JPH03190112A - Composite core - Google Patents

Composite core

Info

Publication number
JPH03190112A
JPH03190112A JP32889389A JP32889389A JPH03190112A JP H03190112 A JPH03190112 A JP H03190112A JP 32889389 A JP32889389 A JP 32889389A JP 32889389 A JP32889389 A JP 32889389A JP H03190112 A JPH03190112 A JP H03190112A
Authority
JP
Japan
Prior art keywords
magnetic flux
core
electromagnetic steel
steel plate
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32889389A
Other languages
Japanese (ja)
Inventor
Takeshi Yagisawa
八木澤 猛
Sadayoshi Hibino
日々野 定良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32889389A priority Critical patent/JPH03190112A/en
Publication of JPH03190112A publication Critical patent/JPH03190112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PURPOSE:To obtain a small type electric machine core having reduced magnetostriction vibration by a method wherein a first electromagnetic steel plate layer having high magnetic flux density characteristics and a second electromagnetic steel plate layer having low magnetostriction characteristics are laminated, the second electromagnetic steel plate layer is formed in the thickness thinner than the first electromagnetic steel plate layer, and a slit is provided on a part of the second electromagnetic steel plate layer. CONSTITUTION:When the voltage, in which high harmonics are superposed on commercial frequency, is applied to a coil 4, the magnetic flux corresponding to the change of voltage is allowed to flow to the composite core consisting of a high magnetic flux density electromagnetic steel plate 1 and a low magnetostriction thin band 2. The high harmonic of the magnetic flux flows to the low magnetostriction thin band easier than flowing to the high magnetic flux density electromagnetic steel plate 1. On the other hand, the greater part of the magnetic flux component of commercial frequency is allowed to flow to the high magnetic flux density electromagnetic steel plate 1. The reason is that the flow of magnetic flux is prevented by a cavity 3. Accordingly, core noise can be reduced sharply by the high harmonic, which gives substantial effect on the core noise, flowing to the low magnetostriction thin band. Also, it is unnecessary to have the core totally composed of the low magnetostriction thin band, the quantity of the low magnetostriction thin band may be one over several integers, and as a result, the core can be formed small in size.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、変圧器、電動機などの電気機器の構成部品と
して用いられる鉄心に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an iron core used as a component of electrical equipment such as transformers and electric motors.

(従来の技術) 変圧器、電動機などの電気機器に用いられる鉄心は、一
般に電磁鋼板を鉄心形状に積層して構成している。電磁
鋼板などの強磁性体には、磁歪とよばれる現象があり、
磁化することによってその寸法が変化することが知られ
ている。したがって鉄心を交流で磁化すれば、磁歪によ
って寸法が変化して振動し、その結果騒音が発生するこ
ととなる。
(Prior Art) Iron cores used in electrical equipment such as transformers and electric motors are generally constructed by laminating electromagnetic steel sheets in the shape of an iron core. Ferromagnetic materials such as electrical steel sheets have a phenomenon called magnetostriction.
It is known that its dimensions change when magnetized. Therefore, if the iron core is magnetized with alternating current, the dimensions change due to magnetostriction and the iron core vibrates, resulting in noise.

一方、最近は、電気機器をインバータを用いて駆動する
ことが広く行なわれるようになった。インバータの出力
電流あるいは電圧には、半導体素子をオン・オフするこ
とにともなう高調波が含まれている。そのため、鉄心の
磁歪振動及びそれによる騒音の中にも高調波が含まれ、
かつその周波数が、人体にとって不快に感じられる範囲
にあることから、騒音の低減化が強く望まれている。
On the other hand, recently, it has become common to drive electrical equipment using inverters. The output current or voltage of an inverter includes harmonics caused by turning on and off semiconductor elements. Therefore, harmonics are included in the magnetostrictive vibration of the iron core and the resulting noise.
Moreover, since the frequency is within a range that is uncomfortable for the human body, there is a strong desire to reduce the noise.

