JPS59210623A - Magnetic core - Google Patents

Magnetic core

Info

Publication number
JPS59210623A
JPS59210623A JP8437683A JP8437683A JPS59210623A JP S59210623 A JPS59210623 A JP S59210623A JP 8437683 A JP8437683 A JP 8437683A JP 8437683 A JP8437683 A JP 8437683A JP S59210623 A JPS59210623 A JP S59210623A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
magnetic core
open
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8437683A
Other languages
Japanese (ja)
Other versions
JPH0562444B2 (en
Inventor
Ryoichi Tawara
田原 良一
Michimasa Tsuzaki
津崎 通正
Yukihiko Oota
幸彦 太田
Hidenori Kakehashi
英典 掛橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8437683A priority Critical patent/JPS59210623A/en
Publication of JPS59210623A publication Critical patent/JPS59210623A/en
Publication of JPH0562444B2 publication Critical patent/JPH0562444B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce abnormal eddy current loss of a magnetic core by a method wherein magnetic material pieces of high electric resistance and high permeability are arranged coming in contact with open magnetic path surfaces consisting of the cut surfaces of the laminated magnetic core main bodies formed of magnetic material thin plates of high permeability, and having the edge faces of uncut surfaces facing mutually in parallel with the open magnetic path surfaces. CONSTITUTION:A laminated magnetic core main body 1 formed of magnetic material thin plates of high permeability has open magnetic path surfaces 1a at two parts, and the main body 1 is formed of at least one kind out of an amorphously magnetic material, Permalloy, a silicon steel plate, electromagnetic soft iron, and Sendust. Magnetic material pieces 2 having high electric resistance and high permeability are arranged coming in contact with the open magnetic path surfaces 1a of the main body 1, and the mutually facing edge surfaces in parallel with the path surfaces 1a are consisting of uncut surfaces. The magnetic material pieces 2 is formed of ferrite or a composite resin magnetic material formed by dispersing a powdered magnetic material in synthetic resin. Accordingly, iron loss of the magnetic core can be reduced by reducing abnormal eddy current loss at the case when the magnetic core has the open magnetic path surfaces consisting of the cut surfaces.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はトランス、チョークコイルなどに用いられる磁
心に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a magnetic core used in transformers, choke coils, etc.

〔背景技術〕[Background technology]

一般に、高透磁率の金属軟磁性体にて形成場れる積層磁
心において、交流励磁における磁心損大いわゆる鉄損は
しステリシス損失Wh1一般的なうず電流損失Weおよ
び異常うず電流損失Waに分割もれ、その周波数特性は
第1図に示すようになっておシ、ヒステリシス損失wh
は周波数fが変化しても変らず、両うず電流損失Wes
Waは周波数fが高くなるにしたがって増大する。なお
、各損失Wh、We、Waの構成比は磁・d材料の板厚
などの形状や熱処理条件などによっても大きく変化する
。ところで、上記一般的なうず電流損失Weとは、積層
磁心を形成する磁性体板の板厚をt1電気抵抗をρおよ
び動作磁束密度をBmとすれば下式fl)によって計算
されるもので古典うず電流損失とも呼はれている。
In general, in a laminated magnetic core formed of soft magnetic metal with high magnetic permeability, the core loss during AC excitation is divided into so-called iron loss, steresis loss Wh1, general eddy current loss We, and abnormal eddy current loss Wa. , its frequency characteristics are shown in Figure 1, and the hysteresis loss wh
does not change even if the frequency f changes, and both eddy current losses Wes
Wa increases as the frequency f becomes higher. Note that the composition ratio of each loss Wh, We, and Wa varies greatly depending on the shape of the magnetic/d material such as the plate thickness, heat treatment conditions, and the like. By the way, the above-mentioned general eddy current loss We is calculated by the following formula fl), where t is the thickness of the magnetic plate forming the laminated magnetic core, ρ is the electrical resistance, and Bm is the operating magnetic flux density. It is also called eddy current loss.

一方、異常うず電流損失Waとは、実際に発生するうず
電流損失と上記一般的なうず*流損失Weとの差分であ
り、この異常うず電流損失Waは磁区構造、磁壁数との
関連が強いものであり、板厚をt1磁壁間隔をdとすれ
は下式(2)によって計算される。
On the other hand, the abnormal eddy current loss Wa is the difference between the eddy current loss that actually occurs and the general eddy current loss We, and this abnormal eddy current loss Wa is strongly related to the magnetic domain structure and the number of domain walls. The plate thickness is calculated by the following equation (2), where t1 is the domain wall spacing and d is the domain wall spacing.

