JPH04368105A - Planar inductor - Google Patents

Planar inductor

Info

Publication number
JPH04368105A
JPH04368105A JP14442291A JP14442291A JPH04368105A JP H04368105 A JPH04368105 A JP H04368105A JP 14442291 A JP14442291 A JP 14442291A JP 14442291 A JP14442291 A JP 14442291A JP H04368105 A JPH04368105 A JP H04368105A
Authority
JP
Japan
Prior art keywords
planar inductor
ferromagnetic
magnetic
coil
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14442291A
Other languages
Japanese (ja)
Other versions
JP3141893B2 (en
Inventor
Michio Hasegawa
長谷川 迪雄
Toshiro Sato
敏郎 佐藤
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03144422A priority Critical patent/JP3141893B2/en
Publication of JPH04368105A publication Critical patent/JPH04368105A/en
Application granted granted Critical
Publication of JP3141893B2 publication Critical patent/JP3141893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a planar inductor having large inductance and excellent DC superposition characteristics. CONSTITUTION:In a planar inductor wherein a plurality of ferromagnetic material layers 5a-5f are formed on both surfaces of spiral coils 2a, 2b, via insulating layers, the ferromagnetic layers 5a-5f have magnetic anisotropy having an uni- axis of easy magnetization in the direction perpendicular to magnetic flux. The magnitude of magnetic anisotropy becomes small as the distance from the spiral coils 2a, 2b increases.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は平面インダクタに係り、
特に直流重畳特性を改善した平面インダクタに関する。
[Industrial Application Field] The present invention relates to a planar inductor.
In particular, the present invention relates to a planar inductor with improved DC superimposition characteristics.

【0002】0002

【従来の技術】従来よりスパイラル状導体コイルの両面
を絶縁層を介して強磁性体層で挟んだ構成の平面インダ
クタが知られている。図5(A)及び(B)にこの様な
平面インダクタの一例を示す。なお、同図(A)はこの
平面インダクタの平面図であり、同図(B)は同図(A
)のA−A’線に沿う断面図である。
2. Description of the Related Art Conventionally, planar inductors are known in which a spiral conductor coil is sandwiched between ferromagnetic layers with an insulating layer interposed on both sides. An example of such a planar inductor is shown in FIGS. 5A and 5B. Note that (A) is a plan view of this planar inductor, and (B) is a plan view of this planar inductor.
) is a sectional view taken along line AA'.

【0003】図5(A)及び(B)において、スパイラ
ル状導体コイル1は絶縁層3bの両面にスパイラルコイ
ル2a、2bを設け、これらスパイラルコシル2a、2
bをスルーホール4で電気的にかつスパイラルコイル2
a、2bに同方向の電流が流れる様に接続した構造を有
している。ここで、図5(A)中の実線及び破線はそれ
ぞれ絶縁層3bの表面側及び裏面側にあるスパイラルコ
イル2a、2bの中心の軌跡を表わしている。このスパ
イラル状導体コイル1の両面を絶縁層3a、3cを介し
て強磁性体層5a、5bで挟むことにより平面インダク
タが構成されている。以上の各部材からなる平面インダ
クタの端子6a、6b間にインダクタンスが形成される
In FIGS. 5A and 5B, a spiral conductor coil 1 includes spiral coils 2a and 2b provided on both sides of an insulating layer 3b, and these spiral coils 2a and 2b.
b electrically through through hole 4 and spiral coil 2
It has a structure in which the terminals a and 2b are connected so that currents flow in the same direction. Here, the solid line and the broken line in FIG. 5A represent the loci of the centers of the spiral coils 2a and 2b on the front and back sides of the insulating layer 3b, respectively. A planar inductor is constructed by sandwiching both surfaces of this spiral conductive coil 1 between ferromagnetic layers 5a and 5b with insulating layers 3a and 3c interposed therebetween. An inductance is formed between the terminals 6a and 6b of the planar inductor made of the above members.

