JPH0138898Y2 - - Google Patents

Info

Publication number
JPH0138898Y2
JPH0138898Y2 JP1981138806U JP13880681U JPH0138898Y2 JP H0138898 Y2 JPH0138898 Y2 JP H0138898Y2 JP 1981138806 U JP1981138806 U JP 1981138806U JP 13880681 U JP13880681 U JP 13880681U JP H0138898 Y2 JPH0138898 Y2 JP H0138898Y2
Authority
JP
Japan
Prior art keywords
iron
magnetic flux
core
electromagnetic induction
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981138806U
Other languages
Japanese (ja)
Other versions
JPS5842924U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13880681U priority Critical patent/JPS5842924U/en
Publication of JPS5842924U publication Critical patent/JPS5842924U/en
Application granted granted Critical
Publication of JPH0138898Y2 publication Critical patent/JPH0138898Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Soft Magnetic Materials (AREA)

Description

【考案の詳細な説明】 本考案は、電磁誘導機器鉄心、特に、額縁鉄心
においてそれに生ずる鉄損失を低減した電磁誘導
機器鉄心に関するものである。
[Detailed Description of the Invention] The present invention relates to an electromagnetic induction equipment core, particularly an electromagnetic induction equipment core that reduces iron loss that occurs in a picture frame core.

従来、この種の鉄心として、例えば、添付図面
第1図に示すようなものがあつた。すなわち、図
において符号1〜3は脚鉄であつて1及び2は外
側脚鉄、3は中央脚鉄であり、また、符号4〜7
は継鉄であつて4及び5は上継鉄、6及び7は下
継鉄である。これらの外側及び中央脚鉄1,2,
3と上、下継鉄4〜7は電気鉄板によつて製作さ
れると共に、その圧延方向と磁化方向が一致する
ように、しかも、外側及び中央脚鉄1〜3と上、
下継鉄4〜7との接続部において磁束が通過しや
すいように額縁状に切断され積層して形成されて
いる。
Conventionally, as this type of iron core, for example, there has been one shown in FIG. 1 of the accompanying drawings. That is, in the figure, numerals 1 to 3 are leg irons, 1 and 2 are outer leg irons, 3 is a central leg iron, and numerals 4 to 7 are leg irons.
are yokes, 4 and 5 are upper yokes, and 6 and 7 are lower yokes. These outer and central leg irons 1, 2,
3, upper and lower yoke irons 4 to 7 are made of electric iron plates, and the rolling direction and the magnetization direction are made to coincide with each other.
It is cut into a frame shape and laminated so that the magnetic flux can easily pass through the connecting portions with the lower yoke 4 to 7.

なお、第1図において、実線は上層の鉄心素片
を示し、点線はその次の層の鉄心素片であつて上
層の鉄心素片と異なつた部分を示すものである。
In FIG. 1, solid lines indicate the core pieces in the upper layer, and dotted lines indicate the core pieces in the next layer, which are different from the core pieces in the upper layer.

これらの電気鉄板としては、一般に、一方向性
けい素鋼板が使用されるが、この一方向性けい素
鋼板の特性上の進歩はめざましく、機器の低損失
化の時代の要求に従い、近年では更に一方向への
配向性を高めた高配向性けい素鋼板が開発され使
用されるに至つている。
Generally, unidirectional silicon steel sheets are used for these electrical steel sheets, and the properties of these unidirectional silicon steel sheets have made remarkable progress. Highly oriented silicon steel sheets with enhanced orientation in one direction have been developed and are now in use.

