine magnetic domain processing device 31, and the cutting mechanism 15 is the fine magnetic domain processing unit 33 of the hoop material 12 by the fine magnetic domain processing device 31. It is configured to cut in the middle part of the processing range of. According to this, in the hoop material 12, the cutting process is performed by the cutting mechanism 15 in the intermediate portion of the range processed by the fine magnetic domain processing device 31. Therefore, both the terminal portion of the electrical steel sheet 5 separated from the hoop material 12 and the tip portion of the electrical steel sheet 5 to be separated from the hoop material 12 are subjected to fine magnetic domain processing by a single processing operation. Will be done.

この結果、この第2の実施形態によれば、上記第1の実施形態と同様に、フープ材12の送り出しから巻鉄心1として巻回されるまでの一連の工程中に、損失の低減を図るための微細磁区加工を電磁鋼板5に施すことを含めることができ、効率的な製造を行うことが可能となるという優れた効果を得ることができる。これに加えて、より効率的な微細磁区加工を行うことができる。 As a result, according to the second embodiment, the loss is reduced during the series of steps from the feeding of the hoop material 12 to the winding as the wound steel core 1 as in the first embodiment. It is possible to include applying the fine magnetic domain processing for the purpose to the electromagnetic steel sheet 5, and it is possible to obtain an excellent effect that efficient production can be performed. In addition to this, more efficient fine magnetic domain processing can be performed.

図5は、第3の実施形態を示している。この第3の実施形態の巻鉄心の製造装置が、上記第1の実施形態の製造装置11と異なるところは、微細磁区加工装置41に、切断機構をいわば一体化した構成にある。即ち、微細磁区加工装置41は、やはり熱プレス装置からなり、切断装置のダイスを兼用するベッド42、このベッド42に対して上下動するラム43、このラム43の下面に取付けられたプレス型23を備えると共に、ラム43の側面のうち搬送方向前方の面に取付けられた切断刃44を備えている。 FIG. 5 shows a third embodiment. The difference between the winding iron core manufacturing apparatus of the third embodiment and the manufacturing apparatus 11 of the first embodiment is that the fine magnetic domain processing apparatus 41 is integrated with a cutting mechanism, so to speak. That is, the fine magnetic domain processing device 41 is also composed of a heat pressing device, a bed 42 that also serves as a die for the cutting device, a ram 43 that moves up and down with respect to the bed 42, and a press mold 23 attached to the lower surface of the ram 43. The cutting blade 44 is attached to the front surface of the side surface of the ram 43 in the transport direction.

これにより、搬送路18を搬送されるフープ材12は、微細磁区加工装置41において、ラム43が下降されることにより、プレス型23の加熱状態でフープ材12に対する圧印加工が行われ、表面に微細磁区加工処理部7が設けられる。これと同時に、切断刃44によって、微細磁区加工処理部7の手前端部の位置でフープ材12が切断され、先端部に微細磁区加工処理部7を有する電磁鋼板5となって巻回機構16に送られる。次に切断される電磁鋼板5の先端部に微細磁区加工処理部7が位置されることになる。このように、フープ材12に対する微細磁区加工装置41による微細磁区加工と、切断機構による切断加工とが同じタイミングで一括して行われる。 As a result, the hoop material 12 conveyed in the transport path 18 is subjected to imprinting on the hoop material 12 in the heated state of the press mold 23 by lowering the ram 43 in the fine magnetic domain processing device 41, and the surface is subjected to imprinting. A fine magnetic domain processing unit 7 is provided. At the same time, the hoop material 12 is cut by the cutting blade 44 at the position of the front end portion of the fine magnetic domain processing portion 7, and becomes an electromagnetic steel plate 5 having the fine magnetic domain processing portion 7 at the tip portion, and the winding mechanism 16 Will be sent to. The fine magnetic domain processing section 7 is located at the tip of the electromagnetic steel sheet 5 to be cut next. In this way, the fine magnetic domain processing by the fine magnetic domain processing device 41 and the cutting processing by the cutting mechanism on the hoop material 12 are collectively performed at the same timing.

