JPH03236204A - Iron core for three-phase transformer - Google Patents

Iron core for three-phase transformer

Info

Publication number
JPH03236204A
JPH03236204A JP3158990A JP3158990A JPH03236204A JP H03236204 A JPH03236204 A JP H03236204A JP 3158990 A JP3158990 A JP 3158990A JP 3158990 A JP3158990 A JP 3158990A JP H03236204 A JPH03236204 A JP H03236204A
Authority
JP
Japan
Prior art keywords
silicon steel
steel plate
cut
central leg
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3158990A
Other languages
Japanese (ja)
Inventor
Takeshi Kondo
武 近藤
Kazuo Yamada
一夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3158990A priority Critical patent/JPH03236204A/en
Publication of JPH03236204A publication Critical patent/JPH03236204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To reduce the curved intrusion of magnetic flux into a central leg part and to improve magnetic characteristics such as iron loss by using a 6.5% silicon steel plate whose magnetostriction is smaller than that of a directional silicon steel plate only for the central leg part. CONSTITUTION:A 6.5% silicon steel plate is used only for a central leg part 12. One-directional or highly oriented silicon steel plates which are used in conventional apparatuses are employed for other both side-leg parts 1 and 1 and upper and lower yoke parts 3 an 4. Since the 6.5% silicon steel plate of the central leg part 12 is nondirectional, it is not necessary to consider directivity. When the plate is formed in a strip shape, the plate can be readily cut. Meanwhile, a batten plate whose both ends are cut at 45 deg. is used for the side leg parts 1 and 1. A batten plate whose one side is cut at 45 deg. and other side is cut at 90 deg. is used for the upper and lower yoke parts 3 and 4. Thus the characteristics of the directional silicon steel plates are utilized. The iron core of this transformer is constituted by appropriately laminating the above described punched plates.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は鉄損を低減するようにした三相変圧器用鉄心に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an iron core for a three-phase transformer that reduces iron loss.

(従来の技術) 従来、三相変圧器用鉄心に使用する材料としては方向性
珪素鋼板が主として用いられている。その構成は第3図
に示すように、両側脚部1,1、中央脚部2、上下継鉄
部3,4からなり、所定の形状に切断された珪素鋼板を
積層して形成されている。
(Prior Art) Conventionally, grain-oriented silicon steel plates have been mainly used as materials for iron cores for three-phase transformers. As shown in Fig. 3, its structure consists of both side legs 1, 1, center leg 2, and upper and lower yoke parts 3, 4, and is formed by laminating silicon steel plates cut into a predetermined shape. .

しかし、近年ではこの一方向性への配向性を高めた高配
向性珪素鋼板も多く用いられるようになった。かかる高
配向性珪素鋼板は特開昭57−194507号公報に記
載されているように、三相変圧器用鉄心に用いた場合、
一方向性珪素鋼板よりも変圧器鉄心全体の鉄損は低下す
るが、変圧器を組立てた場合のビルディングファクター
(変圧器鉄損/素材鉄損)が極度に悪くなるという欠点
があった。これは、一つには高配向性珪素鋼板の場合に
は従来の一方向性珪素鋼板に比較して中央脚部2の磁束
波形の歪が大きくなるためであると言われている。
However, in recent years, highly oriented silicon steel sheets with enhanced unidirectional orientation have also come into use. When such a highly oriented silicon steel sheet is used in a three-phase transformer core, as described in Japanese Patent Application Laid-Open No. 57-194507,
Although the iron loss of the entire transformer core is lower than that of unidirectional silicon steel sheets, it has the disadvantage that the building factor (transformer iron loss/material iron loss) when the transformer is assembled becomes extremely poor. One reason for this is said to be that in the case of a highly oriented silicon steel plate, the distortion of the magnetic flux waveform in the central leg portion 2 is greater than that in a conventional unidirectional silicon steel plate.