このような磁歪振動を小さくするための方法としては、
合金の化学成分を選択して磁歪の小さな鋼板をつくり、
これにより鉄心を構成する方法がある。しかしながらこ
のような材料は、一般に飽和磁束密度が低く、その結果
、鉄心寸法が不可避的に大きくなってしまうという欠点
を有している。
As a method to reduce such magnetostrictive vibrations,
By selecting the chemical composition of the alloy, we create a steel plate with low magnetostriction.
There is a method of configuring an iron core using this. However, such materials generally have a low saturation magnetic flux density, resulting in an unavoidable increase in core size.

(発明が解決しようとする課題) そのため、鉄心寸法を大型化することなしに、磁歪振動
を小さくし、騒音を低減化する技術が求められていた。
(Problems to be Solved by the Invention) Therefore, there has been a need for a technology that reduces magnetostrictive vibration and noise without increasing the size of the iron core.

本発明は、上記のような従来技術の欠点を改善しようと
するものであり、磁歪振動の低減化が図られ、しかも寸
法の小型化の点でも有利な電気機器鉄心を提供すること
を目的としている。
The present invention aims to improve the above-mentioned drawbacks of the prior art, and aims to provide an electrical equipment iron core that reduces magnetostrictive vibration and is also advantageous in terms of size reduction. There is.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明による複合鉄心は、高磁束密度特性を有する第1
電磁鋼板層と低磁歪特性を有する第2電磁鋼板層とを鉄
心形状に積層してなり、前記第2電磁鋼板層の厚さは前
記第1電磁鋼板層の厚さよりも薄く形成し、かつ、前記
第21@磁鋼板層の少なくとも一部にスリットを設けて
なることを特徴としている。
(Means for Solving the Problems) A composite core according to the present invention has a first core having high magnetic flux density characteristics.
An electromagnetic steel sheet layer and a second electromagnetic steel sheet layer having low magnetostriction characteristics are laminated in the shape of an iron core, the thickness of the second electromagnetic steel sheet layer being thinner than the thickness of the first electromagnetic steel sheet layer, and It is characterized in that a slit is provided in at least a part of the 21st magnetic steel sheet layer.

本発明においては、上記の第1電磁鋼板層自体を、複数
の電磁鋼板の階段重ね接合によって積層して構成するこ
ともできる。
In the present invention, the first electromagnetic steel sheet layer itself can also be constructed by laminating a plurality of electromagnetic steel sheets by step stacking.

本発明の鉄心は、純鉄系のあるいはSiなど合金元素添
加量を少くすることにより飽和磁束密度を^くした電磁
鋼板と、6.5%5i−Fe合金のような低磁歪磁性材
料とを組合せることにより、鉄心寸法の小型化に適しか
つ低騒音特性を有する電気機器用鉄心を製作しようとす
るものである。
The iron core of the present invention is made of an electromagnetic steel sheet that has a reduced saturation magnetic flux density by reducing the amount of added alloy elements such as pure iron or Si, and a low magnetostrictive magnetic material such as a 6.5% 5i-Fe alloy. By combining these two methods, the aim is to produce an iron core for electrical equipment that is suitable for reducing the size of the iron core and has low noise characteristics.

第1図に、本発明の基本的な構成を示す。鉄心は高磁束
密度電磁鋼板1と、低磁歪薄帯2より構成されており、
これがコイル4と鎖交している。
FIG. 1 shows the basic configuration of the present invention. The iron core is composed of a high magnetic flux density electrical steel sheet 1 and a low magnetostriction ribbon 2.
This is linked to coil 4.

さらに低磁歪薄帯2によってなる磁路中には、空隙(ス
リット)3が設けられている。
Furthermore, a gap (slit) 3 is provided in the magnetic path formed by the low magnetostriction ribbon 2.