(Pry and Beanの式による)以上のことを
考慮して、従来、ケイ素鋼板の狭面にスクラッチを入れ
たシ、非晶質磁性体の内部に微細な結晶質を4年出さぜ
た9して磁壁数を増加させることにより異常うず電流損
失Waを低減して鉄損を少くするようにしていたが、こ
のような低鉄損磁性体を用いた磁心の一部を切断して開
磁路面を設けいわゆるガツトコアを形成すると、積層方
向と直焚する切断面よりなる開磁路面における磁束の乱
れによると考えられる異常うず電流損失Waが増大し、
この鉄損の増加率は周波数fが高い根太きくなるという
問題があった。例えは、最近開発ちれた非晶質磁性体は
数100KHzの高周波領域までフェライトよりも鉄損
が少ないので、2個のカットコアを組合せた有千ヤツ′
5績層磁心への応用が考えられているが、千セツづのな
い閉磁路磁心における鉄損が少ないにも拘らず第2図(
a)に示すように非晶質磁性体の帯状薄膜を巻回して積
層した積層磁心翰を同図(b)のように切断して同図(
c)のように千セツプ(G)を形成した場合において鉄
損が逆に多くなるという問題があった。
(Based on the Pry and Bean equation) Taking the above into consideration, conventionally, the narrow side of a silicon steel plate was scratched, and fine crystals were created inside the amorphous magnetic material. The abnormal eddy current loss Wa was reduced by increasing the number of domain walls in order to reduce iron loss. When a so-called gut core is formed, the abnormal eddy current loss Wa, which is thought to be due to the disturbance of magnetic flux in the lamination direction and the open magnetic path plane consisting of the cut surface that is directly fired, increases.
There is a problem in that the rate of increase in iron loss increases as the frequency f increases. For example, recently developed amorphous magnetic materials have lower iron loss than ferrite even in the high frequency range of several 100 KHz, so a magnetic material with a combination of two cut cores can be used.
Application to a 5-layer magnetic core is being considered, but despite the small iron loss in a closed-circuit magnetic core with a thousand sets (see Figure 2).
A laminated magnetic core in which strip-shaped thin films of amorphous magnetic material are wound and laminated as shown in (a) is cut as shown in (b) of the same figure.
When 1,000 seps (G) are formed as in c), there is a problem in that the iron loss increases.

すなわち、切断しない閉磁路磁心において、動作磁束密
度Bmが3 K G−、’、、周波数fが20K)(z
の場合、Mn−Znフェライトを用いた磁心(5)の鉄
損が200 mW%ccであるのに対して磁歪ゼDの]
バルト系非晶質磁性体を用いた積l−磁心(イ)の鉄損
は50 mW/ccであり、鉄損は数分の1となってい
る。ところが、磁路長に対する比率が0.005程度の
エアf17ツづ(G)を設けた有千ヤツプ積層磁心(4
)′において、非晶質磁性体を用いたものの鉄損がフェ
ライトを用いたものの鉄損の2倍以上となった。なお、
動作磁束密度Bmおよび周波数が一類の条件下では、f
pツづを設けることによって励磁電流が大きくなって銅
損が増加するが、鉄損の増力Uはないというのが通説で
あった。しかしながら、実際にこのような鉄損の増加が
生じる理由は以−ドのように考えられる。すなわち、切
断面であるところの開磁路面において板面に垂直な磁束
成分が生じ、一方、開磁路部近傍でスパイク磁区や還流
磁区が発生することにより磁区構造が変化し、磁化過程
における磁壁移mJ様式や磁壁数に影響し、異常うず電
流損失Waを大きくしていると考えられる。
That is, in a closed magnetic circuit core that is not cut, the operating magnetic flux density Bm is 3 K G-,', and the frequency f is 20 K) (z
In the case of , the iron loss of the magnetic core (5) using Mn-Zn ferrite is 200 mW% cc, while the magnetostrictive Z]
The iron loss of the magnetic core (a) using a Baltic amorphous magnetic material is 50 mW/cc, which is a fraction of the iron loss. However, Yuchi Yappu's laminated magnetic core (4
)', the iron loss of the one using an amorphous magnetic material was more than twice that of the one using ferrite. In addition,
Under conditions where the operating magnetic flux density Bm and frequency are the same, f
It was a common belief that by providing P, the excitation current increases and copper loss increases, but there is no increase in iron loss U. However, the reason why such an increase in iron loss actually occurs is considered to be as follows. In other words, a magnetic flux component perpendicular to the plate surface is generated in the open magnetic path plane, which is the cutting surface, and on the other hand, the magnetic domain structure changes due to the generation of spike domains and reflux magnetic domains near the open magnetic path section, and the domain walls in the magnetization process change. It is thought that this influences the shift mJ pattern and the number of domain walls, increasing the abnormal eddy current loss Wa.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みて為されたものであり、切断面
よりなる開磁路面を有する場合における異常うす電流損
失を低減して鉄損を少くすることを目的とするものであ
る。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to reduce abnormal thin current loss and iron loss when an open magnetic path surface consisting of a cut surface is provided.