この高配向性けい素鋼板は、従来の一方向性け
い素鋼板と比較して圧延方向(L方向)への配向
性が向上したため、圧延方向へ磁化した場合の磁
気特性は大きく向上する。しかし、これに反して
圧延方向と直角方向(C方向)へ磁化した場合の
磁気特性は悪くなる。すなわち、いわゆるL/C
比が大きくなるということである。このような高
配向性けい素鋼板を変圧器鉄心のような電磁誘導
機器鉄心に使用した場合には、従来の一方向性け
い素鋼板を使用した場合よりも電磁誘導機器鉄心
全体の鉄損失は改善されて低下するが、その反
面、鉄損失のビルデイングフアクターが極度に悪
くなるという欠点を有している。これは、一つに
は外側及び中央脚鉄1,2,3から上、下継鉄
4,5,6,7へ磁束が渡る部分、すなわち、接
続部に問題がある。すなわち、この部分では、接
続部の空間を磁束が渡る必要があるために磁束の
集中がおこるということと、もう一つは、外側及
び中央脚鉄1,2,3から上、下継鉄4,5,
6,7へそれぞれ磁束が渡る場合、磁束が曲る必
要があるために磁化の方向と電気鉄板の圧延方向
とがずれるということである。また、この部分で
は、第2図に示すように、時間と共に磁束の方向
が変わるいわゆる回転磁束が発生する。ただし、
図において符号1a,4aは外側脚鉄1及び上継
鉄4に発生の交番磁束を示し、また、接続部に示
している符号8は交番磁束を、9a,9b,9c
は交番磁束8から徐々に位相が大きくずれている
回転磁束を示す。この結果、高配向性けい素鋼板
のような磁化特性のL/C比の大きい電気鉄板の
場合には、鉄損失のビルデイングフアクターが悪
くなる。第3図に示すものは、電磁誘導機器鉄心
に一方向性けい素鋼板を用いた場合と高配向性け
い素鋼板を用いた場合の、各部におけるビルデイ
ングフアクターを有限要素法を用いて計算した例
である。図において、上段の値は高配向性けい素
鋼板の場合のビルデイングフアクターを、また、
下段の値は一方向性けい素鋼板の場合のビルデイ
ングフアクターを示す。このように高配向性けい
素鋼板を用いた電磁誘導機器鉄心の場合には、外
側脚鉄1,2と上、下継鉄4,5,6,7との接
続部のビルデイングフアクターが極度に悪くな
り、高配向性けい素鋼板の低鉄損失特性を生かせ
ず、不経済な電磁誘導機器鉄心となるという欠点
があつた。
This highly oriented silicon steel sheet has improved orientation in the rolling direction (L direction) compared to conventional unidirectional silicon steel sheets, so the magnetic properties when magnetized in the rolling direction are greatly improved. However, on the other hand, when magnetized in the direction perpendicular to the rolling direction (direction C), the magnetic properties deteriorate. In other words, the so-called L/C
This means that the ratio becomes larger. When such a highly oriented silicon steel sheet is used for an electromagnetic induction device core such as a transformer core, the iron loss of the entire electromagnetic induction device core is lower than when a conventional unidirectional silicon steel sheet is used. However, on the other hand, it has the disadvantage that the building factor of iron loss becomes extremely poor. One reason for this is that there is a problem in the parts where the magnetic flux passes from the outer and central leg irons 1, 2, and 3 to the upper and lower yoke irons 4, 5, 6, and 7, that is, the connection parts. That is, in this part, the magnetic flux needs to pass through the space of the connection part, so the concentration of magnetic flux occurs.The other reason is that the magnetic flux is concentrated in this part because it needs to pass through the space of the connection part. ,5,
When the magnetic flux passes to 6 and 7, the direction of magnetization and the rolling direction of the electric iron plate deviate because the magnetic flux needs to bend. In addition, in this portion, as shown in FIG. 2, so-called rotating magnetic flux is generated whose direction of magnetic flux changes with time. however,
In the figure, numerals 1a and 4a indicate the alternating magnetic flux generated in the outer leg iron 1 and the upper yoke 4, and numeral 8 shown at the connection part indicates the alternating magnetic flux 9a, 9b, 9c.
indicates a rotating magnetic flux whose phase gradually deviates greatly from the alternating magnetic flux 8. As a result, in the case of an electric iron plate having a large L/C ratio of magnetization characteristics, such as a highly oriented silicon steel plate, the building factor of iron loss becomes worse. Figure 3 shows the results of calculating the building factors for each part using the finite element method when using a unidirectional silicon steel plate and a highly oriented silicon steel plate for the core of the electromagnetic induction equipment. This is an example. In the figure, the values in the upper row are the building factors for highly oriented silicon steel sheets, and
The values in the lower row show the building factors for unidirectional silicon steel sheets. In the case of an electromagnetic induction equipment core using a highly oriented silicon steel plate, the building factor at the connection between the outer leg irons 1 and 2 and the upper and lower yoke irons 4, 5, 6, and 7 is extremely high. The disadvantage was that the low iron loss characteristics of the highly oriented silicon steel sheet could not be utilized, resulting in an uneconomical core for electromagnetic induction equipment.