いま、コイル4に対して、商用周波に高調波の重畳した
電圧が印加された場合を考える。この電圧変化に相当す
る磁束が高磁束密度電磁鋼板(第1電磁鋼板層)1と低
磁歪薄帯(第2電磁鋼板層)2の二つからなる複合鉄心
に流れる。磁束のうちで高調波成分は、高磁束密度電磁
鋼板1に流れるよりも低磁歪薄帯2に流れる方が容易で
ある。これは、^調波磁束が流れることによって鋼板内
に誘起されろうず電流が磁束の流れをさまたげるが、低
磁歪薄帯2は、その板厚が薄いことから、薄帯内に誘起
されろうず電流が少な(、その結果、高調波磁束に対す
る透磁率が高磁束密度電磁鋼板1に対して相対的に高く
なるためである。
Now, consider a case where a voltage in which harmonics are superimposed on a commercial frequency is applied to the coil 4. Magnetic flux corresponding to this voltage change flows through a composite core consisting of two high magnetic flux density electrical steel sheets (first electrical steel sheet layer) 1 and low magnetostrictive ribbons (second electrical steel sheet layer) 2. It is easier for harmonic components of the magnetic flux to flow through the low magnetostriction ribbon 2 than through the high magnetic flux density electrical steel sheet 1. This is because the current induced in the steel plate by the flow of harmonic magnetic flux obstructs the flow of magnetic flux, but since the low magnetostrictive thin ribbon 2 has a thin plate thickness, the current induced within the steel plate is reduced. This is because the current is small (as a result, the magnetic permeability to harmonic magnetic flux becomes relatively high with respect to the high magnetic flux density electrical steel sheet 1).

一方、商用周波磁束成分は、高磁束密度電磁鋼板1によ
り多く流れる。なぜなら、商用周波磁束に対しては、周
波数が高くないことから、磁化をさまたげるうず電流の
影響が少ないこと、これに対して、低磁歪薄帯2につい
ては、その磁路中に設けられた空隙(スリット)3が、
磁束の流れをさまたげるためである。商用周波磁束成分
が低磁歪薄帯2に流れにくいことは、これが飽和しにく
いことを意味し、低磁歪薄帯2の高調波磁束に対する透
磁率が、飽和により低下することを防いでいる。
On the other hand, the commercial frequency magnetic flux component flows more into the high magnetic flux density electrical steel sheet 1. This is because the frequency of commercial frequency magnetic flux is not high, so the influence of eddy currents that hinder magnetization is small. (slit) 3 is
This is to block the flow of magnetic flux. The fact that the commercial frequency magnetic flux component is difficult to flow into the low magnetostrictive thin ribbon 2 means that it is difficult to be saturated, and the permeability of the low magnetostrictive thin ribbon 2 to harmonic magnetic flux is prevented from decreasing due to saturation.

その結果、商用周波磁束は高磁束密度電磁鋼板1に多く
流れ、一方、高調波磁束は低磁歪薄帯2に多く流れる。
As a result, a large amount of commercial frequency magnetic flux flows through the high magnetic flux density electrical steel sheet 1, while a large amount of harmonic magnetic flux flows through the low magnetostriction ribbon 2.

したがって鉄心騒音に影響の大きい高調波磁束が低磁歪
薄帯に流れることで騒音が大幅に低減されるのである。
Therefore, the harmonic magnetic flux, which has a large effect on iron core noise, flows through the low magnetostriction ribbon, thereby significantly reducing noise.

また、本発明は鉄心の構成材料のすべてを低磁歪薄帯で
製作する必要がなくこれは通常全体の数分の−でよいこ
とから、鉄心を小型に構成することができる点でもすぐ
れている。
In addition, the present invention is superior in that it is not necessary to make all of the core's constituent materials from low magnetostrictive thin ribbons, and this can usually be made by a few fractions of the total amount, so the core can be made smaller. .

(実施例) 以下、本発明を実施例に乱づいて説明する。(Example) Hereinafter, the present invention will be explained with reference to Examples.

第2図に、本発明を変圧器に適用した場合の例を示す。FIG. 2 shows an example in which the present invention is applied to a transformer.