このような第3の実施形態によれば、上記第1の実施形態と同様に、フープ材12の送り出しから巻鉄心1として巻回されるまでの一連の工程中に、損失の低減を図るための微細磁区加工を電磁鋼板5に施すことを含めることができ、効率的な製造を行うことが可能となるという優れた効果を得ることができる。そして本実施形態では、フープ材12に対する微細磁区加工と、切断機構による電磁鋼板5の切断加工とを一括して行うことができ、より効率的な製造作業を行うことができる。フープ材12の微細磁区加工処理部7に対する切断位置の位置ずれが起きにくいというメリットも得られる。 According to the third embodiment as described above, in order to reduce the loss during a series of steps from the feeding of the hoop material 12 to the winding as the wound steel core 1 as in the first embodiment. It is possible to include applying the fine magnetic domain processing of the above to the electromagnetic steel sheet 5, and it is possible to obtain an excellent effect that efficient production can be performed. In the present embodiment, the fine magnetic domain processing on the hoop material 12 and the cutting processing of the electromagnetic steel sheet 5 by the cutting mechanism can be performed at once, and more efficient manufacturing work can be performed. There is also an advantage that the cutting position of the hoop material 12 is less likely to be displaced with respect to the fine magnetic domain processing unit 7.

(3)第4〜第6の実施形態
図6は、第4の実施形態を示すものであり、上記第1の実施形態と異なるところは、微細磁区加工装置51の構成にある。即ち、本実施形態では、熱プレス装置からなる微細磁区加工装置14に代えて、微細磁区加工装置51は、フープ材12の表面に対するレーザ照射より微細磁区加工を行うように構成されている。詳しく図示はしないが、この微細磁区加工装置51は、レーザ発振器や、ガルバノミラー等からなるスキャン装置を備えており、フープ材12の表面に対し、連続した線状に延びるレーザ照射処理を、互いに交差する縦横二方向即ちX、Y方向に多数本ずつ格子状に施すように構成されている。
(3) Fourth to Sixth Embodiments FIG. 6 shows a fourth embodiment, and the difference from the first embodiment is in the configuration of the fine magnetic domain processing apparatus 51. That is, in the present embodiment, instead of the fine magnetic domain processing device 14 composed of the heat pressing device, the fine magnetic domain processing device 51 is configured to perform fine magnetic domain processing by irradiating the surface of the hoop material 12 with a laser. Although not shown in detail, the fine magnetic domain processing apparatus 51 includes a scanning apparatus including a laser oscillator, a galvano mirror, and the like, and continuously linearly extends a laser irradiation process on the surface of the hoop material 12 to each other. It is configured so that a large number of lines are applied in a grid pattern in two intersecting vertical and horizontal directions, that is, in the X and Y directions.

この微細磁区加工装置51によるレーザ照射処理により、フープ材12の表面には、格子状の線状痕が形成され、この線状痕の形成範囲が微細磁区加工処理部52となる。この微細磁区加工処理部52は、フープ材12の表面に磁区微細分化がなされたものであり、この部分における磁気抵抗を減少させることができる。尚、レーザ照射処理により線状痕が形成される間隔は、例えば縦横共に2.0mm以下とされる。より好ましくは、0.5mm以下である。線状痕がフープ材12の圧延方向即ち長手方向に対し斜め方向に傾斜する形態で設けるようにしても良い。 By the laser irradiation treatment by the fine magnetic domain processing apparatus 51, grid-like linear marks are formed on the surface of the hoop material 12, and the formation range of the linear marks is the fine magnetic domain processing unit 52. The fine magnetic domain processing unit 52 is formed by finely differentiating the magnetic domain on the surface of the hoop material 12, and the magnetic resistance in this portion can be reduced. The interval at which linear marks are formed by the laser irradiation treatment is, for example, 2.0 mm or less in both the vertical and horizontal directions. More preferably, it is 0.5 mm or less. The linear marks may be provided in a form in which the hoop material 12 is inclined in a diagonal direction with respect to the rolling direction, that is, the longitudinal direction.

このような第4の実施形態によれば、上記第1の実施形態と同様に、フープ材12の送り出しから巻鉄心1として巻回されるまでの一連の工程中に、損失の低減を図るための微細磁区加工を電磁鋼板5に施すことを含めることができ、効率的な製造を行うことが可能となるという優れた効果を得ることができる。そして本実施形態では、微細磁区加工装置51により、フープ材12の表面に対するレーザ照射によって微細磁区加工を確実に施すことができ、信頼性の高い処理を行うことができる。 According to the fourth embodiment as described above, in order to reduce the loss during a series of steps from the feeding of the hoop material 12 to the winding as the wound steel core 1 as in the first embodiment. It is possible to include applying the fine magnetic domain processing of the above to the electromagnetic steel sheet 5, and it is possible to obtain an excellent effect that efficient production can be performed. Then, in the present embodiment, the fine magnetic domain processing apparatus 51 can reliably perform the fine magnetic domain processing by irradiating the surface of the hoop material 12 with a laser, and can perform highly reliable processing.