磁束波形の歪は三相励磁において中央脚部2が励磁され
ていない状態での中央脚部2への磁束の流入に起因して
おり、従来の一方向性珪素鋼板に比較して高配向性珪素
鋼板の方がこの傾向が大きいことを示している。第4図
は従来方法で構成した変圧器のT接合部における磁束の
等ポテンシャル線図を有限要素法を用いて解析した図で
あって、両側脚部1.1が励磁されており、かつ中央脚
部2が励磁されていない状態を示している。これによる
と、中央脚部2への流入が多く認められ、磁束波形の歪
みは中央脚部2で特に大きくなる。渦電流損は波形歪み
をFとした場合、方向性珪素鋼板では05F2で表され
、このことから明らかなように波形歪みは渦電流損成分
を増大させるものである。また、高配向性珪素鋼板の場
合には従来の一方向性珪素鋼板に比較して磁区幅が大き
いため全鉄損に対して渦電流損失の占める割合が大きい
。このことも高配向性珪素鋼板の鉄損のビルディングフ
ァクターを悪くする原因になっている。
The distortion of the magnetic flux waveform is caused by the inflow of magnetic flux into the central leg 2 when the central leg 2 is not excited during three-phase excitation, and has a higher orientation than conventional unidirectional silicon steel sheets. It is shown that this tendency is greater for silicon steel sheets. FIG. 4 is a diagram obtained by analyzing the equipotential diagram of magnetic flux at the T-junction of a transformer constructed using the conventional method using the finite element method, in which both legs 1.1 are energized and the center A state in which the leg portion 2 is not excited is shown. According to this, a large amount of magnetic flux flows into the central leg 2, and the distortion of the magnetic flux waveform becomes particularly large in the central leg 2. Eddy current loss is expressed as 05F2 in a grain-oriented silicon steel plate, where F is waveform distortion, and as is clear from this, waveform distortion increases the eddy current loss component. Furthermore, in the case of a highly oriented silicon steel sheet, the magnetic domain width is larger than that of a conventional unidirectional silicon steel sheet, so that the eddy current loss accounts for a large proportion of the total iron loss. This is also a cause of worsening the core loss building factor of highly oriented silicon steel sheets.

(発明が解決しようとする課題) 上記したように、三相変圧器の鉄心材料として全て一方
向性あるいは高配向性の方向性珪素鋼板を用いた第3図
に示すような鉄心構造にすると、Wl−90°の場合に
中央脚部への磁束の廻り込みは第4図に示すように多く
なり、渦電流損か増大する傾向にあった。渦電流損失が
多くなれば変圧器としての鉄損が増大することになり、
磁気特性が悪くなるなどの問題点があった。
(Problems to be Solved by the Invention) As mentioned above, if the core structure of a three-phase transformer is made of unidirectional or highly oriented grain-oriented silicon steel plates as shown in FIG. In the case of Wl-90°, the amount of magnetic flux going around to the central leg increased as shown in FIG. 4, and the eddy current loss tended to increase. If the eddy current loss increases, the iron loss as a transformer will increase.
There were problems such as poor magnetic properties.

本発明は上記問題点を解決するためになされたもので、
その目的は中央脚部への磁束の廻り込みを少なくして鉄
損などの磁気特性を向上した三相変圧器用鉄心を提供す
ることにある。
The present invention has been made to solve the above problems,
The purpose is to provide an iron core for a three-phase transformer that has improved magnetic properties such as iron loss by reducing the circulation of magnetic flux into the central leg.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明の三相変圧器用鉄心
は、中央脚部に方向性珪素鋼板より磁気歪みの小さい6
.5%珪素鋼板を配置し、両側脚部および継鉄部には方
向性珪素鋼板を配置して積層したことを特徴とするもの
である。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the core for a three-phase transformer of the present invention has a central leg made of 6.
.. It is characterized in that 5% silicon steel plates are arranged and grain-oriented silicon steel plates are arranged and laminated on both side leg parts and yoke parts.