この鉄心は、外側鉄心(第1電磁鋼板層)5と内側鉄心
(第2m磁鋼板層)6とからなる巻鉄心であり、外側鉄
心5は、たとえば0.50■−厚の純鉄系電磁鋼板の、
また内側鉄心6は、たとえば0.35龍厚の6.5%け
い素鋼薄帯の、ともに巻回構造を有している。この例の
場合、鉄心の全断面積に対して内側鉄心の占める割合は
25%とした。
This core is a wound core consisting of an outer core (first magnetic steel sheet layer) 5 and an inner core (second m magnetic steel sheet layer) 6. of steel plate,
The inner core 6 has a wound structure of a 6.5% silicon steel ribbon having a thickness of 0.35 mm, for example. In this example, the ratio of the inner core to the total cross-sectional area of the core was 25%.

変圧器の組立は、あらかじめ製作しておいたコイル8に
、焼鈍した鉄心を複数枚ずつにわけて挿入する方式であ
ることかり、鉄心を構成する純鉄系電磁鋼板及び6.5
%けい素鋼薄帯ともに、鉄心の上部ヨーク位置において
切断部を有し、組立時にはこの部分を一旦開いてコイル
内に挿入した後、再び接合することによって組立てるこ
とができる。
The transformer is assembled by inserting the annealed core into the coil 8, which has been prepared in advance, in multiple pieces.
Both silicon steel ribbons have a cut section at the upper yoke position of the iron core, and during assembly, this section can be opened once, inserted into the coil, and then rejoined.

内側鉄心6の上部ヨーク位置における接合は、突合せ接
合であるが、磁気的な空隙として絶縁紙7をはさんであ
る。
The inner core 6 is joined at the upper yoke position by a butt joint, but an insulating paper 7 is sandwiched therebetween as a magnetic gap.

外側鉄心5の上部ヨーク位置の側面を拡大して、第3図
に示す。外側鉄心を構成する純鉄系電磁鋼板9の接合部
は、階段重ね接合構造となっており、これにより実際上
完全に0とすることのできない鋼板突き合わせ部の空隙
10の影響を小さくしている。
FIG. 3 shows an enlarged side view of the outer core 5 at the upper yoke position. The joints of the pure iron electromagnetic steel sheets 9 constituting the outer core have a step-overlap joint structure, thereby reducing the influence of the voids 10 at the butt portions of the steel plates, which cannot be completely reduced to zero in practice. .

電磁鋼板の電気抵抗は、主要添加元素であるStの量に
よって増加する。たとえば6.5%のSiを含む場合の
電気抵抗率が80X10−8Ω・m程度であるのに対し
、Si量が0〜0.5%の純鉄系あるいは低Si系電磁
鋼板の電気抵抗率は、20X10’Ω・m以下である。
The electrical resistance of electrical steel sheets increases depending on the amount of St, which is a main additive element. For example, the electrical resistivity when containing 6.5% Si is about 80×10-8 Ω・m, whereas the electrical resistivity of pure iron-based or low-Si electrical steel sheets containing 0 to 0.5% Si is less than 20×10′Ω·m.

したがって、今回、純鉄系電磁鋼板で構成した外側鉄心
は、添加元素が少ないことから、飽和磁束密度が高い一
方で、電気抵抗が低く、うず電流が流れやすく、第4図
に示すように、周波数が高くなるとともに透磁率が低下
する。
Therefore, the outer core made of pure iron-based electrical steel sheet has a small amount of added elements, so while it has a high saturation magnetic flux density, it has a low electrical resistance and allows eddy current to easily flow, as shown in Figure 4. As the frequency increases, the magnetic permeability decreases.

一方、6.5%けい素鋼薄帯により構成された内側鉄心
は、板厚が薄いこと、電気抵抗が高いことにより、うず
電流が少なく、周波数が高くなったときの透磁率低下が
少ない。
On the other hand, the inner core made of 6.5% silicon steel ribbon has a thin plate thickness and high electrical resistance, so it produces less eddy current and less decreases in magnetic permeability when the frequency increases.