本考案は、上記のような従来の高配向性けい素
鋼板を使用した電磁誘導機器鉄心の欠点を除去し
て鉄損失を低減した電磁誘導機器鉄心を提供する
ことを、その目的とするものであつて、この目的
を達成するために、積層されている各層の外側脚
鉄及び継鉄の相互に接続する部分にその部分を通
る磁束に対して直角方向に線状の微小歪が付与さ
れていることを特徴とするものである。
The purpose of the present invention is to provide an electromagnetic induction equipment core that reduces iron loss by eliminating the drawbacks of the conventional electromagnetic induction equipment core using highly oriented silicon steel sheets as described above. In order to achieve this purpose, a linear minute strain is applied to the mutually connecting parts of the outer leg irons and yoke of each laminated layer in a direction perpendicular to the magnetic flux passing through that part. It is characterized by the presence of

以下、本考案をその一実施例を示す添付図面に
基づいて説明する。
Hereinafter, the present invention will be explained based on the accompanying drawings showing one embodiment thereof.

第4図に示すものは、本考案による脚鉄、すな
わち、外側脚鉄11,12及び、中央脚鉄13、
並びに、継鉄、すなわち上継鉄14,15及び、
下継鉄16,17から構成される電磁誘導機器鉄
心であつて、脚鉄11〜13及び継鉄14〜17
の鉄心素片である外側脚鉄鉄心素片11a,12
a、中央脚鉄鉄心素片13a、上、下継鉄鉄心素
片14a,17a、同じく15a,16aをそれ
ぞれ示している第5図A,B,C,Dに示すよう
に、外側脚鉄11a,12aと継鉄14a,17
a,15a,16aとが接続する部分にのみ、そ
こを通る磁束に対して直角方向、例えば、加工の
便の面から、その直角方向をまとめて、圧延方向
Xに対して45゜をなす方向に線状の微小歪18を
付与しており、このように形成された各鉄心素片
11a〜17aを積層して電磁誘導機器鉄心は構
成されている。
FIG. 4 shows leg irons according to the present invention, namely outer leg irons 11, 12, central leg irons 13,
and yokes, that is, upper yokes 14, 15, and
An electromagnetic induction equipment core composed of lower yokes 16 and 17, leg irons 11 to 13 and yokes 14 to 17.
The outer leg iron core pieces 11a and 12 are the iron core pieces of
As shown in FIGS. 5A, B, C, and D, which respectively show the central leg iron core piece 13a, the upper and lower joint iron core pieces 14a and 17a, and the same 15a and 16a, the outer leg iron 11a , 12a and yoke 14a, 17
a, 15a, and 16a only in a direction perpendicular to the magnetic flux passing therethrough, for example, from the viewpoint of processing convenience, a direction that collectively forms 45 degrees with respect to the rolling direction X. A linear minute strain 18 is applied to the core, and an electromagnetic induction device core is constructed by laminating the core pieces 11a to 17a formed in this way.

このような一方向性けい素鋼板に適当な線状の
微小歪を付与することは、その180゜磁区が細分化
されるため、鉄損失が低減するといわれているこ
とに基づくもので、この効果は特に高配向性けい
素鋼板に著しく、実験などによつて確認され報告
されている。この線状の微小歪を、一方向性けい
素鋼板の圧延方向に対して直角に付与すると、圧
延方向(L方向)の鉄損失が、また、圧延方向に
対して並列に付与すると、圧延方向に対して直角
方向(C方向)の鉄損失が、それぞれ低減する。
この線状の微小歪を、一方向性けい素鋼板、特
に、高配向性けい素鋼板の圧延方向に対して45゜
をなす方向に付与すれば、圧延方向(L方向)、
及び、圧延方向に対して直角方向(C方向)の鉄
損失が、いずれも、最大の低減率を示さないまで
も、適度に、低減する。このことを更に詳細に説
明すると、次のとおりである。
Applying appropriate linear microstrain to such unidirectional silicon steel sheets is based on the fact that the 180° magnetic domain is subdivided, which is said to reduce iron loss. This is particularly noticeable in highly oriented silicon steel sheets, and has been confirmed and reported through experiments. When this linear microstrain is applied perpendicularly to the rolling direction of a unidirectional silicon steel sheet, the iron loss in the rolling direction (L direction) increases; The iron loss in the direction perpendicular to the direction (C direction) is respectively reduced.
If this linear microstrain is applied in a direction that is 45° to the rolling direction of a unidirectional silicon steel sheet, especially a highly oriented silicon steel sheet, the rolling direction (L direction),
In addition, the iron loss in the direction perpendicular to the rolling direction (direction C) is moderately reduced even if it does not show the maximum reduction rate. This will be explained in more detail as follows.