【0004】前述した平面インダクタは例えばDC−D
Cインバータ等の出力側チョークコイルに適用される。 この場合、平面インダクタには直流が重畳された高周波
電流が流れるので、良好な直流重畳特性が要求される。 ところが、従来の平面インダクタは、直流重畳特性が充
分でないという問題があった。そこで、強磁性体にFe
系非晶質合金等の飽和磁化の高いものを用いることが考
えられるが、大きな直流電流が重畳された際には有効と
は言えなかった。
The above-mentioned planar inductor is, for example, DC-D.
Applicable to output choke coils of C inverters, etc. In this case, since a high frequency current with a superimposed direct current flows through the planar inductor, good direct current superimposition characteristics are required. However, conventional planar inductors have a problem in that they do not have sufficient DC superimposition characteristics. Therefore, Fe is added to the ferromagnetic material.
It is possible to use materials with high saturation magnetization such as amorphous alloys, but this cannot be said to be effective when a large direct current is superimposed.

【0005】[0005]

【発明が解決しようとする課題】このように従来の平面
インダクタは直流重畳特性が充分でないという問題があ
った。本発明は、上記問題を考慮したもので、平面イン
ダクタの直流重畳特性の改善を目的とする。
SUMMARY OF THE INVENTION As described above, conventional planar inductors have had the problem of insufficient DC superimposition characteristics. The present invention takes the above-mentioned problems into consideration, and aims to improve the DC superimposition characteristics of a planar inductor.

【0006】[0006]

【課題を解決するための手段及び作用】上記目的を達成
するために本発明は、スパイラルコイルの両面に絶縁層
を介して複数の強磁性体層から成る積層体を設けた平面
インダクタにおいて、前記強磁性体層は磁束と直角方向
に一軸磁気容易軸を有する磁気異方性を有し、かつ前記
磁気異方性の大きさが、前記スパイラルコイルとの距離
が大きくなるに従い、小さくなっていることを特徴とす
る平面インダクタを提供するものである。
Means for Solving the Problems and Effects In order to achieve the above object, the present invention provides a planar inductor in which a laminate consisting of a plurality of ferromagnetic layers is provided on both sides of a spiral coil with an insulating layer interposed therebetween. The ferromagnetic layer has magnetic anisotropy with a uniaxial magnetic easy axis in a direction perpendicular to the magnetic flux, and the magnitude of the magnetic anisotropy decreases as the distance from the spiral coil increases. The present invention provides a planar inductor characterized by the following.

【0007】本発明の平面インダクタにおけるスパイラ
ルコイルは、例えば絶縁層の表面及び裏面にスパイラル
状に導体を設けて各導体をスルーホールを通して接続し
た構造の2層スパイラルコイルが挙げられる。また、端
子の取り出しに支障が生じなければスパイラル状の導体
が一層だけのスパイラルコイルを用いてもよい。また、
スパイラル状の他にもつづら折状のコイルを用いること
ができる。
The spiral coil in the planar inductor of the present invention is, for example, a two-layer spiral coil having a structure in which conductors are provided in a spiral shape on the front and back surfaces of an insulating layer and each conductor is connected through a through hole. Further, a spiral coil having only one layer of spiral conductors may be used as long as there is no problem in taking out the terminal. Also,
In addition to spiral coils, meandering coils can also be used.

【0008】前述した構造の平面インダクタはいわゆる
外鉄型であるが、本発明における平面インダクタはこれ
に限定されない。例えば、強磁性体層の積層体の両面に
スパイラルコイルを形成した構造を有する、いわゆる内
鉄型の平面インダクタを構成してもよい。
Although the planar inductor having the above-mentioned structure is a so-called outer iron type, the planar inductor according to the present invention is not limited thereto. For example, a so-called inner iron type planar inductor may be configured, which has a structure in which spiral coils are formed on both sides of a laminate of ferromagnetic layers.

【0009】また、スパイラルコイルを積層するとイン
ダクタンスは増大するが、この場合スパイラルコイル間
には絶縁層のみを介在させ、強磁性体層を介在させない
ことが望ましい。これは、スパイラルコイル間に強磁性
体層を介在させてもインダクタンスの増大には殆ど寄与
せず、かえって平面インダクタ全体の厚さを増大させて
単位体積当たりの性能を低下させるためである。
Furthermore, when spiral coils are stacked, the inductance increases, but in this case, it is desirable that only an insulating layer be interposed between the spiral coils, and that no ferromagnetic layer be interposed. This is because interposing a ferromagnetic layer between the spiral coils hardly contributes to an increase in inductance, but rather increases the overall thickness of the planar inductor and lowers the performance per unit volume.