内側鉄心に、絶縁紙をはさむことによって設けた磁気的
な空隙は、これが長すぎれば商用周波のみならず、高調
波に対する透磁率も低下してしまい、また反対に短すぎ
れば、商用周波磁束が多く流れて飽和に近づき、その結
果高調波に対する透磁率が低下してしまう。これをさけ
るためには実効的な空隙長を鉄心磁路1mあたり0,1
〜11I11の範囲とすることが好ましい。なお、この
空隙長の下限の0.1m+sは、外側鉄心の材料として
透磁率のより高い材料を使用すれば、さらに小さくする
ことができる。
If the magnetic gap created by sandwiching insulating paper between the inner core is too long, the magnetic permeability will decrease not only for commercial frequencies but also for harmonics, and on the other hand, if it is too short, the commercial frequency magnetic flux will decrease. It flows a lot and approaches saturation, resulting in a decrease in magnetic permeability to harmonics. In order to avoid this, the effective air gap length should be set to 0.1 per meter of iron core magnetic path.
It is preferable to set it as the range of -11I11. Note that the lower limit of this gap length of 0.1 m+s can be further reduced by using a material with higher magnetic permeability as the material of the outer core.

上記例の場合、内側鉄心に設けた空隙の実効長さは、鉄
心磁路1mあたり0.4mmとした。この結果、内側鉄
心の平均的比透磁率は、商用周波に対しても高調波に対
しても、2000程度にすることができる。この値は、
外側鉄心の商用周波に対する透磁率よりは大幅に低く、
また高調波に対する透磁率よりははるかに高い。そのた
め商用周波磁束成分は外側鉄心に多く流れ、また高調波
磁束成分は内側鉄心に多く流れる。
In the case of the above example, the effective length of the air gap provided in the inner core was 0.4 mm per 1 m of the core magnetic path. As a result, the average relative magnetic permeability of the inner core can be set to about 2000 for both commercial frequencies and harmonics. This value is
It is significantly lower than the magnetic permeability of the outer core for commercial frequencies.
It is also much higher than the magnetic permeability to harmonics. Therefore, a large amount of the commercial frequency magnetic flux component flows to the outer core, and a large amount of the harmonic magnetic flux component flows to the inner core.

けい素鋼の磁歪は、通常、第5図(I?、M、Bozo
−rth、 Ferron+agnetisn+による
)に示すようにSi量とともに低下し、6〜7wt%S
iの間で最も低くなることが知られている。本実施例に
おいて内側鉄心として用いた6、5%けい素鋼薄帯は、
磁歪がきわめて少ない鉄心材料であり、そのため内側鉄
心は、磁歪振動が非常に小さい。
The magnetostriction of silicon steel is usually shown in Figure 5 (I?, M, Bozo
-rth, according to Ferron+agnetisn+), it decreases with the amount of Si, and 6 to 7 wt% S
It is known that it is the lowest among i. The 6.5% silicon steel ribbon used as the inner core in this example was
The core material has extremely low magnetostriction, so the magnetostrictive vibration of the inner core is extremely small.

第6図に、全高調波磁束のうち、内側鉄心に流れる割合
を、高調波の周波数がIKHz及び2KHzの場合につ
いて示す。内側鉄心の断面積は、全鉄心断面積の25%
にすぎないにもかかわらず、高調波磁束の約7096が
内側鉄心に流れている。
FIG. 6 shows the proportion of the total harmonic magnetic flux that flows through the inner core when the harmonic frequencies are IKHz and 2KHz. The cross-sectional area of the inner core is 25% of the total core cross-sectional area.
Approximately 7096 of the harmonic magnetic flux flows through the inner iron core even though it is only .

この結果、鉄心の高調波磁歪振動が大幅に低下し、低騒
音の変圧器を得ることができる。
As a result, the harmonic magnetostrictive vibration of the iron core is significantly reduced, making it possible to obtain a low-noise transformer.

以上の実施例は、本発明を変圧器鉄心に応用した場合に
ついて述べた。しかしこれを回転機鉄心に応用しても同
様の効果を得ることができる。インバータ駆動電動機に
おける高調波の振動は、コイルに流れる高調波電流成分
にもとづく電磁気力によるものだけではなく、鉄心の磁
歪振動も無視することはできない。しかし、2種類の鉄
心材料を組合せて複合鉄心とすることで、低磁歪電動機
鉄心を得ることができる。
In the above embodiments, the present invention was applied to a transformer core. However, similar effects can be obtained by applying this to a rotating machine core. Harmonic vibrations in an inverter-driven motor are not only caused by electromagnetic force based on harmonic current components flowing through the coils, but also magnetostrictive vibrations of the iron core cannot be ignored. However, by combining two types of core materials to form a composite core, a low magnetostrictive motor core can be obtained.

