JP7375728B2 - Manufacturing method and manufacturing equipment for core members for stacked core transformers - Google Patents

Manufacturing method and manufacturing equipment for core members for stacked core transformers Download PDF

Info

Publication number
JP7375728B2
JP7375728B2 JP2020179113A JP2020179113A JP7375728B2 JP 7375728 B2 JP7375728 B2 JP 7375728B2 JP 2020179113 A JP2020179113 A JP 2020179113A JP 2020179113 A JP2020179113 A JP 2020179113A JP 7375728 B2 JP7375728 B2 JP 7375728B2
Authority
JP
Japan
Prior art keywords
core member
core
laser beam
manufacturing
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020179113A
Other languages
Japanese (ja)
Other versions
JP2022070085A (en
Inventor
重宏 ▲高▼城
健 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020179113A priority Critical patent/JP7375728B2/en
Publication of JP2022070085A publication Critical patent/JP2022070085A/en
Application granted granted Critical
Publication of JP7375728B2 publication Critical patent/JP7375728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、積鉄心形変圧器の鉄心に用いられる鉄心部材の製造方法と、その製造方法に用いる製造装置に関するものである。 The present invention relates to a method for manufacturing a core member used in a core of a stacked core transformer, and a manufacturing device used in the method.

変圧器は、電気エネルギと磁気エネルギの変換を通じて、供給電源の電圧を変化させる、日常生活に不可欠な電力機器である。この変圧器の動作時には、鉄損や銅損といったエネルギロスが生じるが、このうちの鉄損は、変圧器の鉄心に使用される軟磁性材料の磁気特性の向上によって、年々、低下する傾向にある。 A transformer is an essential power device in daily life that changes the voltage of a power supply through the conversion of electrical energy and magnetic energy. During the operation of this transformer, energy losses such as iron loss and copper loss occur, but iron loss is decreasing year by year due to improvements in the magnetic properties of the soft magnetic materials used in the transformer core. be.

例えば、方向性電磁鋼板を使用する場合、鉄心の鉄損は、結晶方位制御や比抵抗の増大、磁区細分化、板厚低減などの技術により低減されてきた。具体的には、結晶方位制御技術では、鋼の成分や製造プロセスを適正化し、結晶方位をGoss方位{110}<001>に高度に揃えることによって、高い磁束密度と低鉄損を達成してきた。また、比抵抗の増大技術では、鋼中により多くのSiやAlを含有させ、鋼の電気抵抗を増大させることによって、鉄損の一部である渦電流損を低減してきた。しかし、鋼中にSiを過度に含有させると、圧延して製造することが困難となるという問題がある。また、磁区制御による低鉄損化技術では、絶縁被膜を利用して鋼板に引張応力を付与することに加えて、エッチング等で鋼板表面に溝を形成したり、レーザービームや電子ビームなどを鋼板表面に照射して線状または点列状の歪領域を形成したりする表面加工を施すことで磁区細分化を図る技術が開発され、実用化されている。また、板厚の低減技術は、板厚が減少するほど渦電流損が低減する理論に基づくものである。しかし、過度の板厚低減は、二次再結晶の発現を不安定化するだけでなく、鋼板自体の生産性の低下や、変圧器鉄心の積み作業の工数が増大するなどの問題がある。 For example, when using grain-oriented electrical steel sheets, core loss has been reduced by techniques such as controlling crystal orientation, increasing resistivity, refining magnetic domains, and reducing plate thickness. Specifically, with crystal orientation control technology, we have achieved high magnetic flux density and low iron loss by optimizing the steel components and manufacturing process and highly aligning the crystal orientation to the Goss {110}<001> orientation. . Furthermore, in techniques for increasing specific resistance, eddy current loss, which is a part of iron loss, has been reduced by containing more Si or Al in steel to increase the electrical resistance of steel. However, if Si is excessively contained in steel, there is a problem in that it becomes difficult to manufacture by rolling. In addition, technology for reducing iron loss through magnetic domain control involves not only applying tensile stress to steel sheets using insulating coatings, but also forming grooves on the surface of steel sheets by etching, etc., and applying laser beams, electron beams, etc. to steel sheets. Techniques have been developed and put into practical use for refining magnetic domains by surface processing such as irradiating the surface to form linear or dotted strain regions. In addition, the plate thickness reduction technique is based on the theory that eddy current loss decreases as the plate thickness decreases. However, excessive reduction in plate thickness not only destabilizes the occurrence of secondary recrystallization, but also causes problems such as a decrease in the productivity of the steel plate itself and an increase in the number of man-hours for stacking the transformer core.

ところで、積鉄心形変圧器の鉄損特性は、主に鉄心の材料となる軟磁性材料の磁気特性に大きく依存するため、積鉄心形変圧器の鉄損特性改善は、軟磁性材料の磁気特性の改善に頼っていた。上記軟磁性材料としては、主として方向性電磁鋼板が用いられている。この方向性電磁鋼板の製造方法としては、所定の成分組成を有する鋼を溶製し、連続鋳造等で鋼素材(スラブ)とした後、該鋼素材を熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、該冷延板に一次再結晶焼鈍または脱炭焼鈍を兼ねた一次再結晶焼鈍を施し、鋼板表面に焼鈍分離剤を塗布した後、仕上焼鈍を施し、さらに、絶縁被膜を被成し、必要に応じて、上記冷延以降の工程あるいは最終工程で磁区細分化処理を施すという一連の工程からなる製造プロセスが確立され、また、それぞれの製造工程における最適条件もほぼ見出されている。そのため、上記製造プロセスの枠組みの中では、積鉄心形変圧器の鉄損低減はかなり難しくなってきている。一方、新しい技術開発によって、より大きな低鉄損化を図ることも提案されているが、製造性や製造コスト面での課題が多く、実用化には至っていない。 By the way, the iron loss characteristics of a stacked core transformer largely depend on the magnetic properties of the soft magnetic material that is the core material. was relying on improvements. As the above-mentioned soft magnetic material, grain-oriented electrical steel sheets are mainly used. The method for manufacturing grain-oriented electrical steel sheets includes melting steel having a predetermined composition, forming a steel material (slab) by continuous casting, etc., and then hot rolling the steel material into a hot-rolled sheet. After hot-rolled sheet annealing as necessary, cold-rolling is carried out once or two or more times with intermediate annealing to obtain a cold-rolled sheet of final thickness, and the cold-rolled sheet is subjected to primary recrystallization. After performing primary recrystallization annealing that also serves as annealing or decarburization annealing, and applying an annealing separator to the surface of the steel sheet, final annealing is performed, and an insulating coating is further applied. A manufacturing process consisting of a series of steps in which magnetic domain refining treatment is performed in the step or final step has been established, and the optimum conditions for each manufacturing step have also been found. Therefore, within the framework of the above manufacturing process, it has become quite difficult to reduce iron loss in stacked core transformers. On the other hand, it has been proposed to achieve even greater reductions in iron loss through the development of new technologies, but this has not been put into practical use due to many issues in terms of manufacturability and manufacturing costs.

そこで、上記従来技術に囚われない鉄心の鉄損低減技術として、特許文献1には、変圧器のCI型またはEI型の鉄心部材を切り出し、歪取焼鈍した後、パルスレーザーを照射することによって、変圧器の鉄損を改善する方法が提案されている。 Therefore, as an iron core loss reduction technology that is not limited by the above-mentioned conventional technology, Patent Document 1 discloses that by cutting out a CI type or EI type core member of a transformer, subjecting it to stress relief annealing, and irradiating it with a pulse laser, Methods have been proposed to improve the core loss of transformers.

特開昭56-083012号公報Japanese Unexamined Patent Publication No. 56-083012

しかしながら、上記特許文献1の技術は、高い生産効率と被膜損傷抑止の観点からは好ましくないパルスレーザーを用いた方法である他、低鉄損化に重要な条件である歪取焼鈍条件が開示されていない。また、比較的小型であるCI型またはEI型の変圧器を対象としており、大型の変圧器にはそのまま適用することは難しいという問題がある。 However, the technique of Patent Document 1 uses a pulsed laser, which is not preferable from the viewpoint of high production efficiency and prevention of coating damage, and also does not disclose strain relief annealing conditions, which are important conditions for reducing iron loss. Not yet. Furthermore, the method is aimed at relatively small CI or EI type transformers, and there is a problem in that it is difficult to directly apply it to large transformers.

そこで、本発明の目的は、従来の方向性電磁鋼板の製造技術に囚われることなく、積鉄心形変圧器のより一層に鉄損低減を可能とする鉄心部材の製造方法を提案するとともに、その製造方法に用いる製造装置を提供することにある。 Therefore, an object of the present invention is to propose a method for manufacturing a core member that can further reduce iron loss in a stacked core transformer, without being limited by the conventional manufacturing technology of grain-oriented electrical steel sheets, and to An object of the present invention is to provide a manufacturing apparatus for use in the method.

発明者らは、従来技術が抱える上記の問題点に鑑み、上記した既存の確立された方向性電磁鋼板の製造プロセスの改善、すなわち、方向性電磁鋼板の鉄損特性の改善による積鉄心形変圧器の低鉄損化から目を転じて、方向性電磁鋼板から変圧器の鉄心部材を製造する方法を見直すことで積鉄心形変圧器の鉄損低減を図ることを検討した。 In view of the above-mentioned problems faced by the prior art, the inventors have proposed to improve the above-mentioned already established production process of grain-oriented electrical steel sheets, that is, to improve the iron loss characteristics of grain-oriented electrical steel sheets, thereby improving the stacked core type transformation. We focused on reducing iron loss in stacked core transformers by reviewing the method of manufacturing transformer core members from grain-oriented electrical steel sheets.