(作 用) 本発明の三相変圧器用鉄心によると、中央脚部のみ方向
性珪素鋼板より磁気歪みの小さい6.5%珪素鋼板を用
いているので、中央脚部への廻り込み磁束が少なくなり
波形歪みを低減させる。これにより渦電流損が少なくな
るため変圧器の鉄損を減少させることができる。
(Function) According to the core for a three-phase transformer of the present invention, only the center leg uses a 6.5% silicon steel plate that has less magnetostriction than a grain-oriented silicon steel plate, so there is less magnetic flux going around to the center leg. This reduces waveform distortion. This reduces eddy current loss, thereby reducing the core loss of the transformer.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の正面図であり、同図に示す
ように、中央脚部12のみ6.5%珪素鋼板を用い、他
の両側脚部1,1および上下継鉄部3.4には従来から
使用されている一方向性あるいは高配向性の方向性珪素
鋼板を用いている。
FIG. 1 is a front view of one embodiment of the present invention, and as shown in the same figure, only the center leg 12 is made of 6.5% silicon steel plate, and the other side legs 1, 1 and the upper and lower yoke parts are made of 6.5% silicon steel plate. 3.4 uses a conventionally used unidirectional or highly oriented grain-oriented silicon steel plate.

なお、実施例では中央脚部12を短冊状の抜板を用いて
構成した場合を示しているが、これは6゜5%珪素鋼板
が無方向性であるので方向性を考慮しなくても良いこと
および短冊状の方が切断が容易であることの理由による
。一方、側脚部1,1には両端を45°切断した抜板を
用い、上下継鉄部3.4は一方を45°切断、他方を9
0’切断した抜板を使用して方向性珪素鋼板の特徴を活
かす。変圧器鉄心は上記各抜板を適宜に積層して構成さ
れるが、鉄心の大きさ、積厚などは従来と同じで良く特
に変えることはない。
In addition, although the example shows a case in which the center leg portion 12 is constructed using a strip-shaped punched plate, this is because the 6° 5% silicon steel plate is non-directional, so there is no need to consider the directionality. This is because it is good and the strip shape is easier to cut. On the other hand, for the side legs 1, 1, a punched board with both ends cut at 45° is used, and for the upper and lower yoke parts 3.4, one is cut at 45° and the other is cut at 90°.
Utilizing the characteristics of grain-oriented silicon steel sheets by using 0'-cut blanks. The transformer core is constructed by appropriately laminating the above-mentioned punched plates, but the size, stacking thickness, etc. of the core are the same as conventional ones and there is no particular change.

上記したように、本実施例によると、中央脚部12にの
み6.5%珪素鋼板を用いているので、従来のような鉄
心構造での磁束分布を示した磁束の廻り込み(第4図参
照)は少なくなる。これは6.5%珪素鋼板が無方向性
であるため、磁束は磁気抵抗の小さい方向すなわち磁路
の長さが最も短い方向に流れるため、T接合部の中央脚
部12への廻り込み磁束が少なくなるためである。
As mentioned above, according to this embodiment, since the 6.5% silicon steel plate is used only for the central leg 12, the magnetic flux wraps around (see Fig. 4), which shows the magnetic flux distribution in the conventional iron core structure. ) will decrease. This is because the 6.5% silicon steel plate is non-directional, so the magnetic flux flows in the direction of smaller magnetic resistance, that is, the direction where the length of the magnetic path is the shortest. This is because there will be less.

第2図は本実施例の鉄心構成による磁束分布を示したも
ので、中央脚部I2への廻り込み磁束が第4図よりも少
なくなっていることが分かる。
FIG. 2 shows the magnetic flux distribution due to the iron core configuration of this embodiment, and it can be seen that the magnetic flux flowing around to the central leg portion I2 is smaller than in FIG. 4.