第6図に示すものは例えば外側脚鉄11と継鉄
14との接続部の磁束分布を示したものであつ
て、これによると、接続部は磁束19が曲がるた
め、圧延方向に平行な磁束の成分と、圧延方向に
直角な磁束の成分とが存在する。このことは、鉄
損失を低減しようと思えば、圧延方向に対して直
角方向(C方向)の鉄損失特性も低いことが必要
なことを意味している。
What is shown in FIG. 6 shows the magnetic flux distribution at the connection part between the outer leg iron 11 and the yoke 14, for example. According to this, since the magnetic flux 19 bends at the connection part, the magnetic flux parallel to the rolling direction , and a magnetic flux component perpendicular to the rolling direction. This means that if iron loss is to be reduced, iron loss characteristics in the direction perpendicular to the rolling direction (direction C) must also be low.

第7図は、圧延方向に対して任意の角度に微小
歪を付与した場合の同一磁束密度でC方向および
L方向それぞれから励磁した場合の鉄損値を示し
たものである。これによると、圧延方向に対する
微小歪の角度が0゜,45゜90゜の場合のL方向+C方
向の鉄損値は、 (a2+b2)<(a1+b1) (a2+b2)<(a3+b3) となり、45゜の場合の鉄損値が最低となる。第6
図に示すように、外側脚鉄11と継鉄14との接
続部は、磁束が曲がるため、L方向とC方向の磁
束密度はほぼ同等と考えられるから、圧延方向に
対して45゜の方向に微小歪を付与すれば鉄損値が
低減できることを示すものである。また、脚鉄1
1〜13と継鉄14〜17との接続する部分は、
磁束が曲がつて渡る部分であり、その磁束は圧延
方向に対して直角方向(C方向)の成分を持つ
し、また、第2図に示すように、回転磁束も発生
する。従つて、本考案のように、圧延方向に対し
て45゜をなす方向に線状の微小歪18が不与され
た電気鉄板、特に、高配向性けい素鋼板からなる
各鉄心素片11a〜17aを積層すれば、脚鉄1
1,12と継鉄14〜17との接続部分がいわゆ
る無方向性化されるために、この部分の鉄損失の
発生が低減し、従つて、ビルデイングフアクター
が向上する。
FIG. 7 shows the iron loss value when exciting from the C direction and the L direction at the same magnetic flux density when a small strain is applied at an arbitrary angle with respect to the rolling direction. According to this, the iron loss value in the L direction + C direction when the angle of microstrain with respect to the rolling direction is 0°, 45°, 90° is (a 2 + b 2 ) < (a 1 + b 1 ) (a 2 + b 2 ) < (a 3 + b 3 ), and the iron loss value is the lowest at 45°. 6th
As shown in the figure, since the magnetic flux bends at the connection between the outer leg iron 11 and the yoke 14, the magnetic flux densities in the L direction and the C direction are considered to be approximately the same, so the connection part between the outer leg iron 11 and the yoke 14 is considered to be approximately equal in magnetic flux density. This shows that the iron loss value can be reduced by applying a small strain to. Also, leg iron 1
The connecting parts between 1 to 13 and yokes 14 to 17 are:
This is the part where the magnetic flux crosses in a curved manner, and the magnetic flux has a component in the direction perpendicular to the rolling direction (direction C). Also, as shown in FIG. 2, rotating magnetic flux is also generated. Therefore, as in the present invention, each iron core piece 11a to 11a is made of an electric iron plate, in particular a highly oriented silicon steel plate, which is not given linear microstrain 18 in a direction at 45 degrees with respect to the rolling direction. If 17a is stacked, leg iron 1
Since the connecting portions between the yokes 1 and 12 and the yokes 14 to 17 are made non-directional, the occurrence of iron loss in these portions is reduced, and the building factor is therefore improved.