発明者らは、まず、方向性電磁鋼板を製造してから、変圧器を組み立てるまでの工程を整理した。たとえば、積鉄心形の変圧器の場合、鉄心は、コイル状に巻き取られた方向性電磁鋼板(素材コイル)を所望の幅にスリットしてスリットコイルとし、さらに、上記スリットコイルから、脚やヨークといった鉄心用の部材(鉄心部材)を斜角切断などの剪断加工によって切り出し、該切り出した鉄心部材を1枚1枚積み重ねて、鉄心を組み立て、変圧器に組み込むのが一般的である。しかし、この剪断加工を用いる方法は、鉄心部材を切り出す際、加工歪が導入され、変圧器の鉄損が増大するという問題がある。 The inventors first organized the steps from manufacturing a grain-oriented electrical steel sheet to assembling a transformer. For example, in the case of a stacked core type transformer, the core is made by slitting a grain-oriented electromagnetic steel sheet (material coil) wound into a coil to a desired width, and then from the slit coil, the legs and Generally, a core member such as a yoke is cut out by a shearing process such as bevel cutting, and the cut-out core members are stacked one by one to assemble the core and incorporate it into a transformer. However, this method using shear processing has a problem in that processing strain is introduced when cutting out the core member, increasing iron loss of the transformer.

一方、巻鉄心形の変圧器の場合、上記したスリットコイルをコイル状の巻鉄心に組み立てた後、歪取焼鈍を施すことが行われている。これは、巻鉄心組立時に、素材(方向性電磁鋼板)に曲げ加工が施されて大きな歪みが導入され、素材自体の鉄損が著しく大きくなるため、この歪を歪取焼鈍によって取り除くためである。しかし、この歪取焼鈍は、加工歪みが取り除かれる利点があるが、素材の方向性電磁鋼板に施された、レーザービーム照射などによる非耐熱型磁区細分化処理の効果を消失させてしまうという欠点がある。 On the other hand, in the case of a wound core type transformer, after the above-described slit coil is assembled into a coiled wound core, strain relief annealing is performed. This is because when assembling the wound core, the material (grain-oriented electrical steel sheet) is bent and a large strain is introduced, which significantly increases the iron loss of the material itself, so this strain is removed by strain relief annealing. . However, although strain relief annealing has the advantage of removing processing strain, it also has the disadvantage of eliminating the effects of non-heat-resistant magnetic domain refining treatment, such as laser beam irradiation, applied to grain-oriented electrical steel sheets. There is.

そこで、発明者らは、仕上焼鈍後の方向性電磁鋼板から上記変圧器の鉄心を製造する工程を見直し、積鉄心形変圧器における鉄心部材切り出し時の加工歪みを除去し、かつ、レーザービームなどによる磁区細分化処理による鉄損低減効果をより高めることができる技術を検討した。 Therefore, the inventors reviewed the process of manufacturing the core of the transformer from a grain-oriented electrical steel sheet after finish annealing, removed the processing distortion when cutting out the core member in a stacked core transformer, and We investigated a technology that can further enhance the effect of reducing iron loss through magnetic domain refining processing.

まず、発明者らは、下記表1に示した3つの積鉄心形変圧器の製造フローについて検討した。
製造フロー1は、従来の、仕上焼鈍後に絶縁被膜を被成した方向性電磁鋼板を用いて積鉄心形変圧器を製造する製造フローである。この場合、前述したように、鉄心部材切り出し時の加工歪によって変圧器の鉄損が悪化するという問題がある。
また、製造フロー2は、上記製造フロー1の絶縁被膜の被成を鉄心部材切り出し後に行うもので、鉄心部材切り出し時の加工歪は、絶縁被膜被成時の熱処理により除去できるが、この段階での絶縁被膜の被成は、大型コイルの状態で絶縁被膜を被成する従来の製造フロー1に比べて生産性が劣るという問題がある。
一方、製造フロー3は、従来の製造フロー1の鉄心部材切出しと鉄心・変圧器の組立の間に、歪取焼鈍の工程を付加した製造フローである。この製造フローは、加工歪の除去の効果を享受できる点で好ましいが、上記段階での歪取焼鈍の付加、さらには、磁区細分化処理の付加は、生産性や製造コスト面で従来の製造フロー1よりも不利となる。
First, the inventors studied the manufacturing flow of three stacked core transformers shown in Table 1 below.
Manufacturing flow 1 is a manufacturing flow for manufacturing a stacked core transformer using a conventional grain-oriented electrical steel sheet coated with an insulating film after final annealing. In this case, as described above, there is a problem in that the iron loss of the transformer worsens due to processing distortion when cutting out the core member.
In addition, in manufacturing flow 2, the insulation coating in manufacturing flow 1 is performed after the core member is cut out, and the processing strain at the time of cutting out the iron core member can be removed by heat treatment when the insulation coating is applied, but at this stage. There is a problem in that the productivity of forming the insulating film is lower than that in the conventional manufacturing flow 1 in which the insulating film is formed on a large coil.
On the other hand, manufacturing flow 3 is a manufacturing flow in which a strain relief annealing step is added between the core member cutting and core/transformer assembly in the conventional manufacturing flow 1. This manufacturing flow is preferable in that it is possible to enjoy the effect of removing processing strain, but the addition of strain relief annealing and further addition of magnetic domain refining treatment at the above stage is less convenient than conventional manufacturing in terms of productivity and manufacturing cost. This is more disadvantageous than flow 1.

Figure 0007375728000001
Figure 0007375728000001

しかしながら、発明者らは、さらに検討を重ねた結果、製造フロー3での歪取焼鈍は適切な温度領域を選択すれば短時間で実施が可能であり、製造コストの過度の増大が押さえられる可能性があること、さらに、上記歪取焼鈍では、単に加工歪みが取り除かれるだけではなく、絶縁被膜が鋼板に付与する引張応力が増大すること、さらに、上記歪取焼鈍後の鉄心部材が冷却し終えるまでの高温時にレーザービームを照射して磁区細分化処理を施すことで、効率よく磁区細分化処理を施すことができるだけでなく、高出力のレーザービーム照射でも被膜損傷を起こすことなく磁区細分化処理が可能となり、より優れた鉄損低減効果を得ることができることを見出し、本発明を開発するに至った。 However, as a result of further studies, the inventors found that strain relief annealing in manufacturing flow 3 can be carried out in a short time if an appropriate temperature range is selected, and an excessive increase in manufacturing costs can be suppressed. In addition, the stress relief annealing does not only remove processing strain, but also increases the tensile stress that the insulating coating imparts to the steel sheet. By performing the magnetic domain refining process by irradiating the laser beam at a high temperature until the end of the process, it is possible to not only efficiently perform the magnetic domain refining process, but also to perform the magnetic domain refining process without causing film damage even with high-power laser beam irradiation. The present inventors discovered that the treatment became possible and that a more excellent iron loss reduction effect could be obtained, leading to the development of the present invention.

上記知見に基づく本発明は、厚さが0.30mm以下の軟磁性材料から、鉄心部材を切り出して積鉄心形変圧器の鉄心部材を製造する方法において、上記切り出した鉄心部材に700℃以上1000℃以下の温度に1秒以上1000秒以下保持する歪取焼鈍を施した後、該鉄心部材が冷却される際の600℃から50℃までの間に、該鉄心部材の圧延方向を横切る方向に、かつ、圧延方向に1~30mmの間隔を開けて繰り返しレーザービームを照射し、磁区細分化処理を施すことを特徴とする積鉄心形変圧器用鉄心部材の製造方法を提案する。 Based on the above knowledge, the present invention provides a method for manufacturing an iron core member for a stacked core transformer by cutting out an iron core member from a soft magnetic material having a thickness of 0.30 mm or less. After strain relief annealing is performed by holding at a temperature of 1 to 1000 seconds at a temperature of 1 to 1000 seconds, when the core member is cooled, from 600 to 50 °C, in a direction transverse to the rolling direction of the core member. We propose a method for manufacturing a core member for a stacked core transformer, which is characterized in that magnetic domain refining treatment is performed by repeatedly irradiating laser beams at intervals of 1 to 30 mm in the rolling direction.

本発明の積鉄心形変圧器用鉄心部材の製造方法は、上記の鉄心部材の切り出しを、剪断加工で行うことを特徴とする。 The method of manufacturing a core member for a stacked core transformer according to the present invention is characterized in that the core member is cut out by shearing.

また、本発明の積鉄心形変圧器用鉄心部材の製造方法は、上記歪取焼鈍を、窒素ガス、水素ガスおよびArガスのいずれかの単体ガス、上記1以上の混合ガスの雰囲気、あるいは、DXガスまたはRXガスの雰囲気、上記いずれかのガスの真空度が10Pa以下である減圧雰囲気、および、真空度が10Pa以下である減圧大気雰囲気のいずれかの雰囲気下で施すことを特徴とする。 Further, in the method for manufacturing a core member for a stacked core transformer of the present invention, the strain relief annealing is performed in an atmosphere of any one of nitrogen gas, hydrogen gas, and Ar gas, a mixed gas of one or more of the above gases, or DX. It is characterized in that it is carried out in any of the following atmospheres: a gas or RX gas atmosphere, a reduced pressure atmosphere in which the degree of vacuum of any of the above gases is 10 4 Pa or less, and a reduced pressure atmospheric atmosphere in which the degree of vacuum is 10 3 Pa or less. shall be.

また、本発明の積鉄心形変圧器用鉄心部材の製造方法は、上記歪取焼鈍後の鉄心部材にレーザービームを照射して磁区細分化処理をする際、鉄心部材の部位に応じて、レーザービームの出力、走査速度、圧延方向の繰り返し間隔および圧延方向とレーザービームの走査方向とがなす角のうちの少なくとも1つを変化させることを特徴とする。 In addition, in the method of manufacturing a core member for a stacked core transformer of the present invention, when performing magnetic domain refining treatment by irradiating the core member after strain relief annealing with a laser beam, the laser beam is The method is characterized in that at least one of the output of the laser beam, the scanning speed, the repetition interval in the rolling direction, and the angle formed between the rolling direction and the scanning direction of the laser beam is changed.