〔発明の開示〕[Disclosure of the invention]

(構 成) 第5図は本発明の構成を示すもので、(1)は一部に切
断面よシなる開磁路面(la )を有し高透磁率の磁性
体、薄、・板にて形成される槓ノー磁心本体であシ、こ
の積層磁心本体+11は非晶質磁性体、パーマ0イ、ケ
イ素鋼板、電磁軟鉄、セシタストのうちの一種にて形成
される。(2)は電気抵抗および透磁率が高い磁性体片
であシ、積層磁心本体(1)の開磁路面(1a)に接し
て配設され、開磁路面(1a)と平行な対向端面が非切
断面となっている。この磁性体片(2)はフェライトあ
るいは粉末状の磁性体を合成樹方言中に分散した複合樹
脂磁性体にて形成される。
(Structure) Figure 5 shows the structure of the present invention, and (1) is made of a thin plate made of a magnetic material with high magnetic permeability and having an open magnetic path surface (la) similar to a cut surface in part. This laminated magnetic core body +11 is made of one of amorphous magnetic materials, permanent magnets, silicon steel plates, electromagnetic soft iron, and sesitast. (2) is a piece of magnetic material with high electrical resistance and magnetic permeability, and is arranged in contact with the open magnetic path surface (1a) of the laminated magnetic core body (1), and has an opposing end surface parallel to the open magnetic path surface (1a). It has a non-cut surface. This magnetic piece (2) is made of a composite resin magnetic material in which ferrite or powdered magnetic material is dispersed in a synthetic resin.

いま、電気抵抗が大きくうず電流損失の発生が少ない磁
性体片(2)を積層磁心本体(11の開磁路面(la)
すなわち有甲ヤツづ積層磁心(5)“の相対向する端面
にそれぞれ密着させ、磁性体片(2)間に千セップ(G
)を形成しておシ、しかも、甲セツづ(G)は非切断面
にて形成されているので、積層磁心(3)“の干セツプ
部周辺での磁束の曲りや磁区構造の乱れが磁性体片(2
)内にもたらされることになシ、一般のうず電流損失W
eおよび異常うず電流損失Waが低減芒れるようになっ
ている。以下、実施例について具体的に祝用する。
Now, the magnetic material piece (2) with high electrical resistance and low occurrence of eddy current loss is attached to the laminated magnetic core body (open magnetic path surface (la) of 11).
In other words, they are placed in close contact with the opposing end surfaces of the laminated magnetic core (5), and the magnetic material pieces (2) are
), and since the first set (G) is formed with a non-cut surface, there is no bending of the magnetic flux or disturbance of the magnetic domain structure around the dry set part of the laminated magnetic core (3). Magnetic piece (2
), the general eddy current loss W
E and abnormal eddy current loss Wa can be reduced. Examples will be described in detail below.

(実施例上) 第4図は不発明−実施例を示すもので、リボン巾10M
、厚625〜凸5μの磁歪ゼロ組成のC。
(Example 1) Figure 4 shows an example of the invention, and the ribbon width is 10M.
, C with zero magnetostriction composition with thickness 625~5μ convexity.