第7図は、高磁束密度電磁鋼板を用いた電動機固定子鉄
心抜き板11であり、接合部を持たない。
FIG. 7 shows a motor stator core punched plate 11 made of a high magnetic flux density electromagnetic steel sheet and has no joints.

一方、第8図は、低磁歪電磁鋼板を用いた鉄心抜き板で
あって、4個のセグメント12に分割されている。セグ
メント間の接合部には、わずかの空隙13ができている
。これらの鉄心抜き板11及び12を積層して電動機固
定子鉄心を組立てた結果、騒音を低減することができた
On the other hand, FIG. 8 shows a core punched plate using a low magnetostrictive electromagnetic steel sheet, which is divided into four segments 12. A slight air gap 13 is created at the joint between the segments. As a result of assembling the motor stator core by laminating these core punched plates 11 and 12, noise could be reduced.

なお、上述した二つの実施例では、低磁歪電磁鋼板とし
て、6.5%けい素鋼薄帯を用いたが、Co系の低磁歪
アモルファス合金を用いた場合には、高調波の周波数が
さらに高くなったとしても同様の効果が得ることができ
る。
In the above two examples, a 6.5% silicon steel ribbon was used as the low magnetostriction electrical steel sheet, but if a Co-based low magnetostriction amorphous alloy is used, the harmonic frequency will further increase. Even if the price is higher, the same effect can be obtained.

また、高磁束密度電磁鋼板として、純鉄電磁鋼板を用い
たが、通常のけい素鋼薄帯であっても、低磁歪材料より
も高い磁束密度で動作させることができれば、同様の効
果を得ることができる。
In addition, although a pure iron electrical steel sheet was used as the high magnetic flux density electrical steel sheet, the same effect can be obtained even with ordinary silicon steel ribbon if it can be operated at a higher magnetic flux density than low magnetostrictive material. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明による複合鉄心においては、高磁束密度特性を有
する第1電磁鋼板層と低磁歪特性を有する第2電磁鋼板
層とを鉄心形状に積層し、しかも第2電磁鋼板層の厚さ
を第1電磁鋼板層の厚さよりも薄く形成するようにした
ので、磁歪振動の低減化を図る上ですぐれた効果を奏し
、しかも寸法の小型化を図ることができる点においても
有利である。
In the composite core according to the present invention, a first electromagnetic steel sheet layer having a high magnetic flux density characteristic and a second electromagnetic steel sheet layer having a low magnetostriction characteristic are laminated in the shape of an iron core, and the thickness of the second electromagnetic steel sheet layer is set to be the same as that of the first electromagnetic steel sheet layer. Since it is formed thinner than the thickness of the electromagnetic steel sheet layer, it has an excellent effect in reducing magnetostrictive vibrations, and is also advantageous in that it can be made smaller in size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の基本構成を示す説明図、第2図は、
実施例における変圧器の断面図、第3図は、ヨーク鉄心
の部分拡大図、第4図は、純鉄系電磁鋼板の比透磁率を
示すグラフ、第5図は、けい素−鉄合金の磁歪を示すグ
ラフ、第6図は、実施例の鉄心高調波磁束の内側鉄心に
流れる割合を示すグラフ、第7図は、実施例における高
磁束密度電磁鋼板の鉄心抜き板の平面図、第8図は、低
磁歪薄帯の鉄心抜き板形状を示す平面図である。 1・・・高磁束密度電磁鋼板、2・・・低磁歪薄帯、3
.10.13・・・空隙、4.8・・・コイル。
FIG. 1 is an explanatory diagram showing the basic configuration of the present invention, and FIG. 2 is an explanatory diagram showing the basic configuration of the present invention.
FIG. 3 is a partially enlarged view of the yoke core, FIG. 4 is a graph showing the relative magnetic permeability of pure iron electrical steel sheets, and FIG. 5 is a graph showing the relative permeability of a silicon-iron alloy. FIG. 6 is a graph showing the magnetostriction, and FIG. 6 is a graph showing the ratio of core harmonic magnetic flux flowing to the inner core in the example. FIG. 7 is a plan view of the core punched plate of the high magnetic flux density electrical steel sheet in the example. The figure is a plan view showing the shape of a core punched plate of a low magnetostrictive ribbon. 1... High magnetic flux density electrical steel sheet, 2... Low magnetostrictive ribbon, 3
.. 10.13... air gap, 4.8... coil.