【0010】絶縁膜は電気的に絶縁でき、誘電率が低く
1に近いものが好ましく、例えば、ポリイミドやSiO
2 等を用いることができる。また、その厚さは1μm
以上であるのが実用的である。これは、コイルと磁性体
の間に容量成分が生じると、インダクタとしての性能が
低下してしまうためである。しかし、厚すぎると単位体
積当りの性能が低下するので、できるだけ薄いことが望
ましい。
The insulating film is preferably one that can be electrically insulated and has a low dielectric constant close to 1, such as polyimide or SiO
2 etc. can be used. Also, its thickness is 1 μm
The above is practical. This is because when a capacitance component occurs between the coil and the magnetic material, the performance as an inductor deteriorates. However, if it is too thick, the performance per unit volume will deteriorate, so it is desirable that it be as thin as possible.

【0011】本発明における複数の強磁性体層には、F
e系非晶質合金やCo系非晶質合金等を用いることがで
き、その形成方法は特に限定はされず、非晶質薄帯等の
箔を用いてもスパッタ、CVD等公知の成膜手法を用い
て絶縁膜により分離形成された膜を用いてもよい。その
とき、各層の厚さは100μm以下であることが望まし
い。これは一般に平面インダクタをDC−DCコンバー
タ等に適用して10kHz以上の周波数帯で使用する際
、強磁性体層の厚さが100μmを超えると表皮効果に
より磁束は内部まで入らなくなり強磁性体層の厚さが増
加した割にはインダクタンスは増加せず、単位体積当り
のインダクタンスはかえって低下し、インダクタの性能
が低下するためである。また、高周波に用いる際は、各
強磁性体層はSiO2 等の絶縁膜により分離されてい
ることが好ましい。
[0011] In the present invention, the plurality of ferromagnetic layers include F.
E-based amorphous alloys, Co-based amorphous alloys, etc. can be used, and the forming method is not particularly limited, and even if foils such as amorphous ribbons are used, known film forming methods such as sputtering and CVD can be used. A film separated by an insulating film using a method may also be used. At that time, it is desirable that the thickness of each layer is 100 μm or less. Generally, when a planar inductor is applied to a DC-DC converter and used in a frequency band of 10 kHz or higher, if the thickness of the ferromagnetic layer exceeds 100 μm, the magnetic flux will not penetrate inside the ferromagnetic layer due to the skin effect. This is because the inductance does not increase even though the thickness of the inductor increases, and the inductance per unit volume actually decreases, resulting in a decrease in the performance of the inductor. Further, when used for high frequencies, it is preferable that each ferromagnetic layer is separated by an insulating film such as SiO2.

【0012】本発明において、強磁性体層を複数とする
ことにより大きな直流電流が重畳された際にも良好な直
流重畳特性を得ることができる。このときコイルから遠
い所にある強磁性体層に流れる磁束に対する磁路は、コ
イルに近い所にある強磁性体層に流れる磁束に対する磁
路よりも長くなるため、もし両者の厚さと透磁率が同じ
ならば、後者の磁気抵抗は前者の磁気抵抗よりも小さく
なり、磁束の大部分はコイルに一番近い強磁性体層を流
れ、コイルから遠い所にある強磁性体層が有効に生かさ
れず、インダクタンスは向上しない。
In the present invention, by providing a plurality of ferromagnetic layers, good DC superimposition characteristics can be obtained even when a large DC current is superimposed. At this time, the magnetic path for the magnetic flux flowing in the ferromagnetic layer far from the coil is longer than the magnetic path for the magnetic flux flowing in the ferromagnetic layer near the coil, so if the thickness and permeability of both are If they are the same, the magnetic resistance of the latter will be smaller than the magnetic resistance of the former, and most of the magnetic flux will flow through the ferromagnetic layer closest to the coil, and the ferromagnetic layer farther from the coil will not be utilized effectively. , the inductance does not improve.