図7及び図8は、第5の実施形態を示すものである。図7に示すように、この第5の実施形態が、上記第4の実施形態と異なる点は、前記微細磁区加工装置51に加えて、フープ材12の裏面即ち図で下面に対してレーザ照射より微細磁区加工を行う微細磁区加工装置53を設けた構成にある。これにより、微細磁区加工装置51によってフープ材12の表面に微細磁区加工処理部52が形成されると共に、微細磁区加工装置53によってフープ材12の裏面に微細磁区加工処理部54(図8参照)が形成される。 7 and 8 show a fifth embodiment. As shown in FIG. 7, the fifth embodiment differs from the fourth embodiment in that, in addition to the fine magnetic domain processing apparatus 51, the back surface of the hoop material 12, that is, the lower surface in the figure is irradiated with a laser. It is configured to be provided with a fine magnetic domain processing device 53 for performing fine magnetic domain processing. As a result, the fine magnetic domain processing device 51 forms the fine magnetic domain processing unit 52 on the surface of the hoop material 12, and the fine magnetic domain processing device 53 forms the fine magnetic domain processing unit 54 on the back surface of the hoop material 12 (see FIG. 8). Is formed.

このとき、図8に示すように、微細磁区加工処理部52及び微細磁区加工処理部54は、フープ材12の所定長さの範囲に設けられるのであるが、表裏面で位置をずらした状態、例えば半ピッチ分だけずれた位置に設けられる。ここで、微細磁区加工にレーザ照射を採用した場合、レーザを照射された面側でのフープ材12の熱膨張・熱収縮により、フープ材12に、レーザ照射面と反対側に凸となるような反りや歪みが発生する事情がある。ところが、本実施形態では、図8に示すように、フープ材12の熱歪みを、両面で打ち消し合うようにしながらレーザ照射の処理を行うことができ、反りや歪みの発生に起因した寸法精度低下等の問題を解消することができる。 At this time, as shown in FIG. 8, the fine magnetic domain processing unit 52 and the fine magnetic domain processing unit 54 are provided within a predetermined length range of the hoop material 12, but the positions are shifted on the front and back surfaces. For example, it is provided at a position shifted by half a pitch. Here, when laser irradiation is adopted for fine magnetic domain processing, the hoop material 12 is made convex on the side opposite to the laser irradiation surface due to thermal expansion and contraction of the hoop material 12 on the surface side irradiated with the laser. There are circumstances in which warpage and distortion occur. However, in the present embodiment, as shown in FIG. 8, the laser irradiation process can be performed while canceling the thermal strain of the hoop material 12 on both sides, and the dimensional accuracy is lowered due to the occurrence of warpage and strain. Etc. can be solved.

従って、この第5の実施形態によれば、上記第4の実施形態と同様に、フープ材12の送り出しから巻鉄心1として巻回されるまでの一連の工程中に、損失の低減を図るための微細磁区加工を電磁鋼板5に施すことを含めることができ、効率的な製造を行うことが可能となるという優れた効果を得ることができる。また、微細磁区加工装置51、53により、フープ材12に対するレーザ照射によって微細磁区加工を確実に施すことができ、信頼性の高い処理を行うことができる。更に、レーザ照射に起因するフープ材12の熱歪みの発生を抑制することができる。尚、電磁鋼板5の端部の両面に微細磁区加工が施されているので、巻鉄心1とした際の接合部での磁気抵抗をより小さくすることができ、損失の低減により効果的となる。 Therefore, according to the fifth embodiment, as in the fourth embodiment, in order to reduce the loss during a series of steps from the feeding of the hoop material 12 to the winding as the wound steel core 1. It is possible to include applying the fine magnetic domain processing of the above to the electromagnetic steel sheet 5, and it is possible to obtain an excellent effect that efficient production can be performed. Further, the fine magnetic domain processing devices 51 and 53 can reliably perform the fine magnetic domain processing by irradiating the hoop material 12 with a laser, and can perform highly reliable processing. Further, it is possible to suppress the occurrence of thermal strain of the hoop material 12 due to laser irradiation. Since both sides of the end portion of the electrical steel sheet 5 are subjected to fine magnetic domain processing, the magnetic resistance at the joint portion when the wound steel core 1 is used can be further reduced, which is more effective in reducing the loss. ..