また、本発明の積鉄心形変圧器用鉄心部材の製造方法に用いる上記軟磁性材料は、耐熱型磁区細分化処理が施された方向性電磁鋼板であることを特徴とする。 Further, the soft magnetic material used in the method of manufacturing a core member for a stacked core transformer of the present invention is characterized in that it is a grain-oriented electrical steel sheet subjected to heat-resistant magnetic domain refining treatment.

また、本発明は、厚さが0.30mm以下の軟磁性材料から積鉄心形変圧器の鉄心となる部材を切り出すための加工設備と、上記切り出した鉄心部材を、整列し、搬送するコンベヤーと、700℃以上1000℃以下の温度に1秒以上1000秒以下保持する歪取焼鈍を施すトンネル型の焼鈍炉と、必要に応じて、上記熱処理後の鉄心部材を強制冷却する冷却設備と、上記コンベヤーの搬送速度に同期して各鉄心部材の圧延方向を横切る方向に、かつ、圧延方向に1~30mmの間隔を開けてレーザービームを繰り返して照射するレーザービーム照射装置とを具備する積鉄心形変圧器用鉄心部材の製造装置である。 The present invention also provides processing equipment for cutting out members that will become the core of a stacked core transformer from a soft magnetic material with a thickness of 0.30 mm or less, and a conveyor that aligns and conveys the cut out core members. , a tunnel-type annealing furnace that performs strain relief annealing held at a temperature of 700° C. or more and 1000° C. or less for 1 second or more and 1000 seconds or less, and if necessary, cooling equipment that forcibly cools the iron core member after the heat treatment; A stacked core type equipped with a laser beam irradiation device that repeatedly irradiates a laser beam in a direction transverse to the rolling direction of each core member at intervals of 1 to 30 mm in the rolling direction in synchronization with the conveyance speed of the conveyor. This is a manufacturing device for transformer core members.

本発明によれば、積鉄心形変圧器の鉄損を従来以上に低減することができ、変圧器のエネルギ使用効率を高め、使用環境を拡大することが可能となるので、産業上、奏する効果は大である。 According to the present invention, it is possible to reduce the iron loss of a stacked core transformer more than before, improve the energy usage efficiency of the transformer, and expand the usage environment, which has industrial effects. is large.

三相三脚の積鉄心形変圧器用鉄心部材の一例を説明する図である。It is a figure explaining an example of the core member for stacked core type transformers of a three-phase tripod. 鉄心部材に施す磁区細分化の処理パターンの変更例を説明する図である。It is a figure explaining the example of a change of the process pattern of magnetic domain refinement performed on an iron core member. 鋼板の反り量を測定する方法を説明する図である。It is a figure explaining the method of measuring the amount of warpage of a steel plate.

まず、本発明を開発する契機となった実験について説明する。
<実験1>
プラズマ炎によって非耐熱型の磁区細分化処理が施され、表面にリン酸塩系の張力付与型絶縁被膜が被成された板厚0.23mmの方向性電磁鋼板(素材A)と、磁区細分化処理が施されておらず、表面にリン酸塩系の張力付与型絶縁被膜が被成された板厚0.23mmの方向性電磁鋼板(素材B)を用意した。上記素材AとBは、磁区細分化処理以外の製造条件は同じであり、圧延方向の磁束密度B(磁場の強さ:800A/mにおける磁束密度)は、磁区細分化処理材が1.939T、磁区細分化非処理材が1.941Tとほぼ同等の値であった。両素材から、圧延方向を長さ方向とする長さ300mm×幅100mmのSST試験片を、剪断加工により、1セット30枚として5セット分を切り出した後、表2に示した処理を施した後、各試験片の鉄損W17/50をSST試験により測定し、30枚の平均値を求めた。なお、上記剪断加工した試験片の端面は、すべて剪断加工面のままとした。また、表中の歪取焼鈍は、Ar雰囲気下において800℃の温度に2hr均熱保持する条件で行った。また、歪取焼鈍後の磁区細分化処理は、上記素材Aに施したプラズマ炎を用いた方法・条件で行った。
First, the experiment that led to the development of the present invention will be explained.
<Experiment 1>
A grain-oriented electrical steel sheet (Material A) with a thickness of 0.23 mm, which has been subjected to non-heat-resistant magnetic domain refining treatment using plasma flame and has a phosphate-based tension-imparting insulation coating on its surface, and magnetic domain refining. A grain-oriented electrical steel sheet (Material B) having a thickness of 0.23 mm and having a phosphate-based tension-imparting insulating coating formed on its surface was prepared without being subjected to chemical treatment. The above materials A and B have the same manufacturing conditions except for the magnetic domain refining treatment, and the magnetic flux density B 8 (magnetic flux density at magnetic field strength: 800 A/m) in the rolling direction is 1. 939T, which is almost the same value as 1.941T for the material without magnetic domain refining treatment. From both materials, 5 sets of 30 pieces per set were cut out by shearing into SST specimens measuring 300 mm in length x 100 mm in width with the rolling direction as the length direction, and then subjected to the treatments shown in Table 2. Thereafter, the iron loss W 17/50 of each test piece was measured by an SST test, and the average value of the 30 pieces was determined. Note that all the end surfaces of the sheared test pieces were left as they were. Moreover, the strain relief annealing in the table was carried out under conditions of soaking and holding at a temperature of 800° C. for 2 hours in an Ar atmosphere. Further, the magnetic domain refining treatment after strain relief annealing was carried out using the method and conditions applied to the above-mentioned material A using a plasma flame.

Figure 0007375728000002
Figure 0007375728000002

表2に上記鉄損W17/50の測定値を併記した。上記表から、剪断加工した後、歪取焼鈍を施し、その後、磁区細分化処理を施したNo.5の条件では、著しく低い鉄損値が得られていることがわかる。また、No.2(剪断加工ままの条件)とNo.3(剪断加工後に歪取焼鈍をした条件)を比較すると、剪断加工後の磁束密度に顕著な変化は認められないことから、鉄損値の低減は、単純な加工歪み除去による磁束密度の増大によるものではないと考えられる。 Table 2 also shows the measured values of the iron loss W 17/50 . From the above table, No. 1 was subjected to shearing, strain relief annealing, and then magnetic domain refining treatment. It can be seen that under condition No. 5, a significantly low iron loss value was obtained. Also, No. 2 (as-sheared condition) and No. Comparing 3 (conditions in which strain relief annealing was performed after shearing), there is no noticeable change in the magnetic flux density after shearing, so the reduction in iron loss is due to the increase in magnetic flux density due to simple removal of processing strain. It is thought that this is not due to

そこで、上記原因を調査するため、No.2とNo.3の条件の鋼板について、張力付与型絶縁被膜をアルカリで除去したときの鋼板の曲率半径を測定し、下記のStoneyの式を用いて絶縁被膜により鋼板に付与された張力を見積った。
σ=Ed/3(1-ν)R
ここで、E:圧延方向のヤング率、d:板厚(mm)、ν:ポアソン比、R:片面の被膜を除去したときの曲率半径(mm)であり、上記計算では、E:125GPa、ν=0.38とした。
また、上記計算に用いる鋼板の曲率半径Rは、圧延方向を長さ方向としたとき、幅:30mm×長さ:320mmの試験片を、図3に示したように、幅方向が水平面に垂直(鉛直)となるように固定して、鋼板の自由長さLおよび反り量δを測定し、これらの値から下記式を用いて求めた。
R≒L/2δ
Therefore, in order to investigate the above cause, No. 2 and no. Regarding the steel plate under condition 3, the radius of curvature of the steel plate when the tension-applying insulation coating was removed with alkali was measured, and the tension imparted to the steel plate by the insulation coating was estimated using Stoney's formula below.
σ=Ed/3(1-ν)R
Here, E: Young's modulus in the rolling direction, d: plate thickness (mm), ν: Poisson's ratio, R: radius of curvature (mm) when the coating on one side is removed, and in the above calculation, E: 125GPa, ν=0.38.
In addition, the radius of curvature R of the steel plate used in the above calculation is calculated using a test piece of width: 30 mm x length: 320 mm, with the width direction perpendicular to the horizontal plane, as shown in Figure 3, when the rolling direction is the length direction. (vertical), the free length L and the amount of warpage δ of the steel plate were measured, and these values were determined using the following formula.
R≒L 2 /2δ

上記測定の結果、No.2の条件の鋼板の被膜張力σは13MPaであったのに対し、歪取焼鈍を施したNo.3の条件の鋼板の被膜張力は15MPaであった。この結果から、歪取焼鈍には、まだ原因は十分に明らかとなっていないが、何らかのメカニズムで、絶縁被膜により付与される被膜張力を増大する効果があると推察された。 As a result of the above measurement, No. The coating tension σ of the steel plate under condition No. 2 was 13 MPa, whereas the coating tension σ of the steel sheet under condition No. 2 was 13 MPa. The coating tension of the steel plate under condition 3 was 15 MPa. From this result, it was inferred that strain relief annealing has the effect of increasing the coating tension imparted by the insulating coating through some mechanism, although the cause is not yet fully clear.