系非晶am性体(Co −Si −B系合金)ノ?#帯
を矩形状に巻回して積層厚が約8−の2個の巻磁心(A
I) (A2)を形成し、両巻磁I−r (Al) (
A2)を歪取り焼鈍後水冷するととlにより、高周波低
減用熱処理を施し、巻磁心(A1) (A2)の層間及
び両巻磁心(Al)(A2)聞に絶縁接着用樹脂を含浸
きぜて一定し、第4図(a) VC示すように中央部を
切断加工してF、型磁心(Aa) (Ab)を形成する
。ここに、実効磁路長76/IM 、央効磁路断面績6
4−1磁心体横4.9 ccでおり、vJTjfr面を
密着した甲セツづを形成しない状態において動作磁束密
匿lKG、周波数50KHzの動作条件での鉄損は30
 mW/ccであった。このE4磁心(Aa)(Ab)
の切断面間に0.5txm程度(7)エアーFセツプ(
G)を設けてB−Hルーづの不飽和領域を拡大する場合
における鉄損を測定したところ、鉄損は75mW/cc
 となりエアーfセツプ(G)がない場合に比べて倍増
した。そこで、第4図(b)に示すように磁路断面積と
同一面積を有しソフトフェライトよりなる磁性体片(2
)の薄板(厚さ1.5mm)を切断面よりなる開磁路面
に密着して配設することによシ、甲セツづ(G)を設け
たこと例よる鉄損増加が軽減された。すなわち、磁性体
片(2)としてMn −Zn系フェライト(実効透磁率
pe=2000 atl KG、50KH2)を用いた
場合の鉄損は42mWどeeNi−Zn系フェライト(
7g=350atlK G、  50KHz)を用いた
場合の鉄損は50 mW/cc、 T l:rυ、高透
磁率のものの方が千Pツラ(G)による鉄損壇〃口の軽
減効果が測いことがわかる。なお、第5図は磁性体片(
2)の配設位置による鉄損増加の軽減効果の変化を確認
するだめの実験方法を示しておシ、第5図(c)では軽
減効果は得られず、同図(b)では多少の効果が得られ
、同図(a)で最も犬@な幼果が得られる。
Am-based amorphous body (Co-Si-B alloy)? Two wound magnetic cores (A
I) (A2) and both windings I-r (Al) (
When A2) is annealed to remove strain and then cooled with water, it is heat treated to reduce high frequencies by Tol, and an insulating adhesive resin is impregnated between the layers of the wound cores (A1 and A2) and between the two wound cores (Al) and (A2). Then, the central part is cut to form a type magnetic core (Aa) (Ab) as shown in FIG. 4(a). Here, the effective magnetic path length is 76/IM, and the central effect magnetic path cross-section is 6.
4-1 The width of the magnetic core is 4.9 cc, and the iron loss under operating conditions of operating magnetic flux tightness of 1 KG and frequency of 50 KHz is 30 in a state where no instep is formed in close contact with the vJTjfr surface.
mW/cc. This E4 magnetic core (Aa) (Ab)
(7) Air F sep (
When we measured the iron loss when expanding the unsaturated region of the B-H route by providing G), the iron loss was 75 mW/cc.
This is twice as much as when there is no air f-sep (G). Therefore, as shown in Fig. 4(b), a magnetic piece (2
) by arranging the thin plate (1.5 mm thick) in close contact with the open magnetic path surface formed by the cut surface, the increase in iron loss caused by the provision of the upper set (G) was reduced. That is, when Mn-Zn ferrite (effective magnetic permeability pe=2000 atl KG, 50KH2) is used as the magnetic piece (2), the iron loss is 42 mW.
7g=350atlKG, 50KHz), the iron loss is 50 mW/cc, Tl:rυ, and the one with high magnetic permeability has a greater effect of reducing iron loss by 1,000P tsura (G). I understand that. In addition, Fig. 5 shows the magnetic material piece (
2) shows an experimental method to confirm the change in the effect of reducing iron loss increase depending on the installation position. In Fig. 5(c), no reducing effect is obtained, and in Fig. 5(b), some reduction effect is obtained. The effect is obtained, and the most dog-like young fruit in the same figure (a) is obtained.

(実施例2) 前記実施例1と同様の構成において、磁歪ゼロ組成のQ
系非晶寅磁性体(Co −Si −B系合金)をa械的
に粉砕して磁性体の粉末を形成し、この磁性体粉末を甘
酸樹脂中に分散させることにょシミ気抵抗の尚い複合磁
性体を形成し、この複合磁性体を用いて磁性体片(2)
をノビ成した。ここに、合成樹脂はフェノール樹脂でる
り、フェノール樹脂の体積比を50%としており、この
ようにして得られた複合磁性体の実効透磁率μeは45
である。
(Example 2) In the same configuration as in Example 1, Q of zero magnetostriction composition
Amorphous magnetic material (Co-Si-B alloy) is mechanically pulverized to form magnetic powder, and this magnetic powder is dispersed in sweet acid resin, which is highly resistant to staining. Form a composite magnetic material and use this composite magnetic material to create a magnetic material piece (2)
It became a novelty. Here, the synthetic resin is a phenolic resin, and the volume ratio of the phenolic resin is 50%, and the effective magnetic permeability μe of the composite magnetic material obtained in this way is 45.
It is.

い筐、実施例2について前記実施例と同一の条件で鉄損
のd(II建を行った結果、鉄損は65 mW/ccと
なり、鉄損増加の軽減効果が認められた。
As a result of carrying out the iron loss d(II construction) for Example 2 under the same conditions as the above-mentioned Example, the iron loss was 65 mW/cc, and the effect of reducing the increase in iron loss was recognized.