なお、中央脚鉄13と継鉄14〜17との接続
する部分に圧延方向と45゜をなす方向に微小歪を
入れないのは、中央脚鉄13と継鉄14〜17と
の接続する部分は、中央脚鉄が励磁されていない
とき、継鉄では圧延方向に平行に渡る磁束がある
ためで、微小歪を加えると、かえつて鉄損失が増
加する場合があるからである。
Note that the part where the center leg iron 13 and the yokes 14 to 17 connect is not subjected to minute strain in the direction that is 45 degrees to the rolling direction. This is because when the center leg iron is not excited, there is a magnetic flux that runs parallel to the rolling direction in the yoke, and adding a small strain may actually increase iron loss.

このように構成された本考案の電磁誘導機器鉄
心のビルデイングフアクターを、高配向性けい素
鋼板によつて鉄心素片を形成した場合について計
算した結果を第8図に示す。これによると、脚鉄
11,12と継鉄14〜17の接続部分において
鉄損失のビルデイングフアクターが、約7%改善
されていることがわかる。
FIG. 8 shows the calculation results of the building factors of the electromagnetic induction equipment core of the present invention constructed as described above in the case where the core piece is formed from a highly oriented silicon steel plate. According to this, it can be seen that the building factor of iron loss in the connecting portions between the leg irons 11 and 12 and the yokes 14 to 17 has been improved by about 7%.

なお、この線状の微小歪18が脚鉄11〜13
及び継鉄14〜17を形成する電気鉄板の全表面
にわたつて付与されることは好ましくない。すな
わち、電気鉄板に線状の微小歪18を付与する方
法としては、電気鉄板を罫書く(スクラツチ)こ
とによつて行なう。この罫書きによつて、積層さ
れた電気鉄板相互間の絶縁を保持する絶縁性皮膜
に傷が付くが、変圧器のような電磁誘導機器は一
般に、鉄心の回りに巻回されている巻線(図示し
ない)の絶縁性検証のため、巻線に電気的インパ
ルスを印加する。もし、電気鉄板表面の絶縁性表
面皮膜に傷があると、電気的インパルスによる巻
線と鉄心との電磁誘導作用により、鉄心の絶縁性
表面皮膜が絶縁破壊をおこし積層された電気鉄板
相互間が短絡する。その結果、かえつて鉄損失、
従つて、うず電流損が増加するという逆効果とな
る。従つて、線状の微小歪18は、電気鉄板全表
面にわたつて付与されない方がよい。また、電気
鉄板全表面に線状の微小歪18を付与すること
は、不要の作業を必要とすることであつて不経済
であ。また、部分的にだけ線状の微小歪18を付
与するのであれば、図示されていない電気鉄板の
切断装置に線状の微小歪導入装置を付帯させるこ
とによつて、切断と同時に線状の微小歪18を簡
単に付与することが可能であり、きわめて経済的
である。
Note that this linear minute strain 18 is caused by the leg irons 11 to 13.
Also, it is not preferable that it be applied over the entire surface of the electric iron plate forming the yokes 14 to 17. That is, the method of imparting the linear micro-strain 18 to the electric iron plate is by marking (scratching) the electric iron plate. These markings damage the insulating film that maintains insulation between laminated electrical steel plates, but electromagnetic induction devices such as transformers generally have windings wrapped around the iron core. An electrical impulse is applied to the winding to verify insulation (not shown). If there is a flaw in the insulating surface film on the surface of the electrical steel plate, the electromagnetic induction effect between the winding wire and the iron core due to electrical impulses will cause dielectric breakdown in the insulating surface film of the iron core, causing damage between the laminated electrical steel plates. Short circuit. As a result, iron loss,
Therefore, this has the opposite effect of increasing eddy current loss. Therefore, it is better not to apply the linear microstrain 18 over the entire surface of the electric iron plate. Furthermore, applying linear minute strain 18 to the entire surface of the electric iron plate requires unnecessary work and is uneconomical. In addition, if the linear microstrain 18 is to be applied only partially, a linear microstrain introducing device (not shown) can be added to the electric iron plate cutting device (not shown) to apply the linear microstrain 18 at the same time as cutting. It is possible to easily impart minute strain 18 and is extremely economical.