<実験2>
次いで、発明者らは、上記と同一の素材AおよびBを用意し、図1に示した積鉄心形変圧器の鉄心を構成するすべての鉄心部材を、鉄心部材の長さ方向が圧延方向となるようにして斜角切断機で切り出し、表3に示した処理を施した後、図1に示す積鉄心形変圧器の鉄心を組み立て、変圧器の鉄損W17/50を測定した。なお、上記斜角切断した鉄心部材の端面は、すべて剪断加工面のままとした。また、歪取焼鈍は、Ar雰囲気下において800℃の温度で2hr均熱保持する条件で行った。また、磁区細分化処理は、前述した<実験1>で素材Aに施したプラズマ炎を用いた方法・条件で行った。また、変圧器の鉄心は、外形500mm角で、幅100mmの鋼板で構成し、積み厚約15mm、鉄心重量約20kgとなるように、鋼板70枚を積層して作製した。この際の積層方法は、2枚重ねの5段ステップラップ積みとした。
<Experiment 2>
Next, the inventors prepared the same materials A and B as above, and made all the core members constituting the core of the stacked core transformer shown in FIG. 1 so that the length direction of the core members was in the rolling direction. After cutting with an angle cutter and performing the treatments shown in Table 3, the core of the stacked core transformer shown in FIG. 1 was assembled, and the core loss W 17/50 of the transformer was measured. Note that all the end faces of the obliquely cut iron core member were left as sheared surfaces. In addition, the strain relief annealing was performed under conditions of soaking and holding at a temperature of 800° C. for 2 hours in an Ar atmosphere. Further, the magnetic domain refining treatment was performed using the method and conditions using plasma flame, which were applied to the material A in <Experiment 1> described above. The transformer core was made of steel plates with an outer diameter of 500 mm square and a width of 100 mm, and was made by laminating 70 steel plates so that the stacked thickness was about 15 mm and the core weight was about 20 kg. The lamination method at this time was 5-step step wrap stacking of two sheets.

Figure 0007375728000003
Figure 0007375728000003

上記変圧器の鉄損値の測定結果を表3中に併記したが、上記表2の単板試験の場合と同様、斜角切断した後、歪取焼鈍を施し、その後、磁区細分化処理を施した場合(No.4)に、著しい鉄損の低減が認められた。 The measurement results of the iron loss value of the above transformer are also listed in Table 3. As in the case of the veneer test in Table 2 above, after cutting at an angle, strain relief annealing was performed, and then magnetic domain refining treatment was performed. In the case where the iron was applied (No. 4), a significant reduction in iron loss was observed.

<実験3>
次に、発明者らは、適正な歪取焼鈍の条件を調査する実験を行った。
磁区細分化処理が施されていない、表面にリン酸塩系の張力付与型絶縁被膜が被成された板厚0.23mmの方向性電磁鋼板(B=1.940T)から、剪断加工によって、圧延方向の長さ300mm、圧延直角方向の長さ100mmのSST試験片を、1セット30枚として数セット分切り出し、表4に示す種々の異なる条件で歪取焼鈍を模擬した熱処理を施した後、レーザービームを照射して磁区細分化処理を施し、その後、SST試験で鉄損W17/50を測定した。なお、上記剪断加工したSST試験片の端面は、すべて剪断加工面のままとした。また、レーザービームの照射は、ビーム径0.3mm、出力100W、圧延方向の繰り返し間隔5mmで実施し、レーザービームを照射した後、照射部分を目視観察した結果、いずれの試験片にも被膜損傷は確認されなかった。また、熱処理は、均熱時間が120sまでは、トンネル炉型の連続焼鈍炉を用い、均熱時間が1200sおよび7200sは、バッチ焼鈍炉を用いて行った。なお、上記熱処理は、いずれもAr雰囲気下で行った。また、歪取焼鈍後の磁区細分化処理は、前述した<実験1>で素材Aに施したプラズマ炎を用いた方法・条件で行った。
<Experiment 3>
Next, the inventors conducted an experiment to investigate appropriate stress relief annealing conditions.
A grain-oriented electrical steel sheet (B 8 = 1.940T) with a thickness of 0.23 mm, which has not been subjected to magnetic domain refining treatment and whose surface is coated with a phosphate-based tension-imparting insulating coating, is processed by shearing. Several sets of 30 SST specimens each having a length of 300 mm in the rolling direction and 100 mm in the perpendicular direction to the rolling direction were cut out and heat treated to simulate strain relief annealing under various different conditions shown in Table 4. After that, a laser beam was irradiated to perform magnetic domain refining treatment, and then an iron loss W 17/50 was measured by an SST test. Note that all the end faces of the sheared SST specimens were left as they were. In addition, the laser beam irradiation was carried out with a beam diameter of 0.3 mm, an output of 100 W, and a repetition interval of 5 mm in the rolling direction.After the laser beam irradiation, visual observation of the irradiated area revealed that there was no coating damage on any of the test pieces. was not confirmed. Further, the heat treatment was performed using a tunnel furnace type continuous annealing furnace for soaking times up to 120 s, and using a batch annealing furnace for soaking times of 1200 s and 7200 s. Note that the above heat treatments were all performed under an Ar atmosphere. Further, the magnetic domain refining treatment after strain relief annealing was performed using the method and conditions using plasma flame applied to material A in <Experiment 1> described above.

Figure 0007375728000004
Figure 0007375728000004

表4中に、熱処理条件とともに、30枚のSST試験片の鉄損平均値を示した。この結果から、熱処理温度に関しては、鉄損改善効果は、650℃では認められず、700℃以上の温度で認められた。しかし、熱処理温度を1000℃まで高めても鉄損改善効果はほぼ飽和してしまう。よって、本発明では歪取焼鈍の均熱温度は700℃以上1000℃の範囲とする。また、熱処理時間に関しては、700℃以上の温度では、均熱時間が1s以上で鉄損改善効果が認められた。ただし、熱処理時間が1200秒以上は、連続焼鈍には不向きで、バッチ焼鈍が必要になり、焼鈍後、速やかに磁区細分化処理を施すことが難しくなる。また、連続焼鈍に比べて格段の低鉄損化効果が得られるものではない。よって、本発明では、歪取焼鈍の均熱時間は、連続焼鈍に適した、1~1000sの範囲とする。 Table 4 shows the average value of iron loss of the 30 SST test pieces along with the heat treatment conditions. From this result, regarding the heat treatment temperature, the iron loss improvement effect was not observed at 650°C, but was observed at temperatures of 700°C or higher. However, even if the heat treatment temperature is increased to 1000° C., the iron loss improvement effect is almost saturated. Therefore, in the present invention, the soaking temperature for strain relief annealing is in the range of 700°C or higher and 1000°C. Regarding the heat treatment time, at a temperature of 700° C. or higher, an iron loss improvement effect was observed when the soaking time was 1 s or longer. However, a heat treatment time of 1200 seconds or more is not suitable for continuous annealing and requires batch annealing, making it difficult to perform magnetic domain refining treatment immediately after annealing. Furthermore, compared to continuous annealing, it is not possible to obtain a significantly lower iron loss effect. Therefore, in the present invention, the soaking time for strain relief annealing is set in a range of 1 to 1000 seconds, which is suitable for continuous annealing.

<実験4>
次に、発明者らは、歪取焼鈍における雰囲気が、鉄損に及ぼす影響を調査する実験を行った。
歪取焼鈍時の雰囲気を表5のように種々に変更したこと以外は、上記<実験3>と同様の条件で実験を行った。表5中に、雰囲気を含めた熱処理条件と、磁区細分化処理後の鉄損W17/50の測定結果を示した。
<Experiment 4>
Next, the inventors conducted an experiment to investigate the influence of the atmosphere during strain relief annealing on iron loss.
The experiment was conducted under the same conditions as <Experiment 3> above, except that the atmosphere during strain relief annealing was changed variously as shown in Table 5. Table 5 shows the heat treatment conditions including the atmosphere and the measurement results of the iron loss W 17/50 after the magnetic domain refining treatment.

Figure 0007375728000005
Figure 0007375728000005

表5からわかるように、歪取焼鈍は、窒素ガス、Arガス、減圧大気(30Pa)、減圧窒素(200Pa)および水素ガスの雰囲気下で行ったが、いずれも高い鉄損低減効果を示した。ただし、より詳細に比較すると、窒素雰囲気は、他の雰囲気と比較して若干、鉄損低減効果が劣っている。したがって、鉄損低減効果をより高めるためには、窒素以外の雰囲気とすることが好ましく、特に安定的に供給可能なAr雰囲気で行うことがより好ましい。また、上記表には示していないが、窒素ガスやArガス、水素ガス、DXガスあるいは、RXガスの単独または混合ガスの減圧雰囲気でも、同様の鉄損低減効果が認められた。なお、本発明における上記「減圧雰囲気」とは、10Pa以下の雰囲気をいう。ただし、減圧大気雰囲気の場合は、残留する酸素が絶縁張力被膜と反応し、被膜の張力付与効果を減じることから、10Pa以下とするのが好ましい。 As can be seen from Table 5, strain relief annealing was performed in nitrogen gas, Ar gas, reduced pressure atmosphere (30 Pa), reduced pressure nitrogen (200 Pa), and hydrogen gas atmospheres, all of which showed a high iron loss reduction effect. . However, when compared in more detail, the nitrogen atmosphere is slightly less effective in reducing iron loss than other atmospheres. Therefore, in order to further enhance the iron loss reduction effect, it is preferable to use an atmosphere other than nitrogen, and it is particularly preferable to use an Ar atmosphere that can be stably supplied. Further, although not shown in the above table, a similar iron loss reduction effect was observed in a reduced pressure atmosphere using nitrogen gas, Ar gas, hydrogen gas, DX gas, or RX gas alone or in a mixture. Note that the above-mentioned "reduced pressure atmosphere" in the present invention refers to an atmosphere of 10 4 Pa or less. However, in the case of a reduced pressure atmospheric atmosphere, the residual oxygen reacts with the insulating tension coating and reduces the tension imparting effect of the coating, so it is preferably 10 3 Pa or less.