第6図は上記実施例1.2の磁性体片(2)の材質につ
いて、−1!ヤツプ(G)と鉄損の軽減効果を足性的に
示す図であり、図から男らがなように磁性体片(2)の
??L磁率が品い程鉄損の軽減効果が大きく、丑だf′
pツブし)が長くなるほど効果が大であることがわかる
。失踪、第7図に示すように完全な解放磁路をMするI
型績層磁心(A工)の端面に磁性体片(2)を設けた場
合においても、大きな鉄損の軽減効果が得られることが
確認できており、また、第8層磁心(AC)の場合にお
いても、大きな鉄損の軽減効果が得られることが確認で
きた。
FIG. 6 shows -1! about the material of the magnetic piece (2) of Example 1.2 above. This is a diagram that visually shows the effect of reducing iron loss with Yatsupu (G). ? The higher the L magnetic property, the greater the effect of reducing iron loss.
It can be seen that the longer the length (p), the greater the effect. Disappearance, I create a complete release magnetic path as shown in Figure 7.
It has been confirmed that even when a magnetic piece (2) is provided on the end face of the patterned layer core (A type), a large iron loss reduction effect can be obtained. It was confirmed that a large iron loss reduction effect can be obtained even in cases where

(実施例3) 第9図はさらに別の実施例を示すものであり、非晶質磁
性体(Fe40 Ni 38 Mo4B18.2a2a
mg。
(Example 3) FIG. 9 shows yet another example, in which an amorphous magnetic material (Fe40 Ni 38 Mo4B18.2a2a
mg.

アライドケミカル社製)の薄帯を償円形に巻取り性体の
粉床を合成樹脂にて固めたタストコア(μ=16.5、
東京電気化学社袈)よりなる磁性体片t2)を間怖し、
コイル(図示せず)を巻装してチョークコイルを形成し
たものであり、甲ヤ゛ンづC)および磁性体片(2)の
透磁率を適当に股建することにより所望のインタフタン
スを得るようにしたものである。
Tast core (μ = 16.5,
I was afraid of the magnetic material piece t2) made of Tokyo Denki Kagakusha,
A choke coil is formed by winding a coil (not shown), and the desired intufftance can be achieved by appropriately adjusting the magnetic permeability of the first coil (C) and the magnetic material piece (2). This is what I did to get it.

いま、磁性体片(2)を間挿せずに、単なるエア干セッ
プを形成した場合におけるチョークコイルの鉄Mtd+
、ow (JfiJ波数50KHz、電m、0 、3A
 Kおいて、U−関数訂を用いて測定)であるが、実施
例にめっては2.0Wとなシ、−ft’ツブ(G)によ
る鉄損が大巾に軽減できることになる。なお、非晶質磁
性体としては上記のものの他にFe7.9B16 Si
 5、Fe7aB13Si9% C075B15Si1
o\Co74Fe6B2o(いずれもアライドケミカル
社製)があり、非晶質磁性体に変わる冒透磁率金編磁性
体としてはパーマ0イ、クロムパーマロイ、七すプデシ
パーマOイ、ミューメタル、ハイパーニック、ニツカO
イ、七二マツク人スーパーマ0イなどがめる。
Now, the iron Mtd+ of the choke coil in the case where a simple air drying septum is formed without inserting the magnetic material piece (2)
, ow (JfiJ wave number 50KHz, electric m, 0, 3A
(measured using the U-function correction), but in the example, it is 2.0 W, which means that the iron loss due to -ft' tube (G) can be greatly reduced. In addition to the above-mentioned amorphous magnetic materials, Fe7.9B16 Si
5, Fe7aB13Si9% C075B15Si1
o\Co74Fe6B2o (all manufactured by Allied Chemical Co., Ltd.), and permeability gold-knit magnetic materials that can be used as amorphous magnetic materials include Perma 0i, Chrome Permalloy, Nansu Pudeci Perma-Oi, Mu-metal, Hypernic, and Nikka. O
I, 72 Matsuku people superma 0 I, etc.

(−Ah画例4) 第10図はさらに別の実施例を示すよう忙、針状の非晶
質磁性体?)(例えばC075B□5Siよoンを低粘
度の樹J指(−]えは]チバガイ千−社製アラルタイト
CY230;ハードナー1−IY956=lOO:18
、混合物粘度1500mpa(25℃))に重量比50
 : 50で混甘し、磁場印加中で硬化させると、針状
の非晶質磁性体ω)が同一方向を向いた複合磁性体す(
)が得られ、この複合磁性体(社)にて磁性体片(2)
を形成することにより、前記実施例と同様の鉄損軽減効
果が得られる。
(-Ah image example 4) Figure 10 shows yet another example of an acicular amorphous magnetic material. ) (For example, use C075B□5Si on as a low-viscosity tree (-]eha) Araltite CY230 manufactured by Cibagai Sen-sha; Hardener 1-IY956=lOO:18
, mixture viscosity 1500 mpa (25 °C)) to weight ratio 50
: When mixed at 50° C. and cured under the application of a magnetic field, a composite magnetic material (S) with needle-shaped amorphous magnetic materials (ω) facing the same direction is formed.
) is obtained, and the magnetic material piece (2) is obtained from this composite magnetic material (Company).
By forming this, the same iron loss reduction effect as in the above embodiment can be obtained.