図9は、第6の実施形態を示すものであり、上記第4の実施形態とは次の点で異なる。即ち、この第6の実施形態では、搬送路18のうち、微細磁区加工装置51によりフープ材12の表面に対するレーザ照射が行われる部分に、矯正ローラ55が設けられている。この矯正ローラ55は、微細磁区加工装置51によるレーザ照射中において、フープ材12の下面側を受けることにより、フープ材12に対し、熱歪みによる熱収縮分を想定した上面側に凸となる湾曲を付与するようになっている。これにより、フープ材12に対するレーザ照射は、矯正ローラ55により熱歪みを矯正しながら行われる。 FIG. 9 shows a sixth embodiment, which differs from the fourth embodiment in the following points. That is, in the sixth embodiment, the straightening roller 55 is provided in the portion of the transport path 18 where the surface of the hoop material 12 is irradiated with the laser by the fine magnetic domain processing device 51. The straightening roller 55 receives the lower surface side of the hoop material 12 during laser irradiation by the fine magnetic domain processing device 51, so that the hoop material 12 is curved so as to be convex toward the upper surface side assuming heat shrinkage due to thermal strain. Is to be given. As a result, the laser irradiation of the hoop material 12 is performed while correcting the thermal strain by the straightening roller 55.

従って、この第6の実施形態によれば、上記第4の実施形態と同様に、フープ材12の送り出しから巻鉄心1として巻回されるまでの一連の工程中に、損失の低減を図るための微細磁区加工を電磁鋼板5に施すことを含めることができ、効率的な製造を行うことが可能となるという優れた効果を得ることができる。また、微細磁区加工装置51により、フープ材12に対するレーザ照射によって微細磁区加工を確実に施すことができ、信頼性の高い処理を行うことができる。更に、矯正ローラ55によりフープ材12の熱歪みを矯正しながらレーザ照射が行われるので、フープ材12の熱歪み及びそれに伴う悪影響を効果的に防止することができる。 Therefore, according to the sixth embodiment, in order to reduce the loss during a series of steps from the feeding of the hoop material 12 to the winding as the wound steel core 1 as in the fourth embodiment. It is possible to include applying the fine magnetic domain processing of the above to the electromagnetic steel sheet 5, and it is possible to obtain an excellent effect that efficient production can be performed. Further, the fine magnetic domain processing apparatus 51 can reliably perform the fine magnetic domain processing by irradiating the hoop material 12 with a laser, and can perform highly reliable processing. Further, since the laser irradiation is performed while correcting the thermal strain of the hoop material 12 by the straightening roller 55, the thermal strain of the hoop material 12 and the adverse effects associated therewith can be effectively prevented.

(4)第7、第8の実施形態、その他の実施形態
図10は、第7の実施形態を示すものである。この第7の実施形態では、微細磁区加工装置61の構成が上記第1の実施形態などと異なっている。即ち、微細磁区加工装置61は、フープ材12の下面を受ける受け台62と、その上方に設けられる針状工具63と、その針状工具63を前後左右に移動させる駆動機構(図示せず)とを備えて構成されている。前記針状工具63は、横長な柄部63aの下面に、けがき針と称される複数本のバイト63bを並んで取付けて構成されている。
(4) Seventh, Eighth Embodiment, Other Embodiments FIG. 10 shows a seventh embodiment. In the seventh embodiment, the configuration of the fine magnetic domain processing apparatus 61 is different from that of the first embodiment and the like. That is, the fine magnetic domain processing device 61 is a cradle 62 that receives the lower surface of the hoop material 12, a needle-shaped tool 63 provided above the pedestal 62, and a drive mechanism that moves the needle-shaped tool 63 back and forth and left and right (not shown). It is configured with and. The needle-shaped tool 63 is configured by mounting a plurality of cutting tools 63b called scribing needles side by side on the lower surface of a horizontally long handle portion 63a.

この微細磁区加工装置61は、バイト63bをフープ材12の表面に押し当てた状態で、針状工具63を駆動機構により縦横方向、即ち矢印B及び矢印C方向に往復移動させることを繰返し、フープ材12の表面の所定の領域に対して、複数本のバイト63bにより縦横方向に延びる多数本の傷を付けるように構成されている。これにて、フープ材12の表面に微細磁区加工処理部64が形成される。 The fine magnetic domain processing device 61 repeatedly moves the needle-shaped tool 63 in the vertical and horizontal directions, that is, in the arrow B and arrow C directions by the drive mechanism in a state where the bite 63b is pressed against the surface of the hoop material 12, and the hoop. A plurality of bites 63b extend in the vertical and horizontal directions on a predetermined region on the surface of the material 12 so as to make a large number of scratches. As a result, the fine magnetic domain processing unit 64 is formed on the surface of the hoop material 12.