【0013】そこで、本発明における複数の強磁性体層
は、スパイラルコイルと組み合わせて平面インダクタを
構成した時に磁束の方向と直角の方向、即ち周囲方向に
一軸磁気容易軸を有する磁気異方性が付与されており、
該強磁性体層がスパイラルコイルから離れるにつれてそ
れぞれに付与されている磁気異方性の大きさが順次小さ
くなっている。ここで、直角方向の直角には直角近傍も
含み、直角方向成分を有していれば有効である。すなわ
ち、コイルから遠い所にある強磁性体層の透磁率がコイ
ルに近い所にある強磁性体層のそれよりも大きくしてお
けば前者の磁気抵抗も小さくなり、磁束は両者を通って
流れるので、全体の磁気抵抗は低下し各々の層が有効に
生かされてインダクタンスは大きくなる。一方実効透磁
率μは磁束と直角な方向に導入した磁気異方性の大きさ
Kに反比例するので(μ=2πMs2 /K±δ、4π
Ms;飽和磁化)、コイルに一番近い所にある強磁性体
層から順にコイルから離れるにつれて強磁性体層のKを
小さくして行けばコイルから離れるにつれて強磁性体層
のμは順に大きくなり、インダクタンスの直流重畳特性
の改善と同時にインダクタンスの値そのものも大きくす
ることが出来る。また、本発明において、強磁性体層の
飽和磁化4πMsは、良好な直流重畳特性を得るために
は大きいことが望ましく、好ましくは10kG以上がよ
い。
Therefore, when the plurality of ferromagnetic layers in the present invention are combined with a spiral coil to form a planar inductor, the magnetic anisotropy has a uniaxial magnetic easy axis in a direction perpendicular to the direction of magnetic flux, that is, in the circumferential direction. has been granted,
As the ferromagnetic layers move away from the spiral coil, the magnitude of the magnetic anisotropy imparted to each ferromagnetic layer gradually decreases. Here, the right angle in the right angle direction includes the vicinity of the right angle, and is effective if it has a component in the right angle direction. In other words, if the magnetic permeability of the ferromagnetic layer far from the coil is greater than that of the ferromagnetic layer closer to the coil, the magnetic resistance of the former will also be smaller, and magnetic flux will flow through both. Therefore, the overall magnetic resistance decreases, each layer is effectively utilized, and the inductance increases. On the other hand, the effective magnetic permeability μ is inversely proportional to the magnitude K of the magnetic anisotropy introduced in the direction perpendicular to the magnetic flux, so (μ=2πMs2 /K±δ, 4π
Ms: saturation magnetization), if you start with the ferromagnetic layer closest to the coil and decrease the K of the ferromagnetic layer as you move away from the coil, the μ of the ferromagnetic layer will gradually increase as you move away from the coil. , it is possible to improve the DC superimposition characteristics of the inductance and at the same time increase the value of the inductance itself. Further, in the present invention, the saturation magnetization 4πMs of the ferromagnetic layer is desirably large in order to obtain good DC superimposition characteristics, and is preferably 10 kG or more.