いま、実施例では複合磁性体(()X方向の平均透磁率
μを50、y、、Z方向の抵抗率を106Ωmよりも大
としており、周波数20KHz、電流0.5Aの正弦波
に対する鉄損を測定したところ2.5Wとなり、鉄損の
軽減効果が得られた。
In the example, the composite magnetic material (() has an average permeability μ in the X direction of 50, a resistivity in the y and Z directions greater than 106 Ωm, and the iron loss for a sine wave with a frequency of 20 KHz and a current of 0.5 A). When measured, it was 2.5W, and an effect of reducing iron loss was obtained.

なお、磁性体片(2)としては、主磁路に直角方向(y
、z方向)の抵抗率が大きく、主磁路に平行な方向(X
方向)の透磁率が100以下でかつ動作磁束密度で飽和
しない複合磁性体(6)を用いることが望ましい。
In addition, the magnetic material piece (2) is placed in the direction perpendicular to the main magnetic path (y
, z direction), and the resistivity is high in the direction parallel to the main magnetic path (X
It is desirable to use a composite magnetic material (6) that has a magnetic permeability of 100 or less in the direction (direction) and does not saturate at the operating magnetic flux density.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように、一部に切断面よりなる開磁路面
を有し高透磁率の磁性体薄板にて形成場れる積層磁心本
体と、該開磁路面に接して配役式れ開磁路面と平行な対
向端面が非切断面で゛嘔気抵抗および透磁率が高い磁性
体片とよジなシ、開磁路面に接して配設された磁性体片
によって開磁路面部分の磁束の曲り又磁区構造の乱れに
起因する異常うず電流損失が低減でき、4Pツづを形成
した場合にあっても鉄損増加が少ない磁心を提供できる
という利点がある。
As described above, the present invention includes a laminated magnetic core main body formed of a magnetic thin plate with high magnetic permeability and having an open magnetic path surface partially consisting of a cut surface, and an open magnetic core body in contact with the open magnetic path surface. The opposing end surface parallel to the road surface is a non-cutting surface and is different from a magnetic piece with high nausea resistance and magnetic permeability. Further, there is an advantage that abnormal eddy current loss caused by disorder of the magnetic domain structure can be reduced, and a magnetic core with little increase in core loss can be provided even when 4P points are formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄損の周波数特性を示す図、第2図(a)〜(
c)は従来例の製造過程を示す斜視図、第5図(a)(
b)は本発明の構成を示す斜視図、第4図fa) (b
)は本発明一実施例の製造過程を示す図、第5図および
第6図は同上の動作説明図、第7図および第8図はそれ
ぞれ他の実施例を示す図、第9図はさらに別の実施例の
斜視図、第10図はさらに別の実施例の要部斜視図であ
る。 (1)は磁心本体、(2)は磁性体片でおる。 代理人 弁理士 石 1)艮 七 第3図 第5図 第6図 第8図 第7図 第9図 し 第10図 手続補正書(自発) 1、事件の表示 昭和58年特許願第84376号 2、発 明 の名称 磁心 3、補正をする者 事件との関係     特 許出願人 住  所  大阪府門真市太字門真1048番地名 称
 (583)松下電工株式会社 代表者小 林  郁 4、代理人 訂    正    書 願書番号  特願昭58−84376号1、本願の特許
請求の範囲を以下のように訂正致します。 [(1)一部に切断面よりなる開磁路面を有し高透磁率
の磁性体薄板にて形成される積層磁心本体と、該開磁路
面に接して配設され開磁路面と平行な対向端面が非切断
面で電気抵抗および透磁率が高い磁性体片とよりなる磁
心。 (2)前記積層磁心本体を、非晶質磁性体、パーマ0イ
、ケイ素鋼板、電磁軟鉄、センタストのうちの少くとも
一種にて形成して成る特許請求の範囲第1項記載の磁心
。 (3)前記磁性体片をフェライトにて形成して成る特許
請求の範囲第1項記載の磁心。 (41)m記磁性体片を磁性体の粉末あるいは細片を合
成樹脂中に分散した複合磁性体傾て形成して成る特許請
求の範囲第1項記載の磁心。」2、同上節2頁10行目
の全文を削除し、以下の文を挿入致します。 「なっており、1サイクル当りのしステリシス損失W/
hは周波数fが」 3、同上箱3頁1行目の+1) f!5式を以下のよう
に訂正致します。 4、同上第6頁5行目の「うちの」の次に「少くとも」
を挿入致します。 5、同上節7頁5行目の「25〜35」を「25」と訂
正致します。 6、同上同頁9行目の全文を削除し、以下の文を挿入致
します。 「銃後水冷する、いわゆる高周波鉄損を低減させる熱処
理」 7、添付図中第1図を別紙のように訂正致し捷す。 代理人 弁理士  石 1)長 七
Figure 1 shows the frequency characteristics of iron loss, Figure 2 (a) to (
c) is a perspective view showing the manufacturing process of the conventional example, and Fig. 5(a) (
b) is a perspective view showing the configuration of the present invention, Fig. 4 fa) (b)
) is a diagram showing the manufacturing process of one embodiment of the present invention, FIGS. 5 and 6 are explanatory diagrams of the same operation, FIGS. 7 and 8 are diagrams each showing other embodiments, and FIG. A perspective view of another embodiment. FIG. 10 is a perspective view of a main part of still another embodiment. (1) is the magnetic core body, and (2) is a magnetic piece. Agent Patent Attorney Ishi 1) Ai 7 Figure 3 Figure 5 Figure 6 Figure 8 Figure 7 Figure 9 and Figure 10 Procedural amendment (voluntary) 1. Indication of the case 1984 Patent Application No. 84376 2. Name of the invention Magnetic core 3. Relationship with the case of the person making the amendment Patent applicant address 1048 Bold Kadoma, Kadoma City, Osaka Name (583) Matsushita Electric Works Co., Ltd. Representative Iku Kobayashi 4, agent editing Correct application number: Japanese Patent Application No. 1, No. 58-84376, the scope of claims of this application is corrected as follows. [(1) A laminated magnetic core body formed of a magnetic thin plate with high magnetic permeability and having an open magnetic path surface partially consisting of a cut surface, and a laminated magnetic core body formed of a magnetic thin plate with high magnetic permeability, and a core body disposed in contact with the open magnetic path surface and parallel to the open magnetic path surface. A magnetic core consisting of a piece of magnetic material with high electrical resistance and magnetic permeability, and the opposing end surface is an uncut surface. (2) The magnetic core according to claim 1, wherein the laminated magnetic core body is formed of at least one of an amorphous magnetic material, a permanent magnetic material, a silicon steel plate, an electromagnetic soft iron, and a centast. (3) The magnetic core according to claim 1, wherein the magnetic piece is made of ferrite. (41) A magnetic core according to claim 1, wherein the m pieces of magnetic material are formed by tilting a composite magnetic material in which powder or pieces of magnetic material are dispersed in a synthetic resin. ” 2. The entire sentence on page 2, line 10 of the same section above will be deleted and the following sentence will be inserted. "The steresis loss per cycle W/
h is the frequency f.'' 3, +1 on page 3, line 1 of the same box) f! We will correct formula 5 as follows. 4. “At least” comes after “our” on page 6, line 5 of the same page.
I will insert. 5. In the same section, page 7, line 5, "25-35" will be corrected to "25". 6. Delete the entire text of line 9 on the same page as above and insert the following sentence. "Water cooling after the gun, heat treatment to reduce so-called high-frequency iron loss" 7. Figure 1 of the attached drawings has been corrected and edited as shown in the attached sheet. Agent Patent Attorney Ishi 1) Choshichi