以上のように、本考案によれば、電磁誘導機器
鉄心の外側脚鉄と継鉄とに、その接続する部分に
のみ、その接続部分を通る磁束に対して直角方向
に線状の微小歪が付与されるように形成された電
気鉄板による鉄心素片を用いたために、特性の良
い、特に、鉄損失の減少した電磁誘導機器鉄心が
経済的に提供できるという効果を本考案は有して
いる。
As described above, according to the present invention, a linear minute strain is generated in the direction perpendicular to the magnetic flux passing through the connecting part of the outer leg iron of the electromagnetic induction equipment core and the yoke only in the connecting part. The present invention has the effect of economically providing an electromagnetic induction equipment core with good characteristics, especially with reduced iron loss, by using a core piece made of an electric iron plate formed in such a manner as to provide the iron core. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁誘導機器鉄心の一例を示す
平面図、第2図は従来の電磁誘導機器鉄心の脚鉄
と継鉄との接合する部分に発生する回転磁束を示
す説明図、第3図は第1図の電磁誘導機器鉄心の
鉄損失のビルデイングフアクターを上段は高配向
性けい素鋼板につき、また下段は方向性けい素鋼
板について示す説明図、第4図は本考案の電磁誘
導機器鉄心の一実施例を示す平面図、第5図はそ
の電磁誘導機器鉄心を構成する各鉄心素片の平面
図、第6図は外側脚鉄と継鉄との接続部の磁束分
布図、第7図は圧延方向に対して直角方向(C方
向)および、圧延方向(L方向)に磁化した場合
の圧延方向に対する微小歪の角度に対する鉄損分
布図、第8図は第4図の電磁誘導機器鉄心の改善
された鉄損失のビルデイングフアクターを示す説
明図である。 1,2,11,12……外側脚鉄(脚鉄)、3,
13……中央脚鉄(脚鉄)、4,5,14,15
……上継鉄(継鉄)、6,7,16,17……下
継鉄(継鉄)、8,1a,4a……交番磁束、9
a,9b,9c……回転磁束、11a,12a…
…外側継鉄鉄心素片、18……線状の微小歪、1
3a……中央脚鉄鉄心素片、14a,15a……
上継鉄鉄心素片、16a,17a……下継鉄鉄心
素片。
Fig. 1 is a plan view showing an example of a conventional electromagnetic induction equipment iron core, Fig. 2 is an explanatory diagram showing the rotating magnetic flux generated at the joint portion of the leg iron and yoke of the conventional electromagnetic induction equipment iron core, and Fig. 3 The diagrams show the building factors of iron loss in the core of electromagnetic induction equipment in Figure 1. The upper row shows a highly oriented silicon steel sheet, the lower row shows an explanatory diagram for a grain-oriented silicon steel sheet, and Figure 4 shows the electromagnetic induction of the present invention. A plan view showing an embodiment of the device core, FIG. 5 is a plan view of each core piece constituting the electromagnetic induction device core, and FIG. 6 is a magnetic flux distribution diagram at the connection between the outer leg iron and the yoke. Figure 7 is an iron loss distribution diagram with respect to the angle of minute strain with respect to the rolling direction when magnetized in the direction perpendicular to the rolling direction (C direction) and in the rolling direction (L direction), and Figure 8 is the electromagnetic distribution diagram of Figure 4. FIG. 3 is an explanatory diagram showing the improved iron loss building factor of the induction equipment core. 1, 2, 11, 12...Outer leg iron (leg iron), 3,
13... Central leg iron (leg iron), 4, 5, 14, 15
... Upper yoke (yoke), 6, 7, 16, 17... Lower yoke (yoke), 8, 1a, 4a... Alternate magnetic flux, 9
a, 9b, 9c... Rotating magnetic flux, 11a, 12a...
... Outer yoke core piece, 18 ... Linear minute strain, 1
3a...Central leg iron core piece, 14a, 15a...
Upper yoke iron core pieces, 16a, 17a... lower yoke iron core pieces.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 脚鉄及び継鉄からなる電磁誘導機器鉄心におい
て、上記外側脚鉄及び継鉄の相互に接続する部分
にその部分を通る磁束に対して直角方向に線状の
微小歪が付与されていることを特徴とする電磁誘
導機器鉄心。
In an electromagnetic induction equipment core consisting of a leg iron and a yoke, a linear minute strain is applied to the mutually connecting portion of the outer leg iron and yoke in a direction perpendicular to the magnetic flux passing through that portion. Characteristic electromagnetic induction equipment core.
JP13880681U 1981-09-17 1981-09-17 Electromagnetic induction equipment core Granted JPS5842924U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13880681U JPS5842924U (en) 1981-09-17 1981-09-17 Electromagnetic induction equipment core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13880681U JPS5842924U (en) 1981-09-17 1981-09-17 Electromagnetic induction equipment core