このような第7の実施形態によれば、上記第1の実施形態と同様に、フープ材12の送り出しから巻鉄心1として巻回されるまでの一連の工程中に、損失の低減を図るための微細磁区加工を電磁鋼板5に施すことを含めることができ、効率的な製造を行うことが可能となるという優れた効果を得ることができる。そして、本実施形態では、フープ材12の表面に対して針状工具63を移動させながら多数の傷を付けるといった比較的簡単な処理で、機械的に微細磁区加工を施すことができる。フープ材12の熱歪みによる反り等が生ずることも防止できる。 According to the seventh embodiment as described above, in order to reduce the loss during a series of steps from the feeding of the hoop material 12 to the winding as the wound steel core 1 as in the first embodiment. It is possible to include applying the fine magnetic domain processing of the above to the electromagnetic steel sheet 5, and it is possible to obtain an excellent effect that efficient production can be performed. Then, in the present embodiment, the fine magnetic domain processing can be mechanically performed by a relatively simple process such as scratching a large number of scratches while moving the needle-shaped tool 63 on the surface of the hoop material 12. It is also possible to prevent the hoop material 12 from being warped due to thermal strain.

図11は、第8の実施形態を示すものであり、微細磁区加工装置71の構成が上記第1の実施形態などと異なっている。即ち、微細磁区加工装置71は、フープ材12の下面を受けるテーブル72と、その上方に搬送方向前後に並んで設けられた2個のカッターローラ73、74とを備えて構成されている。前記カッターローラ73、74は、共に、フープ材12の幅方向全体に延びる円筒状をなし、フープ材12の搬送方向とは直交する方向に水平に延びる回転軸を中心に回転可能とされている。これらカッターローラ73、74は、フープ材12の表面の微細磁区加工を施すべき位置に対して下降して押付けられるようになっている。 FIG. 11 shows an eighth embodiment, and the configuration of the fine magnetic domain processing apparatus 71 is different from that of the first embodiment and the like. That is, the fine magnetic domain processing apparatus 71 includes a table 72 that receives the lower surface of the hoop material 12, and two cutter rollers 73 and 74 that are provided above the table 72 in the front-rear direction in the transport direction. Both the cutter rollers 73 and 74 have a cylindrical shape extending in the entire width direction of the hoop material 12, and are rotatable about a rotation axis extending horizontally in a direction orthogonal to the transport direction of the hoop material 12. .. The cutter rollers 73 and 74 are lowered and pressed against the position where the fine magnetic domain processing is to be performed on the surface of the hoop material 12.

各カッターローラ73、74の外周面には、夫々軸方向に対して傾斜方向に延びる複数本の刃部73a、74aが設けられている。このとき、刃部73aと刃部74aとでは、軸方向に対して傾斜方向が逆向きとされている。刃部73a、74aを螺旋状に設けるようにしても良い。この微細磁区加工装置71においては、テーブル72上のフープ材12の表面に対し、カッターローラ73、74を下方に向けて押し当てた状態で、フープ材12が矢印A方向に搬送されながら、カッターローラ73、74が矢印D方向に回転される。これにより、カッターローラ73、74の刃部73a、74aによって、フープ材12の表面に、多数個の菱形を組合せたような網目状の傷が付けられ、微細磁区加工処理部75が形成される。 A plurality of blade portions 73a, 74a extending in an inclined direction with respect to the axial direction are provided on the outer peripheral surfaces of the cutter rollers 73, 74, respectively. At this time, the inclination direction of the blade portion 73a and the blade portion 74a is opposite to the axial direction. The blade portions 73a and 74a may be provided in a spiral shape. In this fine magnetic domain processing apparatus 71, the cutter rollers 73 and 74 are pressed downward against the surface of the hoop material 12 on the table 72, and the hoop material 12 is conveyed in the direction of arrow A while being conveyed to the cutter. The rollers 73 and 74 are rotated in the direction of arrow D. As a result, the blade portions 73a and 74a of the cutter rollers 73 and 74 make a mesh-like scratch on the surface of the hoop material 12 as if a large number of rhombuses are combined, and the fine magnetic domain processing portion 75 is formed. ..

このような第8の実施形態によれば、上記第1の実施形態と同様に、フープ材12の送り出しから巻鉄心1として巻回されるまでの一連の工程中に、損失の低減を図るための微細磁区加工を電磁鋼板5に施すことを含めることができ、効率的な製造を行うことが可能となるという優れた効果を得ることができる。そして、本実施形態では、フープ材12の表面に対してカッターローラ73、74により多数の傷を付けるといった比較的簡単な処理で、機械的に微細磁区加工を施すことができる。フープ材12の熱歪みによる反り等が生ずることも防止できる。 According to the eighth embodiment as described above, in order to reduce the loss during a series of steps from the feeding of the hoop material 12 to the winding as the wound steel core 1 as in the first embodiment. It is possible to include applying the fine magnetic domain processing of the above to the electromagnetic steel sheet 5, and it is possible to obtain an excellent effect that efficient production can be performed. Then, in the present embodiment, the fine magnetic domain processing can be mechanically performed by a relatively simple process such as scratching the surface of the hoop material 12 with the cutter rollers 73 and 74 in large numbers. It is also possible to prevent the hoop material 12 from being warped due to thermal strain.