<実験5>
次に、発明者らは、レーザービーム照射で磁区細分化処理を施す際の部材温度の影響を調査するため、レーザービーム照射時の部材温度を種々に変化させて、被膜損傷の有無と鉄損W17/50に及ぼす影響を調査し、その結果を表6に示した。ここで、表6中に示したレーザービーム径とは、最大強度の1/e幅のことをいう。また、被膜損傷の有無は、目視判定で評価し、損傷が認められた場合は×、認められない場合は〇で示した。また、鉄損W17/50は、圧延方向の長さが300mm、圧延直角方向の長さが100mmの試験片30枚をSST試験したときの平均値である。
<Experiment 5>
Next, in order to investigate the influence of member temperature when performing magnetic domain refining treatment by laser beam irradiation, the inventors varied the member temperature during laser beam irradiation to determine the presence or absence of coating damage and iron loss. The effect on W 17/50 was investigated and the results are shown in Table 6. Here, the laser beam diameter shown in Table 6 refers to 1/e 2 width of the maximum intensity. In addition, the presence or absence of coating damage was evaluated by visual judgment, and when damage was observed, it was indicated by ×, and when no damage was observed, it was indicated by ○. Moreover, iron loss W 17/50 is an average value when 30 test pieces having a length in the rolling direction of 300 mm and a length in the direction perpendicular to the rolling direction of 100 mm are subjected to an SST test.

Figure 0007375728000006
Figure 0007375728000006

表6の結果から、レーザービーム出力が小さいと、鉄損低減効果が十分に得られないこと、一方、レーザービーム出力を大きくし過ぎると、鉄損低減効果は増大するが、被膜損傷を起こすようになること、しかし、レーザービームを照射する鉄心部材の温度を高めると、高いレーザー出力までレーザービーム照射による被膜損傷が生じない傾向があることがわかる。したがって、レーザービーム照射で磁区細分化処理する場合は、前工程の歪取焼鈍が完了し、鉄心部材の温度が完全に下がり切るまでの間に行えば、被膜損傷を起こすことなく、高出力でレーザービームを照射することができ、ひいては、磁区細分化処理の効果をより高め、より低い鉄損レベルに到達することが可能となる。具体的には、レーザービームの照射は、部材温度が50℃以上のときに行うのが好ましい。しかし、部材温度が過度に高い場合には、歪みが十分に導入されず、磁区細分化効果が得られないため、レーザービームの照射は、部材温度が600℃以下のときに行う必要がある。
本発明は、上記の新規な知見に基づき開発したものである。
From the results in Table 6, it can be seen that if the laser beam output is small, the iron loss reduction effect cannot be sufficiently obtained.On the other hand, if the laser beam output is too large, the iron loss reduction effect increases, but it may cause coating damage. However, it can be seen that when the temperature of the iron core member to which the laser beam is irradiated is raised, there is a tendency for coating damage due to laser beam irradiation to not occur up to high laser output. Therefore, when performing magnetic domain refining treatment by laser beam irradiation, it is best to perform the treatment after the strain relief annealing process in the previous process is completed and until the temperature of the core member has completely decreased, without causing coating damage and at high output. It is possible to irradiate a laser beam, which in turn makes it possible to further enhance the effect of the magnetic domain refining process and reach a lower core loss level. Specifically, the laser beam irradiation is preferably performed when the member temperature is 50° C. or higher. However, if the member temperature is excessively high, strain will not be sufficiently introduced and no magnetic domain refining effect will be obtained, so laser beam irradiation must be performed when the member temperature is 600° C. or lower.
The present invention was developed based on the above novel findings.

次に、本発明の積鉄心形変圧器の鉄心部材の製造方法について、具体的に説明する。
<鉄心部材の素材>:厚さ0.30mm以下の軟磁性材料
本発明の積鉄心形変圧器の鉄心に用いる素材は、変圧器の鉄心に一般に用いられている軟磁性材料であればよく、例えば、方向性電磁鋼板、純鉄系軟磁性材料を含めた無方向性電磁鋼板、アモルファス合金薄帯などを用いることができる。素材の形態は、コイル状であっても、予めシート状に剪断されたものであってもよい。ただし、厚さは、低鉄損を達成するため、0.30mm以下とする。好ましくは0.27mm以下である。
Next, a method for manufacturing a core member for a stacked core transformer according to the present invention will be specifically described.
<Material of iron core member>: Soft magnetic material with a thickness of 0.30 mm or less The material used for the iron core of the stacked core transformer of the present invention may be any soft magnetic material that is generally used for the iron core of a transformer. For example, grain-oriented electrical steel sheets, non-oriented electrical steel sheets including pure iron-based soft magnetic materials, amorphous alloy ribbons, etc. can be used. The material may be in the form of a coil or may be pre-sheared into a sheet. However, the thickness should be 0.30 mm or less in order to achieve low iron loss. Preferably it is 0.27 mm or less.

なお、上記軟磁性材料が方向性電磁鋼板である場合、磁区細分化処理による鉄損改善効果をより高めるため、磁束密度が高い鋼板であることが望ましく、例えば、Bで1.90T以上であることが好ましい。また、鉄損特性を特に重視する場合には、鋼板表面に溝や地鉄溶融部などを形成した、耐熱型の磁区細分化処理を施した鋼板を用いることが好ましい。 In addition, when the above-mentioned soft magnetic material is a grain-oriented electrical steel sheet, it is desirable to use a steel sheet with a high magnetic flux density in order to further enhance the iron loss improvement effect by magnetic domain refining treatment. It is preferable that there be. In addition, when placing particular importance on iron loss characteristics, it is preferable to use a steel plate that has been subjected to heat-resistant magnetic domain refining treatment in which grooves, base metal fusion parts, etc. are formed on the surface of the steel plate.

また、素材の形態がコイル状のものを用いる場合は、剪断加工の前にスリット加工などの前工程が必要になり、プロセス全体としての素材歩留まりが低下する。また、コイルを払い出し、スリットしてからコイルに巻き取るスリット加工においては、素材の耳波などの形状不良は、蛇行や板破断を助長するため、好ましくない。したがって、素材コイルの形状は良好であることが好ましく、特に、コイル幅端部の平坦度は、幅中央部に比較して同等以上であることが好ましい。 Furthermore, when using a material in the form of a coil, a pre-process such as slitting is required before shearing, which reduces the yield of the material as a whole process. Furthermore, in the slitting process in which a coil is taken out, slit, and then wound into a coil, defects in the shape of the material, such as ear waves, are undesirable because they promote meandering and plate breakage. Therefore, it is preferable that the shape of the raw coil is good, and in particular, it is preferable that the flatness of the width end portion of the coil is equal to or higher than that of the width center portion.

なお、スリットコイルから払い出した素材を、そのまま後述する斜角切断により鉄心部材を切り出す場合には、スリット前の素材コイルが耳波などの形状不良を有していても、形状不良が無い場合と同等に加工することが可能である。ただし、より高い精度で斜角切断を行う場合には、斜角切断前にコイル端部をトリミングするのが好ましい。 In addition, when cutting out the iron core member from the material discharged from the slit coil by diagonal cutting, which will be described later, even if the material coil before slitting has a shape defect such as an ear wave, it is assumed that there is no shape defect. It is possible to process them equally. However, if the bevel cutting is to be performed with higher precision, it is preferable to trim the ends of the coil before the bevel cutting.

鉄心部材の切出し:剪断加工
上記素材である方向性電磁鋼板から、積鉄心形変圧器用の鉄心部材を切り出す方法は、剪断加工とすることが好ましい。剪断加工としては、先述した実験において採用した、現時点で最も一般的な方法である斜角切断(剪断機やライン内のスイングシャーを利用)や、金型を用いたプレス加工(打抜加工)等が挙げられる。ただし、レーザービームを用いたレーザー切断、ワイヤーカット切断などの方法を用いてもよい。また、積鉄心部材を積層する際に各部材を位置決めするため、鉄心部材内部に穴開け加工を施すことも、歪取焼鈍前の本工程において実施するのが望ましい。本発明の積鉄心形変圧器用の鉄心部材の製造装置には、これらの加工を行う加工設備が設けられる。
Cutting out the core member: shearing process The method for cutting out the core member for a stacked core transformer from the grain-oriented electrical steel sheet, which is the above-mentioned material, is preferably shearing process. For shearing, there are bevel cutting (using a shear or in-line swing shear), which is the most common method at present, and press processing (punching) using a mold, which was adopted in the experiment mentioned above. etc. However, methods such as laser cutting using a laser beam and wire cut cutting may also be used. Further, in order to position each member when laminating the stacked core members, it is desirable to perform hole drilling inside the core member in this step before strain relief annealing. The apparatus for manufacturing a core member for a stacked core transformer according to the present invention is provided with processing equipment for performing these processes.

なお、本発明の技術を適用する積鉄心形変圧器の鉄心には、特段の制限はないが、切り出し時の生産性を考慮すると、鉄心を構成する各部材の長さが100mm以上のものであることが好ましい。 There are no particular restrictions on the core of the stacked core transformer to which the technology of the present invention is applied, but in consideration of productivity during cutting, each member constituting the core must have a length of 100 mm or more. It is preferable that there be.