Claims (1)

【特許請求の範囲】[Claims] (1)一部に切断面よシなる開磁路面を有し高透磁率の
磁性体薄板にで形成でれる積層磁心不休と、該開磁路面
に接して配設され開磁路面と平行な対向端面が非切断面
で電気抵抗および透磁率が尚い磁性体片とよ、!lll
なる磁心。 1211JfJ S己槓層磁心本体を、非晶質磁性体、
パーマ、    0イ、ケイ素鋼板、電磁軟鉄、センタ
ストのうちの一棟にて形成して収る特許請求の範囲第1
項記載の磁心。 131前i己磁任体片をフェライトにて形成して成る特
、7f請求の範囲第1項記載の磁心。 成樹脂中に分散した複合磁性体にて形成して成る特許請
求の範囲第1項記載の磁心。
(1) A laminated magnetic core formed of a thin magnetic material plate with high magnetic permeability and having an open magnetic path surface such as a cut surface in a part, and a laminated magnetic core that is arranged in contact with the open magnetic path surface and parallel to the open magnetic path surface. A piece of magnetic material whose opposing end surface is an uncut surface and has good electrical resistance and magnetic permeability! lll
A magnetic core. 1211JfJ S self-layered magnetic core body, amorphous magnetic material,
Claim 1: Formed in one building among permanent, 0i, silicon steel plate, electromagnetic soft iron, and Centast.
Magnetic core described in section. 131. The magnetic core according to claim 1, wherein the self-magnetic body piece is made of ferrite. A magnetic core according to claim 1, which is formed of a composite magnetic material dispersed in a synthetic resin.
JP8437683A 1983-05-14 1983-05-14 Magnetic core Granted JPS59210623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8437683A JPS59210623A (en) 1983-05-14 1983-05-14 Magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8437683A JPS59210623A (en) 1983-05-14 1983-05-14 Magnetic core

Publications (2)

Publication Number Publication Date
JPS59210623A true JPS59210623A (en) 1984-11-29
JPH0562444B2 JPH0562444B2 (en) 1993-09-08