尚、上記した各実施形態では、フープ材の表面に対する圧印加工やレーザ照射処理によって微細磁区加工処理部を設けるようにしたが、それ以外にも、フープ材の表面に対する数百℃程度の熱的ストレスを与えることにより微細磁区加工を施すようにしても良い。以上説明した実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In each of the above-described embodiments, the fine magnetic domain processing portion is provided by imprinting or laser irradiation on the surface of the hoop material, but in addition to this, the surface of the hoop material is thermally heated to about several hundred ° C. Fine magnetic domain processing may be performed by applying stress. The embodiments described above are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

図面中、1は巻鉄心、5は電磁鋼板、6は接合部、7、33、52、54、64、75は微細磁区加工処理部、11は製造装置、12はフープ材、13は搬送機構、14、31、41、51、53、61、71は微細磁区加工装置、15は切断機構、16は巻回機構、17は供給源、18は搬送路、23、32はプレス型、25、44は切断刃、55は矯正ローラ、63は針状工具、73、74はカッターローラを示す。 In the drawing, 1 is a wound iron core, 5 is an electromagnetic steel plate, 6 is a joint, 7, 33, 52, 54, 64, 75 are fine magnetic domain processing parts, 11 is a manufacturing apparatus, 12 is a hoop material, and 13 is a transport mechanism. , 14, 31, 41, 51, 53, 61, 71 are fine magnetic domain processing devices, 15 is a cutting mechanism, 16 is a winding mechanism, 17 is a supply source, 18 is a transport path, 23 and 32 are press molds, 25, 44 is a cutting blade, 55 is a straightening roller, 63 is a needle-shaped tool, and 73 and 74 are cutter rollers.

Claims (11)