歪取焼鈍:700℃以上1000℃以下×1s以上1000s以下
次いで、上記切り出した鉄心部材は、切り出し時に導入された加工歪を除去するために歪取焼鈍を施す。この歪取焼鈍は、前述した<実験3>の結果から、700℃以上1000℃以下の温度に1s以上1000s以下の時間均熱保持する条件とするのが好ましい。上記温度が700℃未満または保持時間が1s未満では、鉄損低減効果が十分に得られず、一方、1000℃超えまたは1000s超えでは、上記効果が飽和するだけでなく、生産性やエネルギーコストの面で不利となる。好ましい均熱温度は750℃以上900℃以下の範囲であり、好ましい均熱時間は2s以上120s以下の範囲である。
Strain relief annealing: 700° C. or higher and 1000° C. or lower x 1 s or more and 1000 s or less Next, the cut out iron core member is subjected to strain relief annealing to remove the processing strain introduced at the time of cutting. From the results of the above-mentioned <Experiment 3>, this strain relief annealing is preferably performed under conditions of soaking and holding at a temperature of 700° C. or more and 1000° C. or less for a period of 1 s or more and 1000 s or less. If the above temperature is less than 700°C or the holding time is less than 1 s, the iron loss reduction effect cannot be sufficiently obtained, whereas if it exceeds 1000°C or 1000 s, not only the above effect is saturated, but also productivity and energy costs are reduced. disadvantageous in terms of A preferable soaking temperature is in the range of 750° C. or more and 900° C. or less, and a preferable soaking time is in the range of 2 seconds or more and 120 seconds or less.

また、歪取焼鈍の雰囲気は、窒素ガス、水素ガスおよびArガスのいずれかの単体ガス、上記1以上の混合ガスの雰囲気、あるいは、DXガスまたはRXガスの雰囲気、上記いずれかのガスの真空度が10Pa以下である減圧雰囲気、および、真空度が10Pa以下である減圧大気雰囲気のいずれかの雰囲気下で施すことが好ましい。なお、本発明における上記「減圧雰囲気」とは、10Pa以下の雰囲気をいう。ただし、減圧大気雰囲気の場合は、残留する酸素が絶縁張力被膜と反応し、被膜の張力付与効果を減じることから、10Pa以下とするのが好ましい。 In addition, the atmosphere for strain relief annealing is an atmosphere of a single gas of nitrogen gas, hydrogen gas, or Ar gas, an atmosphere of a mixed gas of one or more of the above, an atmosphere of DX gas or RX gas, or a vacuum of any of the above gases. It is preferable to perform the treatment under either a reduced pressure atmosphere with a degree of vacuum of 10 4 Pa or less, or a reduced pressure atmospheric atmosphere with a degree of vacuum of 10 3 Pa or less. Note that the above-mentioned "reduced pressure atmosphere" in the present invention refers to an atmosphere of 10 4 Pa or less. However, in the case of a reduced pressure atmospheric atmosphere, the residual oxygen reacts with the insulating tension coating and reduces the tension imparting effect of the coating, so it is preferably 10 3 Pa or less.

ここで、上記歪取焼鈍を施す熱処理炉は、切り出した鉄心部材をコンベヤー(搬送ベルト)上に乗せて搬送しながら連続的に熱処理を施すことができるトンネル型の炉を用いるのが好ましい。また、熱処理炉の加熱帯には、生産性や設備の小型化を考慮し、誘導加熱装置を設置してもよい。 Here, as the heat treatment furnace for performing the strain relief annealing, it is preferable to use a tunnel type furnace that can continuously perform heat treatment while transporting the cut out iron core member on a conveyor (conveyor belt). Further, in consideration of productivity and downsizing of equipment, an induction heating device may be installed in the heating zone of the heat treatment furnace.

また、上記熱処理後の冷却方法は、炉冷または空冷としてもよいが、設備の長大化を防止する観点から、ガス冷却設備やミスト冷却設備等を設置して強制冷却を行ってもよい。この際、鉄心部材内や鉄心部材と搬送ベルト間の温度差が大きくならないようにすることが重要である。温度差があると、鉄心部材に熱歪が発生し、鉄損を増大させる原因となるからである。因みに、上記の温度差やメンテナンス性の観点からは、ミスト冷却より、ガス冷却の方が好ましい。 Further, the cooling method after the heat treatment may be furnace cooling or air cooling, but from the viewpoint of preventing the equipment from becoming too long, forced cooling may be performed by installing gas cooling equipment, mist cooling equipment, or the like. At this time, it is important to prevent the temperature difference within the core member or between the core member and the conveyor belt from becoming large. This is because if there is a temperature difference, thermal strain will occur in the iron core member, causing an increase in iron loss. Incidentally, from the viewpoint of the above-mentioned temperature difference and maintainability, gas cooling is more preferable than mist cooling.

磁区細分化処理
次いで、上記歪取焼鈍後の鉄心部材には、レーザービームを照射して非耐熱型の磁区細分化処理を施す。非耐熱型の磁区細分化処理の方法としては、レーザービームを照射する方法の他に、電子ビームを照射する方法、プラズマ炎を用いる方法、微小突起ロールを用いる方法などが知られているが、鉄損低減効果が大きく、かつ、設備的にも手軽な、レーザービームを照射する方法が最も有利である。
Magnetic domain refining treatment Next, the iron core member after the stress relief annealing is subjected to a non-heat resistant magnetic domain refining treatment by irradiating it with a laser beam. In addition to the laser beam irradiation method, known methods for non-heat-resistant magnetic domain refining processing include an electron beam irradiation method, a method using a plasma flame, a method using a micro-protrusion roll, etc. The most advantageous method is to use a laser beam, which has a large iron loss reduction effect and is easy to use in terms of equipment.

ここで、レーザービーム照射で磁区細分化処理を施す場合は、鉄心部材をコンベヤー上で整列させる必要がある。例えば、歪取焼鈍炉から排出された鉄心部材をコンベヤー上でレーザービーム照射する場合、歪取焼鈍の前あるいは後において、サイドガイド等を用いて、鉄心部材の長さ方向(素材鋼板の圧延方向)とコンベヤーの搬送方向とが一致するように整列させる、その上で、整列させた鉄心部材の位置情報に基づいて、レーザービーム照射を施すことが重要である。 Here, when performing magnetic domain refining treatment by laser beam irradiation, it is necessary to align the iron core members on the conveyor. For example, when a core member discharged from a strain relief annealing furnace is irradiated with a laser beam on a conveyor, before or after strain relief annealing, a side guide or the like is used to ) and the transport direction of the conveyor, and then apply laser beam irradiation based on the positional information of the aligned iron core members.

また、レーザービーム照射で磁区細分化処理を施すときは、鉄心部材が冷却を完了するまでの間に行えばよいが、前述した<実験5>の結果が示すように、鉄心部材の温度が高いほど、レーザービーム照射による被膜損傷を抑制することができ、高出力でのレーザービーム照射が可能となるので、十分な鉄損低減効果を得ることが可能となる。したがって、レーザービーム照射による磁区細分化処理は、鉄心部材の温度が50℃以上のときに行う。ただし、部材温度が高過ぎると、レーザービーム照射による熱歪が回復等で消失し、歪を十分に導入することができなくなるので、上限温度は600℃程度とする。レーザービームの照射温度は60以上が好ましく、300℃以下が好ましい。 In addition, when performing magnetic domain refining treatment by laser beam irradiation, it can be carried out until the core member has finished cooling, but as shown in the results of <Experiment 5> mentioned above, the temperature of the core member is high. The more damage to the coating caused by laser beam irradiation can be suppressed and the laser beam irradiation can be performed at high power, making it possible to obtain a sufficient iron loss reduction effect. Therefore, the magnetic domain refining process by laser beam irradiation is performed when the temperature of the iron core member is 50° C. or higher. However, if the member temperature is too high, the thermal strain caused by laser beam irradiation will disappear due to recovery etc., making it impossible to introduce sufficient strain, so the upper limit temperature is set at about 600°C. The irradiation temperature of the laser beam is preferably 60 °C or higher, and preferably 300°C or lower.

また、磁区細分化処理に用いるレーザーの種類としては、YAGやCO、ファイバーレーザー等、公知のものを用いることができる。しかし、軟磁性材料として方向性電磁鋼板を用いる場合、レーザービームのビーム径が大きいと、熱影響部が大きくなって、鉄損低減効果が小さくなるため、ビーム径は小さいほど有利である。具体的には、ビーム径は、0.3mm以下が好ましく、0.2mm以下がより好ましい。斯かる観点から、軟磁性材料として方向性電磁鋼板の場合には、小径化が容易なファイバーレーザーを用いることが好ましい。ここで、上記ビーム径とは、本発明では、レーザービームの走査方向に直交する方向(走査方向が圧延直角方向の場合、圧延方向)の径のことをいい、ビーム断面が楕円状のときは、レーザービームの走査方向と平行な方向(走査方向が圧延直角方向の場合、圧延直角方向)の径は、上記値より大きくてもよい。 Further, as the type of laser used for the magnetic domain refining process, known lasers such as YAG, CO 2 , fiber laser, etc. can be used. However, when using a grain-oriented electrical steel sheet as a soft magnetic material, if the beam diameter of the laser beam is large, the heat-affected zone becomes large and the iron loss reduction effect becomes small, so it is more advantageous to have a smaller beam diameter. Specifically, the beam diameter is preferably 0.3 mm or less, more preferably 0.2 mm or less. From this point of view, in the case of grain-oriented electrical steel sheet as the soft magnetic material, it is preferable to use a fiber laser whose diameter can be easily reduced. Here, in the present invention, the above-mentioned beam diameter refers to the diameter in the direction perpendicular to the scanning direction of the laser beam (in the rolling direction when the scanning direction is perpendicular to the rolling direction), and when the beam cross section is elliptical, The diameter in the direction parallel to the scanning direction of the laser beam (in the direction perpendicular to rolling when the scanning direction is perpendicular to rolling) may be larger than the above value.