Claims (1)

【特許請求の範囲】[Claims]  高磁束密度特性を有する第1電磁鋼板層と低磁歪特性
を有する第2電磁鋼板層とを鉄心形状に積層してなり、
前記第2電磁鋼板層の厚さは前記第1電磁鋼板層の厚さ
よりも薄く形成し、かつ、前記第2電磁鋼板層の少なく
とも一部にスリットを設けてなることを特徴とする、複
合鉄心。
A first electromagnetic steel sheet layer having high magnetic flux density characteristics and a second electromagnetic steel sheet layer having low magnetostriction characteristics are laminated in the shape of an iron core,
A composite core characterized in that the thickness of the second electromagnetic steel sheet layer is thinner than the thickness of the first electromagnetic steel sheet layer, and a slit is provided in at least a part of the second electromagnetic steel sheet layer. .
JP32889389A 1989-12-19 1989-12-19 Composite core Pending JPH03190112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32889389A JPH03190112A (en) 1989-12-19 1989-12-19 Composite core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32889389A JPH03190112A (en) 1989-12-19 1989-12-19 Composite core

Publications (1)

Publication Number Publication Date
JPH03190112A true JPH03190112A (en) 1991-08-20

Family

ID=18215274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32889389A Pending JPH03190112A (en) 1989-12-19 1989-12-19 Composite core

Country Status (1)

Country Link
JP (1) JPH03190112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129728A (en) * 2009-12-18 2011-06-30 Sumitomo Electric Ind Ltd Core for magnetic component, reactor, and core block
JP2018117061A (en) * 2017-01-19 2018-07-26 株式会社日立製作所 Iron core for stationary induction electric appliance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129728A (en) * 2009-12-18 2011-06-30 Sumitomo Electric Ind Ltd Core for magnetic component, reactor, and core block
JP2018117061A (en) * 2017-01-19 2018-07-26 株式会社日立製作所 Iron core for stationary induction electric appliance
US10665381B2 (en) 2017-01-19 2020-05-26 Hitachi, Ltd. Stationary induction apparatus core

Similar Documents

Publication Publication Date Title
AU2005236929B2 (en) Magnetic core for stationary electromagnetic devices
KR20060017592A (en) Selective etching process for cutting amorphous metal shapes and components made thereof
KR20050084640A (en) Bulk amorphous metal inductive device
JPS6015908A (en) Magnetic core
JPH03190112A (en) Composite core
JPH04116809A (en) Iron core of transformer
JP2002222718A (en) Transformer, transformer core, and method of manufacturing the same
JP3162692B2 (en) Inductors and transformers
JPH04368105A (en) Planar inductor
JPH03204911A (en) Transformer core
JP3574955B2 (en) Transformer winding core
JPH03236204A (en) Iron core for three-phase transformer
JP3648425B2 (en) Ring core
JPS5939012A (en) Core of stationary electric induction apparatus
JPH11307368A (en) Core in three-phase transformer
JPH0423297Y2 (en)
JPS6010606A (en) Magnetic core for power source line filter
JPH04250604A (en) Transformer core
JPS59182514A (en) Magnetic core for choke coil
JPH05276706A (en) Magnetic wedge for slot of rotating machine
JPS6233728B2 (en)
JP3031158U (en) Ignition coil for internal combustion engine
JPS63110711A (en) Iron core of transformer
JPH0562839A (en) Transformer laminated iron core
JPH11121240A (en) Inductor