フープ材から所定寸法に切断された電磁鋼板を複数枚巻き重ねて静止誘導機器用の巻鉄心を製造するための装置であって、
前記電磁鋼板のフープ材の供給源から、該フープ材を搬送路を順送りに搬送する搬送機構と、
前記搬送路の途中部に設けられ、該フープ材のうち前記電磁鋼板の切断端部となる部分に微細磁区加工を施す微細磁区加工装置と、
前記搬送路の途中部に設けられ、前記フープ材を切断して所定寸法の電磁鋼板とする切断機構と、
前記切断機構により切断された電磁鋼板を巻き重ねる巻回機構とを備える巻鉄心の製造装置。
It is a device for manufacturing a wound iron core for a static induction device by winding a plurality of electromagnetic steel sheets cut to a predetermined size from a hoop material.
A transport mechanism for sequentially transporting the hoop material from the source of the hoop material of the electromagnetic steel sheet, and a transport mechanism.
A fine magnetic domain processing device provided in the middle of the transport path and performing fine magnetic domain processing on a portion of the hoop material which is a cut end portion of the electromagnetic steel sheet.
A cutting mechanism provided in the middle of the transport path and cutting the hoop material into an electromagnetic steel sheet having a predetermined size.
A winding iron core manufacturing apparatus including a winding mechanism for winding electromagnetic steel sheets cut by the cutting mechanism.
前記微細磁区加工装置は、前記搬送されるフープ材の途中部の所定範囲に対して微細磁区加工を行い、
前記切断機構は、前記微細磁区加工装置の下流において、前記フープ材のうち、前記微細磁区加工装置による加工範囲の端部で切断加工を行う構成とされている請求項1記載の巻鉄心の製造装置。
The fine magnetic domain processing apparatus performs fine magnetic domain processing on a predetermined range in the middle of the hoop material to be conveyed.
The production of the wound iron core according to claim 1, wherein the cutting mechanism is configured to perform cutting at the end of the processing range of the hoop material in the fine magnetic domain processing apparatus downstream of the fine magnetic domain processing apparatus. apparatus.
前記微細磁区加工装置は、前記搬送されるフープ材の途中部の所定範囲に対して微細磁区加工を行い、
前記切断機構は、前記微細磁区加工装置の下流において、前記フープ材のうち、前記微細磁区加工装置による加工範囲の中間部分で切断を行う構成とされている請求項1記載の巻鉄心の製造装置。
The fine magnetic domain processing apparatus performs fine magnetic domain processing on a predetermined range in the middle of the hoop material to be conveyed.
The winding iron core manufacturing apparatus according to claim 1, wherein the cutting mechanism is configured to cut the hoop material in the middle portion of the processing range of the fine magnetic domain processing apparatus downstream of the fine magnetic domain processing apparatus. ..
前記フープ材に対する前記微細磁区加工装置による微細磁区加工と、前記切断機構による切断加工とが同じタイミングで一括して行われるように構成されている請求項1記載の巻鉄心の製造装置。 The winding iron core manufacturing apparatus according to claim 1, wherein the fine magnetic domain processing by the fine magnetic domain processing apparatus and the cutting processing by the cutting mechanism are collectively performed on the hoop material at the same timing. 前記微細磁区加工装置は、前記フープ材の表面に対して熱プレス装置による微細磁区加工を行うように構成されている請求項1から4のいずれか一項に記載の巻鉄心の製造装置。 The device for manufacturing a wound iron core according to any one of claims 1 to 4, wherein the fine magnetic domain processing device is configured to perform fine magnetic domain processing on the surface of the hoop material by a hot press device. 前記微細磁区加工装置は、前記フープ材の表面に対するレーザ照射より微細磁区加工を行うように構成されている請求項1から4のいずれか一項に記載の巻鉄心の製造装置。 The winding iron core manufacturing apparatus according to any one of claims 1 to 4, wherein the fine magnetic domain processing apparatus is configured to perform fine magnetic domain processing by irradiating the surface of the hoop material with a laser. 前記レーザ照射は、前記フープ材の両面に対し、位置をずらした状態で行われる請求項6記載の巻鉄心の製造装置。 The apparatus for manufacturing a wound iron core according to claim 6, wherein the laser irradiation is performed in a state where the positions of the hoop materials are shifted from each other. 前記レーザ照射は、前記フープ材に対し、矯正ローラにより熱歪みを矯正しながら行われる請求項6記載の巻鉄心の製造装置。 The apparatus for manufacturing a wound iron core according to claim 6, wherein the laser irradiation is performed on the hoop material while correcting thermal strain with a straightening roller. 前記微細磁区加工装置は、前記フープ材の表面に対して針状工具により多数の傷を付けるように構成されている請求項1から4のいずれか一項に記載の巻鉄心の製造装置。 The winding iron core manufacturing apparatus according to any one of claims 1 to 4, wherein the fine magnetic domain processing apparatus is configured to scratch a surface of the hoop material with a needle-like tool in a large number. 前記微細磁区加工装置は、前記フープ材の表面に対してカッターローラにより多数の傷を付けるように構成されている請求項1から4のいずれか一項に記載の巻鉄心の製造装置。 The winding iron core manufacturing apparatus according to any one of claims 1 to 4, wherein the fine magnetic domain processing apparatus is configured to make a large number of scratches on the surface of the hoop material by a cutter roller. フープ材から所定寸法に切断された電磁鋼板を複数枚巻き重ねて静止誘導機器用の巻鉄心を製造するための方法であって、
前記電磁鋼板のフープ材の供給源から、該フープ材を搬送路を順送りに搬送しながら、前記搬送路の途中部において前記電磁鋼板の切断端部となる部分に微細磁区加工を施す微細磁区加工工程と、
前記フープ材を切断して所定寸法の電磁鋼板とする切断工程とを含む巻鉄心の製造方法。
It is a method for manufacturing a wound steel core for a stationary induction device by winding a plurality of electromagnetic steel sheets cut to a predetermined size from a hoop material.
Fine magnetic domain processing is performed on the cut end portion of the electrical steel sheet in the middle of the transport path while the hoop material is sequentially transported from the source of the hoop material of the electrical steel sheet. Process and
A method for manufacturing a wound steel core, which includes a cutting step of cutting the hoop material into an electromagnetic steel sheet having a predetermined size.
JP2019158365A 2019-08-30 2019-08-30 Wound core manufacturing apparatus and wound core manufacturing method Active JP7274987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019158365A JP7274987B2 (en) 2019-08-30 2019-08-30 Wound core manufacturing apparatus and wound core manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019158365A JP7274987B2 (en) 2019-08-30 2019-08-30 Wound core manufacturing apparatus and wound core manufacturing method

Publications (2)

Publication Number Publication Date
JP2021039963A true JP2021039963A (en) 2021-03-11
JP7274987B2 JP7274987B2 (en) 2023-05-17

Family

ID=74847204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019158365A Active JP7274987B2 (en) 2019-08-30 2019-08-30 Wound core manufacturing apparatus and wound core manufacturing method

Country Status (1)