Publications (2)

Publication Number Publication Date
JPS5842924U JPS5842924U (en) 1983-03-23
JPH0138898Y2 true JPH0138898Y2 (en) 1989-11-21

Family

ID=29932015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13880681U Granted JPS5842924U (en) 1981-09-17 1981-09-17 Electromagnetic induction equipment core

Country Status (1)

Country Link
JP (1) JPS5842924U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121691A1 (en) * 2018-12-13 2020-06-18 東芝産業機器システム株式会社 Iron core for stationary induction apparatus, and stationary induction apparatus
JP2021039963A (en) * 2019-08-30 2021-03-11 東芝産業機器システム株式会社 Manufacturing apparatus of wound core and manufacturing method of wound core

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256594B2 (en) * 2006-08-31 2013-08-07 Jfeスチール株式会社 Iron core transformer and method for manufacturing the same
JP7232133B2 (en) * 2019-06-20 2023-03-02 株式会社日立産機システム Stacked iron core static induction device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484229A (en) * 1977-12-19 1979-07-05 Nippon Steel Corp Reducing method of iron loss of three phase transformer iron core

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484229A (en) * 1977-12-19 1979-07-05 Nippon Steel Corp Reducing method of iron loss of three phase transformer iron core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121691A1 (en) * 2018-12-13 2020-06-18 東芝産業機器システム株式会社 Iron core for stationary induction apparatus, and stationary induction apparatus
JP2020096100A (en) * 2018-12-13 2020-06-18 東芝産業機器システム株式会社 Iron core for stationary induction apparatus, and stationary induction apparatus
JP2021039963A (en) * 2019-08-30 2021-03-11 東芝産業機器システム株式会社 Manufacturing apparatus of wound core and manufacturing method of wound core

Also Published As

Publication number Publication date
JPS5842924U (en) 1983-03-23

Similar Documents

Publication Publication Date Title
US6737951B1 (en) Bulk amorphous metal inductive device
US2387943A (en) Magnetic core structure
US2408211A (en) Electrical induction apparatus
JPH0138898Y2 (en)
US6100783A (en) Energy efficient hybrid core
JPS59210623A (en) Magnetic core
KR102136026B1 (en) Combined structure of variable-capacity transformer structure using ferrite core for magnetic flux assistance and method for manufacturing the same
US1834898A (en) Magnetic core
US2594002A (en) Three-phase core
JP3869768B2 (en) Transformer
US2408212A (en) Electrical induction apparatus
JP2002222718A (en) Transformer, transformer core, and method of manufacturing the same
JPS57143807A (en) Iron core for stationary electrical equipment
JPH03236204A (en) Iron core for three-phase transformer
JPH0123932B2 (en)
JP2003217939A (en) Iron core for electric apparatus
US2550127A (en) Wound core for electrical induction apparatus
JP3709737B2 (en) Stacked iron core type transformer excellent in iron loss characteristics and noise characteristics and manufacturing method thereof
JPH0145204B2 (en)
JPS6318847B2 (en)
JPS61136630A (en) Annealing method of iron core piece
JP3127239B2 (en) Method and apparatus for magnetizing a metal magnet
JPS59172220A (en) Core for stationary induction electric apparatus
JPS6032733Y2 (en) Iron core for AC solenoid
JPS6223059Y2 (en)