また、磁区細分化処理を施すには、レーザービームをコンベヤーの搬送方向を横切る方向に、かつ、繰り返し走査して照射し、これによって、長さ方向(圧延方向)に1~30mmの間隔(RD間隔)を開けて熱歪領域を形成することが必要である。上記熱歪領域の圧延方向の間隔が1mmを下回ると、レーザービーム照射による熱歪が過度に導入され、鉄損低減効果が小さくなるばかりでなく、生産性が低下する原因ともなる。一方、30mmを超えると、十分な鉄損低減効果が得られなくなる。好ましくは3~15mmの範囲である。レーザービームの走査方向とコンベヤーの搬送方向のなす角度(0~90°を取り得る)は、十分な磁区細分化効果を得るためには45~90°の範囲とすることが好ましい。 In addition, in order to perform magnetic domain refining processing, a laser beam is repeatedly scanned and irradiated in a direction transverse to the conveying direction of the conveyor, thereby creating an interval (RD) of 1 to 30 mm in the length direction (rolling direction). It is necessary to form a thermally strained region with an interval (interval). If the distance between the thermally strained regions in the rolling direction is less than 1 mm, thermal strain due to laser beam irradiation is excessively introduced, which not only reduces the effect of reducing iron loss but also causes a decrease in productivity. On the other hand, if it exceeds 30 mm, a sufficient iron loss reduction effect cannot be obtained. Preferably it is in the range of 3 to 15 mm. The angle between the scanning direction of the laser beam and the conveying direction of the conveyor (which can range from 0 to 90 degrees) is preferably in the range of 45 to 90 degrees in order to obtain a sufficient magnetic domain refining effect.

また、レーザービームの照射は、鉄心部材の表面上を全幅に亘って途切れることなく走査するのが好ましい。レーザービームの未照射部があると、その部分は磁区細分化効果が得られないからである。 Moreover, it is preferable that the laser beam irradiation scans the surface of the iron core member over the entire width without interruption. This is because if there is a part that is not irradiated with the laser beam, the magnetic domain refining effect cannot be obtained in that part.

方向性電磁鋼板の製品コイル(素材鋼板)に対して磁区細分化処理を施していた従来の方法では、1m程度の幅を複数に分割し、複数のレーザービーム照射装置で磁区細分化処理を施していたため、素材の幅方向でビーム照射の欠落部が存在し、鉄損を低減する観点からは好ましくない状態であった。しかし、本発明では、レーザービームの照射対象が、切り出した鉄心部材であるため、ビーム照射間欠部が生じることなく処理することができる。 The conventional method of performing magnetic domain refining on a product coil (raw material steel sheet) of grain-oriented electrical steel sheet is to divide the coil into multiple pieces with a width of about 1 m and perform magnetic domain refining using multiple laser beam irradiation devices. As a result, there were gaps in the beam irradiation in the width direction of the material, which was an unfavorable condition from the perspective of reducing iron loss. However, in the present invention, since the laser beam irradiation target is the cut-out iron core member, processing can be performed without causing intermittent beam irradiation.

なお、レーザービームをコンベヤーの搬送方向に直交する方向に走査する手段としては、ポリゴンミラースキャナーやガルバノスキャナー等、公知の方法が利用できる。また、所望の圧延方向の処理間隔を得るためには、鉄心部材の搬送速度に同期させて、上記のスキャナーを駆動する必要がある。その他の照射条件であるレーザービームの出力や、走査速度、ビームフォーカス等は、所望の鉄損あるいは表面状態が得られるよう、事前に実験を行い、最適条件を決定しておくことが好ましい。 Note that as a means for scanning the laser beam in a direction perpendicular to the conveyance direction of the conveyor, a known method such as a polygon mirror scanner or a galvano scanner can be used. Furthermore, in order to obtain a desired processing interval in the rolling direction, it is necessary to drive the scanner described above in synchronization with the transport speed of the core member. As for other irradiation conditions such as laser beam output, scanning speed, beam focus, etc., it is preferable to conduct experiments in advance to determine the optimum conditions so that the desired iron loss or surface condition can be obtained.

また、磁区細分化処理を施す鉄心部材は、鉄心を構成する各部材それぞれの形状・寸法が異なるため、事前に鉄心部材の形状・寸法を認識(把握)し、その結果をレーザー加工システムにフィードフォワードし、鉄心部材の形状・寸法に応じてレーザービーム照射を施すようにすることが好ましい。 In addition, since the core members subjected to magnetic domain refining processing have different shapes and dimensions, the shape and dimensions of the core members are recognized (understood) in advance and the results are fed into the laser processing system. It is preferable to forward the laser beam irradiation and apply laser beam irradiation according to the shape and dimensions of the iron core member.

さらに、本発明においては、より鉄損低減効果を得るため、上記機能を活用し、1つの鉄心部材内の部位に応じてレーザービームの照射条件を変更することが好ましい。例えば、図2は、鉄心部材の部位に応じて、圧延方向(搬送方向)のレーザービームの走査間隔を変更しない例(図2(a))と変更した例(図2(b))を示したものである。変更する照射条件としては、上記した圧延方向の走査間隔の他に、レーザービームの出力や走査速度、圧延方向とビームの走査方向とがなす角のうちの少なくも1つ以上の条件を挙げることができる。このような1つの鉄心部材内での処理条件の変更は、鉄心部材を切り出した後に磁区細分化処理を施す本発明においてのみ実現可能である。 Furthermore, in the present invention, in order to further obtain the effect of reducing iron loss, it is preferable to utilize the above function and change the laser beam irradiation conditions depending on the location within one core member. For example, FIG. 2 shows an example in which the scanning interval of the laser beam in the rolling direction (conveyance direction) is not changed (FIG. 2(a)) and an example in which it is changed (FIG. 2(b)) depending on the location of the core member. It is something that In addition to the scanning interval in the rolling direction mentioned above, the irradiation conditions to be changed include at least one of the following: laser beam output, scanning speed, and the angle formed by the rolling direction and the beam scanning direction. I can do it. Such changes in processing conditions within one core member can only be realized in the present invention, in which the magnetic domain refining process is performed after cutting out the core member.

鉄心の組立
磁区細分化処理を施した鉄心部材は、通常公知の方法で、変圧器の鉄心に組み立てればよい。ただし、磁区細分化処理を施した鉄心部材は、鉄心組立までの間において、剪断加工等による加工歪が導入されることがないようにするのが望ましい。
Assembling the core The core member subjected to the magnetic domain refining process may be assembled into the core of the transformer using a commonly known method. However, it is desirable that the core member subjected to the magnetic domain refining treatment is not subjected to processing strain due to shearing or the like until the core is assembled.

板厚が0.23mmで、耐熱型の磁区細分化処理を施した方向性電磁鋼板A(B:1.902T)と、磁区細分化処理が施されていない方向性電磁鋼板B(B:1.935T)の方向性電磁鋼板から、図1に示した形状・寸法を有する三相三脚の積鉄心形変圧器用の鉄心部材を、表7に示したように、剪断加工(斜角切断)とワイヤーカット切断の2つの方法により採取した。なお、一部の条件では、形状Cの部材の中心部に、金型を使った穴抜加工法で、直径3mmの穴開け加工を行った。
次いで、上記切り出した鉄心部材を、金属メッシュベルトからなる搬送ベルト上に、部材同士が重ならないよう、かつ、部材の圧延方向が搬送方向に一致するようにサイドガイトで整列させた後、トンネル型の熱処理炉内に搬送し、歪取焼鈍を施した。上記熱処理炉の加熱帯では、700℃までを誘導加熱装置で加熱し、均熱帯では、表7に記載した雰囲気下で、表7に示した温度と時間の均熱処理を施した後、600℃までの冷却は、上記と同じ雰囲気下で炉冷し、600℃以下の温度域の冷却は、表7に示した雰囲気下で放冷した。この際、上記冷却時の部材温度が表7に示した温度になった時点において、各鉄心部材の表面に、表7に記載した条件でレーザービームを照射し、磁区細分化処理を施した。上記レーザービームには、ファイバービームを用い、ガルバノスキャナーを用いて鉄心部材の幅方向(素材鋼板の圧延方向と直角方向)の全幅に亘って照射した。この際、一部の部材に対しては、部材位置に応じてレーザービームの照射パターンを変更した。なお、上記磁区細分化処理後の部材表面を目視観察した結果、いずれの条件においてもレーザービーム照射による被膜損傷は認められなかった。
次いで、上記磁区細分化を施した鉄心部材を用いて、前述した図1に示した三相三脚の積鉄心形変圧器用の鉄心を組み立てた。この鉄心の組み立ては、2枚重ねの5段ステップラップ積みとし、70枚の鉄心部材を、積み厚が約15mm、鉄心重量が約20kgとなるよう積層した。
次いで、上記組み立てた変圧器の鉄心に、120°位相をずらした三相で励磁し、磁束密度1.7Tにおける変圧器の鉄損W17/50を測定し、その結果を表7中に併記した。
Grain-oriented electrical steel sheet A (B 8 : 1.902T) with a plate thickness of 0.23 mm and subjected to heat-resistant magnetic domain refining treatment, and grain-oriented electrical steel sheet B (B 8 As shown in Table 7, a core member for a three-phase tripod stacked core transformer having the shape and dimensions shown in Fig. ) and wire cut cutting. Note that under some conditions, a hole with a diameter of 3 mm was punched in the center of the member having a shape C using a punching method using a mold.
Next, the cut out iron core members are aligned on a conveyor belt made of a metal mesh belt using side guides so that the members do not overlap each other and the rolling direction of the members coincides with the conveyance direction. It was transported into a heat treatment furnace and subjected to strain relief annealing. In the heating zone of the above heat treatment furnace, the temperature is heated to 700℃ using an induction heating device, and in the soaking zone, after soaking at the temperature and time shown in Table 7 in the atmosphere listed in Table 7, the temperature is raised to 600℃. The cooling up to 600° C. was carried out by furnace cooling under the same atmosphere as above, and the cooling in the temperature range below 600° C. was carried out by standing to cool under the atmosphere shown in Table 7. At this time, when the member temperature during cooling reached the temperature shown in Table 7, the surface of each core member was irradiated with a laser beam under the conditions shown in Table 7 to perform magnetic domain refining treatment. A fiber beam was used as the laser beam, and a galvano scanner was used to irradiate the entire width of the core member in the width direction (direction perpendicular to the rolling direction of the raw steel plate). At this time, the irradiation pattern of the laser beam was changed for some members depending on the member position. Note that as a result of visual observation of the surface of the member after the above magnetic domain refining treatment, no damage to the coating due to laser beam irradiation was observed under any conditions.
Next, an iron core for the three-phase tripod stacked core transformer shown in FIG. 1 described above was assembled using the iron core member subjected to the magnetic domain refining. This core was assembled by stacking 70 core members in a 5-step step-lap stack of two layers so that the stacked thickness was about 15 mm and the core weight was about 20 kg.
Next, the iron core of the transformer assembled above was excited with three phases with a phase shift of 120°, and the iron loss W 17/50 of the transformer at a magnetic flux density of 1.7T was measured, and the results are also listed in Table 7. did.