Country Link
JP (1) JP7274987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765315A (en) * 2021-09-14 2021-12-07 首钢智新迁安电磁材料有限公司 Processing method of outer rotor of motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344804B2 (en) * 1985-09-20 1988-09-07 Nippon Steel Corp
JPH0138898Y2 (en) * 1981-09-17 1989-11-21
JPH02128405A (en) * 1988-11-08 1990-05-16 Nippon Steel Corp Oriented electromagnetic steel plate for formation of self-winding transformer core
JPH04367202A (en) * 1991-06-14 1992-12-18 Nippon Steel Corp Fe-based amorphous alloy thin belt having excellent magnetically soft characteristic and its manufacture
JP2000294432A (en) * 1999-04-06 2000-10-20 Kawasaki Steel Corp Laminated iron core transformer with improved iron loss characteristics and noise characteristics and manufacture and manufacturing facilities thereof
JP2002160120A (en) * 2000-11-21 2002-06-04 Nippon Steel Corp Cutting device of directional electromagnetic steel coil
JP2015106631A (en) * 2013-11-29 2015-06-08 東芝産業機器システム株式会社 Vector magnetic characteristic controlled material and iron core
JP2017186586A (en) * 2016-04-01 2017-10-12 新日鐵住金株式会社 Laminate iron core, stress relieving annealing method and manufacturing method therefor
JP6845213B2 (en) * 2018-12-13 2021-03-17 東芝産業機器システム株式会社 Iron core for static guidance equipment and static guidance equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0138898Y2 (en) * 1981-09-17 1989-11-21
JPS6344804B2 (en) * 1985-09-20 1988-09-07 Nippon Steel Corp
JPH02128405A (en) * 1988-11-08 1990-05-16 Nippon Steel Corp Oriented electromagnetic steel plate for formation of self-winding transformer core
JPH04367202A (en) * 1991-06-14 1992-12-18 Nippon Steel Corp Fe-based amorphous alloy thin belt having excellent magnetically soft characteristic and its manufacture
JP2000294432A (en) * 1999-04-06 2000-10-20 Kawasaki Steel Corp Laminated iron core transformer with improved iron loss characteristics and noise characteristics and manufacture and manufacturing facilities thereof
JP2002160120A (en) * 2000-11-21 2002-06-04 Nippon Steel Corp Cutting device of directional electromagnetic steel coil
JP2015106631A (en) * 2013-11-29 2015-06-08 東芝産業機器システム株式会社 Vector magnetic characteristic controlled material and iron core
JP2017186586A (en) * 2016-04-01 2017-10-12 新日鐵住金株式会社 Laminate iron core, stress relieving annealing method and manufacturing method therefor
JP6845213B2 (en) * 2018-12-13 2021-03-17 東芝産業機器システム株式会社 Iron core for static guidance equipment and static guidance equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765315A (en) * 2021-09-14 2021-12-07 首钢智新迁安电磁材料有限公司 Processing method of outer rotor of motor

Also Published As

Publication number Publication date
JP7274987B2 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
JP5916170B2 (en) Laser blanking device
JP5266068B2 (en) Steel plate laser welding method and laser welding apparatus
JP7562280B2 (en) Wound iron core, method for manufacturing wound iron core, and device for manufacturing wound iron core
JP7274987B2 (en) Wound core manufacturing apparatus and wound core manufacturing method
JP6605352B2 (en) Laminate production equipment for laminated core formation
KR20170128511A (en) Plate-type workpiece separation machine
JP4091910B2 (en) Rail manufacturing method and manufacturing equipment
CN113039621A (en) Iron core for static induction equipment and static induction equipment
KR102660364B1 (en) Laser-assisted processing of sheet materials
JP4373883B2 (en) Induction heat treatment method and induction heat treatment apparatus
JP2015030014A (en) Laser beam welder
JP4916940B2 (en) Heat treatment method and heat treatment apparatus for welded steel pipe
KR100265699B1 (en) Method for producing laser welded tubes and apparatus for producing the same
JP2008266694A (en) Plastic working apparatus and plastic working method
JP5533133B2 (en) Directional electrical steel sheet cutting apparatus and method
US1345786A (en) Art of making cores for electrical apparatus
JP2018069615A (en) Laminator and method for laminating
JP2009248270A (en) Method and apparatus for cutting steel material
JP2011052777A (en) Manufacturing method of belleville spring
JP2022043658A (en) Fine magnetic domain processing method and fine magnetic domain processing device
JP4477842B2 (en) High frequency induction heating method
JP7375728B2 (en) Manufacturing method and manufacturing equipment for core members for stacked core transformers
JP7122172B2 (en) Laminated core manufacturing method
JP2019506524A (en) Steel plate heat treatment apparatus and method
JP2001047229A (en) Welding method for buildup longitudinal by welding and equipment therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7274987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150