第1表は第1図に示す鉄心構造で、従来の三相変圧器用
鉄心を製作した場合の鉄損、ビルディングファクター、
ロス比率を示したものである。この表では鉄心の回路構
成を、■高配向性珪素鋼板としたもの、■一方向性珪素
鋼板としたものと対比する形で■中央脚部のみを6.5
%珪素鋼板を用いた本実施例の場合を示している。
Table 1 shows the iron loss, building factor, and
This shows the loss ratio. In this table, the circuit configuration of the iron core is compared with ■ one made of highly oriented silicon steel plate, ■ one made of unidirectional silicon steel plate, and ■ only the central leg section is 6.5.
% silicon steel plate is shown.

第1表より■の中央脚部のみを6.5%珪素鋼板を用い
た変圧器では■の全で高配向性珪素鋼板を使用した変圧
器と比較して全鉄損も少なくなり、ビルディングファク
ターは大幅に低下している。
From Table 1, it can be seen that the transformer using 6.5% silicon steel plate only for the central leg (■) has a lower total iron loss than the transformer (■) using highly oriented silicon steel plate for all parts, and the building factor has decreased significantly.

第1表 上記実施例では第1図に示した鉄心構造について説明し
たが、第3図に示した従来の45°切断による抜板を用
いたスクラップレス鉄心構造で、中央脚部のみ6.5%
珪素鋼板を用いても上記実施例と同様な効果が得られる
。また、Vノツチマイター鉄心についても同様の効果が
得られることは云うまでもない。
Table 1 In the above embodiment, the core structure shown in FIG. 1 was explained, but the scrapless core structure using the conventional 45° cutting plate shown in FIG. %
Even if a silicon steel plate is used, the same effects as in the above embodiment can be obtained. It goes without saying that similar effects can be obtained with a V-notch miter core.

「発明の効果」 以上説明したように、本発明によれば、中央脚部への廻
り込み磁束が低下し、波形歪みが減少するために、鉄損
が減少し、磁気特性の優れた三相変圧器鉄心を提供でき
る。また6、5%珪素鋼板は磁気歪みが方向性珪素鋼板
の1/3以下と小さいため、波形歪みが大きい、すなわ
ち高周波成分を多く含む中央脚部に6.5%珪素鋼板を
使用することで、騒音も低減できる効果がある。
"Effects of the Invention" As explained above, according to the present invention, the magnetic flux that wraps around the center leg is reduced and waveform distortion is reduced, so iron loss is reduced and the three-phase We can provide transformer core. In addition, 6.5% silicon steel sheet has a small magnetostriction of less than 1/3 of that of grain-oriented silicon steel sheet, so using 6.5% silicon steel sheet for the center leg, which has large waveform distortion, which contains many high frequency components, This also has the effect of reducing noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の正面図、第2図は第1図の
三相変圧器鉄心のT接合部の磁束分布を示す等ベクトル
ポテンシャル線図、第3図は従来の高配向性珪素鋼板を
用いた三相変圧器鉄心の正面図、第4図は第3図の三相
変圧器鉄心のT接合部の磁束分布を示す等ベクトルポテ
ンシャル線図である。 1・・・側脚部 2・・・中央脚部 3.4・・・上下継鉄部 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第3図 第4図 第 2 図
Fig. 1 is a front view of one embodiment of the present invention, Fig. 2 is an equivector potential diagram showing the magnetic flux distribution at the T-junction of the three-phase transformer core shown in Fig. 1, and Fig. 3 is a conventional highly oriented FIG. 4 is an equivector potential diagram showing the magnetic flux distribution at the T-junction of the three-phase transformer core shown in FIG. 3. 1...Side legs 2...Central legs 3.4...Upper and lower yoke (8733) Agent: Patent attorney Yoshiaki Inomata (and others)
1 person) Figure 3 Figure 4 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 中央脚部に方向性珪素鋼板より磁気歪みの小さい6.5
%珪素鋼板を配置し、両側脚部および継鉄部には方向性
珪素鋼板を配置して積層したことを特徴とする三相変圧
器用鉄心。
6.5 with lower magnetostriction than grain-oriented silicon steel plate in the center leg
An iron core for a three-phase transformer, characterized in that % silicon steel plates are arranged and grain-oriented silicon steel plates are arranged and laminated on both side legs and yoke parts.
JP3158990A 1990-02-14 1990-02-14 Iron core for three-phase transformer Pending JPH03236204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3158990A JPH03236204A (en) 1990-02-14 1990-02-14 Iron core for three-phase transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3158990A JPH03236204A (en) 1990-02-14 1990-02-14 Iron core for three-phase transformer