Figure 0007375728000007
Figure 0007375728000007

上記表の結果から、本発明の条件を満たした鉄心部材から組み立てられた変圧器の鉄心は、鉄損特性に優れていることがわかる。特に、鉄心部材内で、位置により磁区細分化の処理パターンを変更した部材から組み立てた変圧器の鉄心は、より優れた鉄損特性を有していることがわかる。 From the results in the table above, it can be seen that the transformer core assembled from core members that meet the conditions of the present invention has excellent core loss characteristics. In particular, it can be seen that a transformer core assembled from members in which the processing pattern of magnetic domain refining is changed depending on the position within the core member has better iron loss characteristics.

本発明の技術は、三相三脚の積鉄心形変圧器用の鉄心部材のみならず、単相の積鉄心形変圧器用の鉄心部材やリアクトルの積鉄心部材など、積み重ねて使用される鉄心部材にも適用することができる。
The technology of the present invention is applicable not only to core members for three-phase tripod stacked core transformers, but also to core members used in stacks, such as core members for single-phase stacked core transformers and stacked core members for reactors. Can be applied.

Claims (6)

厚さが0.30mm以下の軟磁性材料から、鉄心部材を切り出して積鉄心形変圧器の鉄心部材を製造する方法において、
上記切り出した鉄心部材に700℃以上1000℃以下の温度に1秒以上1000秒以下保持する歪取焼鈍を施した後、該鉄心部材が冷却される際の250℃から50℃までの間に、該鉄心部材の圧延方向を横切る方向に、かつ、圧延方向に1~30mmの間隔を開けて繰り返しレーザービームを照射し、磁区細分化処理を施すことを特徴とする積鉄心形変圧器用鉄心部材の製造方法。
In a method for manufacturing a core member of a stacked core transformer by cutting out a core member from a soft magnetic material having a thickness of 0.30 mm or less,
After applying strain relief annealing to the cut out iron core member by holding it at a temperature of 700°C or more and 1000°C or less for 1 second or more and 1000 seconds or less, the iron core member is cooled from 250 °C to 50°C, An iron core member for a stacked core transformer characterized in that a laser beam is repeatedly irradiated in a direction transverse to the rolling direction of the iron core member at intervals of 1 to 30 mm in the rolling direction to perform magnetic domain refining treatment. Production method.
上記の鉄心部材の切り出しを、剪断加工で行うことを特徴とする請求項1に記載の積鉄心形変圧器用鉄心部材の製造方法。 2. The method of manufacturing a core member for a stacked core transformer according to claim 1, wherein the core member is cut out by shearing. 上記歪取焼鈍を、窒素ガス、水素ガスおよびArガスのいずれかの単体ガス、上記1以上の混合ガスの雰囲気、あるいは、DXガスまたはRXガスの雰囲気、上記いずれかのガスの真空度が10Pa以下である減圧雰囲気、および、真空度が10Pa以下である減圧大気雰囲気のいずれかの雰囲気下で施すことを特徴とする請求項1または2に記載の積鉄心形変圧器用鉄心部材の製造方法。 The strain relief annealing is carried out in an atmosphere of a single gas such as nitrogen gas, hydrogen gas and Ar gas, a mixed gas of one or more of the above gases, or an atmosphere of DX gas or RX gas, and the degree of vacuum of any of the above gases is 10 The core member for a stacked core transformer according to claim 1 or 2, wherein the core member is applied in either a reduced pressure atmosphere having a degree of vacuum of 4 Pa or less, or a reduced pressure atmospheric atmosphere having a degree of vacuum of 10 3 Pa or less. manufacturing method. 上記歪取焼鈍後の鉄心部材にレーザービームを照射して磁区細分化処理をする際、鉄心部材の部位に応じて、レーザービームの出力、走査速度、圧延方向の繰り返し間隔および圧延方向とレーザービームの走査方向とがなす角のうちの少なくとも1つを変化させることを特徴とする請求項1~3のいずれか1項に記載の積鉄心形変圧器用鉄心部材の製造方法。 When performing magnetic domain refining treatment by irradiating the iron core member after strain relief annealing with a laser beam, depending on the part of the iron core member, the output of the laser beam, the scanning speed, the repetition interval in the rolling direction, the rolling direction and the laser beam The method for manufacturing a core member for a stacked core transformer according to any one of claims 1 to 3, characterized in that at least one of the angles formed with the scanning direction is changed. 上記軟磁性材料は、耐熱型磁区細分化処理が施された方向性電磁鋼板であることを特徴とする請求項1~4のいずれか1項に記載の積鉄心形変圧器用鉄心部材の製造方法。 The method for manufacturing a core member for a stacked core transformer according to any one of claims 1 to 4, wherein the soft magnetic material is a grain-oriented electrical steel sheet subjected to heat-resistant magnetic domain refining treatment. . 厚さが0.30mm以下の軟磁性材料から積鉄心形変圧器の鉄心となる部材を切り出すための加工設備と、
上記切り出した鉄心部材を、整列し、搬送するコンベヤーと、
700℃以上1000℃以下の温度に1秒以上1000秒以下保持する歪取焼鈍を施すトンネル型の焼鈍炉と、
必要に応じて、上記歪取焼鈍後の鉄心部材を強制冷却する冷却設備と、
上記コンベヤーの搬送速度に同期して各鉄心部材の圧延方向を横切る方向に、かつ、圧延方向に1~30mmの間隔を開けてレーザービームを繰り返して照射するレーザービーム照射装置とを具備する積鉄心形変圧器用鉄心部材の製造装置。
Processing equipment for cutting out a member that will become the core of a stacked core transformer from a soft magnetic material with a thickness of 0.30 mm or less;
a conveyor that aligns and conveys the cut out iron core members;
A tunnel-type annealing furnace that performs strain relief annealing held at a temperature of 700°C or more and 1000°C or less for 1 second or more and 1000 seconds or less;
If necessary, cooling equipment for forcibly cooling the iron core member after the strain relief annealing ;
A stacked iron core comprising a laser beam irradiation device that repeatedly irradiates a laser beam in a direction transverse to the rolling direction of each core member at intervals of 1 to 30 mm in the rolling direction in synchronization with the conveyance speed of the conveyor. Manufacturing equipment for core parts for transformers.
JP2020179113A 2020-10-26 2020-10-26 Manufacturing method and manufacturing equipment for core members for stacked core transformers Active JP7375728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020179113A JP7375728B2 (en) 2020-10-26 2020-10-26 Manufacturing method and manufacturing equipment for core members for stacked core transformers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020179113A JP7375728B2 (en) 2020-10-26 2020-10-26 Manufacturing method and manufacturing equipment for core members for stacked core transformers

Publications (2)

Publication Number Publication Date
JP2022070085A JP2022070085A (en) 2022-05-12
JP7375728B2 true JP7375728B2 (en) 2023-11-08

Family

ID=81534390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020179113A Active JP7375728B2 (en) 2020-10-26 2020-10-26 Manufacturing method and manufacturing equipment for core members for stacked core transformers

Country Status (1)

Country Link
JP (1) JP7375728B2 (en)

Also Published As

Publication number Publication date
JP2022070085A (en) 2022-05-12

Similar Documents

Publication Publication Date Title
US9659693B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
US20220212289A1 (en) Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
JP5593942B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP2615184A1 (en) Oriented electromagnetic steel sheet and process for production thereof
JP2018037572A (en) Wound core, and manufacturing method of wound core
JP2022027234A (en) Directional electromagnetic steel plate
US20120028069A1 (en) Grain-oriented electrical steel sheet and producing method therefor
JP6945969B2 (en) Stacked iron core and its strain-removing annealing method and manufacturing method
MX2013009016A (en) Method for producing a grain-oriented flat steel product.
JP6838321B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP7375728B2 (en) Manufacturing method and manufacturing equipment for core members for stacked core transformers
JPH01281709A (en) Method of obtaining heat-resistant fractionalized magnetic domains in electrical steel to reduce core loss
WO2014080763A1 (en) Directional electromagnetic steel plate and method for manufacturing directional electromagnetic steel plate
JP6465048B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014086597A (en) Method of manufacturing transformer core with excellent iron loss
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
KR102428854B1 (en) Grain oriented electrical steel sheet and method for refining magnetic domains therein
JP6003197B2 (en) Magnetic domain subdivision processing method
JP2012031515A (en) Grain-oriented magnetic steel sheet, and method of manufacturing the same
WO2023112421A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP2019135323A (en) Grain-oriented electromagnetic steel sheet, wound iron core, method for manufacturing grain-oriented electromagnetic steel sheet, and method for manufacturing wound iron core
WO2023007952A1 (en) Wound core and wound core manufacturing method
KR102133909B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
US20220044855A1 (en) Oriented electrical steel sheet and method for producing same
JPS61248507A (en) Method for improvement in magnetic properties of amorphous alloy stacked core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7375728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150