Family

ID=13828814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8437683A Granted JPS59210623A (en) 1983-05-14 1983-05-14 Magnetic core

Country Status (1)

Country Link
JP (1) JPS59210623A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740259A1 (en) * 1995-10-24 1997-04-25 Thomson Csf MIXED MAGNETIC CORE
WO2000074089A1 (en) * 1999-05-26 2000-12-07 Abb Ab Induction devices with distributed air gaps
WO2001050141A1 (en) * 2000-01-04 2001-07-12 Epcos Ag Sensor for measuring a direct current and a measuring method
JP2002373811A (en) * 2001-06-15 2002-12-26 Toyota Industries Corp Core, core coil, and transformer
US7106163B2 (en) 1998-03-27 2006-09-12 The Furukawa Electric Co., Ltd. Core
JP2009010207A (en) * 2007-06-28 2009-01-15 Murata Mfg Co Ltd Common mode choke coil
JP2009064990A (en) * 2007-09-07 2009-03-26 Sht Corp Ltd Coil unit
JP2010230455A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Device for detection of electric leak
JP2011112634A (en) * 2009-11-30 2011-06-09 Tamura Seisakusho Co Ltd Ring core for flux gate leakage sensor, ring core unit including the ring core, and the flux gate leakage sensor
JP2013197570A (en) * 2012-03-23 2013-09-30 Hitachi Metals Ltd Composite magnetic core, reactor, and power supply device
JP2015053464A (en) * 2013-09-09 2015-03-19 台達電子企業管理(上海)有限公司 Inductor, and switching circuit including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896714A (en) * 1981-12-04 1983-06-08 Fuji Electric Co Ltd Core for switching regulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896714A (en) * 1981-12-04 1983-06-08 Fuji Electric Co Ltd Core for switching regulator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771011A1 (en) * 1995-10-24 1997-05-02 Thomson-Csf Mixed magnetic core
FR2740259A1 (en) * 1995-10-24 1997-04-25 Thomson Csf MIXED MAGNETIC CORE
US7106163B2 (en) 1998-03-27 2006-09-12 The Furukawa Electric Co., Ltd. Core
WO2000074089A1 (en) * 1999-05-26 2000-12-07 Abb Ab Induction devices with distributed air gaps
EP1194936A1 (en) * 1999-05-26 2002-04-10 Abb Ab Induction devices with distributed air gaps
WO2001050141A1 (en) * 2000-01-04 2001-07-12 Epcos Ag Sensor for measuring a direct current and a measuring method
JP2002373811A (en) * 2001-06-15 2002-12-26 Toyota Industries Corp Core, core coil, and transformer
JP2009010207A (en) * 2007-06-28 2009-01-15 Murata Mfg Co Ltd Common mode choke coil
JP2009064990A (en) * 2007-09-07 2009-03-26 Sht Corp Ltd Coil unit
JP2010230455A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Device for detection of electric leak
JP2011112634A (en) * 2009-11-30 2011-06-09 Tamura Seisakusho Co Ltd Ring core for flux gate leakage sensor, ring core unit including the ring core, and the flux gate leakage sensor
JP2013197570A (en) * 2012-03-23 2013-09-30 Hitachi Metals Ltd Composite magnetic core, reactor, and power supply device
JP2015053464A (en) * 2013-09-09 2015-03-19 台達電子企業管理(上海)有限公司 Inductor, and switching circuit including the same

Also Published As

Publication number Publication date
JPH0562444B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
KR960000911B1 (en) Composite silicone steel-amorphous steel transformer core
JPS59210623A (en) Magnetic core
JPS6234122B2 (en)
JPH0254641B2 (en)
JPS59130409A (en) Laminated core
JPH04368105A (en) Planar inductor
JP3574955B2 (en) Transformer winding core
JPH0677055A (en) Plane magnetic element
JPH0138898Y2 (en)
EP0151048A1 (en) Improvements in or relating to electrical induction apparatus
JPH03276604A (en) Plane inductor
JP2019125750A (en) Amorphous core and transformer
JP4473476B2 (en) Manufacturing method of core for low noise winding transformer
JP2000182850A (en) Thin-film transformer
US3015791A (en) Laminated cores for transformers and reactors
WO2023127328A1 (en) Laminated iron core and rotary electrical machine using same
KR102139004B1 (en) Variable-capacity transformer structure using magnetic flux assist slot and manufacturing method thereof
JPH04250604A (en) Transformer core
JPS5752116A (en) Manufacture of iron core for transformer
US3171093A (en) Magnetizable laminated cores for transformers and reactors
JP2004055787A (en) Dc reactor
JPH03190112A (en) Composite core
JPS5828342Y2 (en) Iron core tightening device for electrical equipment
JPS59134807A (en) Iron core
JPS6053006A (en) Wound iron core