Publications (1)

Publication Number Publication Date
JPH03236204A true JPH03236204A (en) 1991-10-22

Family

ID=12335378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3158990A Pending JPH03236204A (en) 1990-02-14 1990-02-14 Iron core for three-phase transformer

Country Status (1)

Country Link
JP (1) JPH03236204A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223975A (en) * 2002-01-30 2003-08-08 Eto Denki:Kk Annular metal-body heating device
CN103680857A (en) * 2013-12-27 2014-03-26 伊戈尔电气股份有限公司 Three-phase and five-column electric reactor of new structure
CN104752029A (en) * 2014-07-25 2015-07-01 周红玉 Low-voltage three-phase electric reactor
CN104934198A (en) * 2015-07-03 2015-09-23 江苏容天机电科技有限公司 Iron core with isolating apparatus
CN106504860A (en) * 2017-01-04 2017-03-15 江苏亚威变压器有限公司 Resin insulating dry type transformer base
CN106504857A (en) * 2017-01-04 2017-03-15 江苏亚威变压器有限公司 Dry-type transformer
CN106504880A (en) * 2017-01-04 2017-03-15 江苏亚威变压器有限公司 Resin insulating dry type transformer attemperating unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223975A (en) * 2002-01-30 2003-08-08 Eto Denki:Kk Annular metal-body heating device
CN103680857A (en) * 2013-12-27 2014-03-26 伊戈尔电气股份有限公司 Three-phase and five-column electric reactor of new structure
CN104752029A (en) * 2014-07-25 2015-07-01 周红玉 Low-voltage three-phase electric reactor
CN104934198A (en) * 2015-07-03 2015-09-23 江苏容天机电科技有限公司 Iron core with isolating apparatus
CN106504860A (en) * 2017-01-04 2017-03-15 江苏亚威变压器有限公司 Resin insulating dry type transformer base
CN106504857A (en) * 2017-01-04 2017-03-15 江苏亚威变压器有限公司 Dry-type transformer
CN106504880A (en) * 2017-01-04 2017-03-15 江苏亚威变压器有限公司 Resin insulating dry type transformer attemperating unit

Similar Documents

Publication Publication Date Title
US5371486A (en) Transformer core
TW201511048A (en) Inductance and switch circuit including the inductance
JPH03236204A (en) Iron core for three-phase transformer
JPH04116809A (en) Iron core of transformer
JPH0562444B2 (en)
JPH03204911A (en) Transformer core
JPH06251966A (en) Three-phase laminated iron core transformer of low iron loss
JP2729848B2 (en) AC reactor
JP2002222718A (en) Transformer, transformer core, and method of manufacturing the same
JPS6233728B2 (en)
US3041565A (en) Laminated winding core for electromagnetic devices
JPH0138898Y2 (en)
JPH04250604A (en) Transformer core
JPH11307368A (en) Core in three-phase transformer
KR950015006B1 (en) Transformer core
JPH0562839A (en) Transformer laminated iron core
JP2010251720A (en) Single-phase reactor iron core with gap
JPH0336708A (en) Core reactor
JPH0423297Y2 (en)
JP2002134328A (en) Coil
JPH04291709A (en) Transformer iron core
KR100419501B1 (en) Transformer of Low-Loss Core Structure
JP3059561U (en) Magnetic core
JP2004349617A (en) Dust core for reactor
JP2009010253A (en) High-frequency reactor