【0014】上述したような磁気異方性を得る方法とし
ては、例えば強磁性体層の中央部に穴を開けて導線を通
し、それに直流電流を流しながら磁場中熱処理を施して
付与する方法や、レーザパターニング等によって付与す
る方法や、又強磁性体層内に磁束と直角方向に磁気ギャ
ップを複数個導入して付与する方法を挙げることが出来
る。レーザパターニング等による場合には、例えば強磁
性体層の一部に選択的にレーザ等の加熱用エネルギービ
ームを照射して、照射しない領域と磁気特性の異なる領
域を形成することにより磁気異方性を付与すれば良い。 又、このようにこれら強磁性体層に磁束と直角方向に一
軸容易軸を有する磁気異方性を付与しておけば直流重畳
特性は改善されると同時に、回転磁化が主体となるため
高周波損失を低減し、高周波特性も改善される。
As a method for obtaining the above-mentioned magnetic anisotropy, for example, a hole is made in the center of the ferromagnetic layer, a conductive wire is passed through the hole, and a direct current is passed through the hole and heat treatment is performed in a magnetic field to provide the magnetic anisotropy. , a method of applying by laser patterning, etc., and a method of applying by introducing a plurality of magnetic gaps in the direction perpendicular to the magnetic flux into the ferromagnetic layer. In the case of laser patterning, for example, magnetic anisotropy is achieved by selectively irradiating a part of the ferromagnetic layer with a heating energy beam such as a laser to form regions that are not irradiated and regions that have different magnetic properties. All you have to do is give it. In addition, by imparting magnetic anisotropy with a uniaxial easy axis in the direction perpendicular to the magnetic flux to these ferromagnetic layers, the direct current superimposition characteristics can be improved, and at the same time, high frequency loss can be reduced because rotational magnetization is the main component. The high frequency characteristics are also improved.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 実施例1
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Example 1

【0016】図1(A)及びA−A’断面を(B)に示
すように、先ず、絶縁層として25μm厚のポリイミド
フィルム3bを用い、その両面に100μm厚のCu箔
を両張りして中央部のスルーホール4を通して接続した
両面FPC板(フレキシブルプリント回路板)を用意し
、両面のCu箔をエッチングして外周部の寸法が11m
m×11mm、コイル線幅200μm、コイルピッチ2
50μm、コイル巻線数40回(各面20回)のスパイ
ラルコイル2a、2bに加工して平面状コイル1を作製
した。
As shown in FIG. 1(A) and the AA' cross section in FIG. 1(B), first, a 25 μm thick polyimide film 3b was used as an insulating layer, and 100 μm thick Cu foil was pasted on both sides. Prepare a double-sided FPC board (flexible printed circuit board) connected through the through hole 4 in the center, and etch the Cu foil on both sides to make the outer circumference dimension 11 m.
m x 11mm, coil line width 200μm, coil pitch 2
A planar coil 1 was fabricated by processing spiral coils 2a and 2b having a diameter of 50 μm and a coil winding number of 40 times (20 times on each side).

【0017】一方、単ロール法により作製された、Fe
67Co18Si1 B14なる組成を有し、平均厚1
6μm、幅25μmの強磁性非晶質合金薄帯から1辺の
長さ15mmの正方形状の箔を切り出し、その表面(自
由面)にYAGレーザを用いて図2(a)に示すような
パターンでビーム径50μmのレーザビームを、ピッチ
を0.5mm、1mm、2mmの3水準に変えて10m
/min.の走査速度で照射し、図2(b)に示すよう
な箔の周囲方向に一軸容易軸を有し、磁気異方性エネル
ギーの異なるA、B、Cの3種の強磁性体箔を作製した
。なお、これら3種の強磁性体箔に付与された磁気異方
性エネルギーの大きさはA:1×104 erg/cc
、B:5×103 erg/cc、C:2×103 e
rg/ccであった。
On the other hand, Fe produced by the single roll method
It has a composition of 67Co18Si1 B14 and an average thickness of 1
A square foil with a side length of 15 mm is cut from a ferromagnetic amorphous alloy ribbon with a width of 6 μm and a width of 25 μm, and a YAG laser is used to pattern the surface (free surface) of the foil as shown in Figure 2(a). The laser beam with a beam diameter of 50 μm was changed to three pitches: 0.5 mm, 1 mm, and 2 mm, and the distance was 10 m.
/min. By irradiating at a scanning speed of did. The magnitude of magnetic anisotropy energy imparted to these three types of ferromagnetic foils is A: 1 x 104 erg/cc.
, B: 5×103 erg/cc, C: 2×103 e
It was rg/cc.

【0018】次いで、平面状コイル1の両面を、絶縁層
3a、3cとして用いた7μm厚のポリイミドフィルム
を介して、強磁性体箔を平面状コイル1に近い方からA
、B、Cの順に積層して強磁性体層5a〜fを形成する
ことにより平面インダクタを作製した。 比較例1
Next, a ferromagnetic foil is applied to both sides of the planar coil 1 through a 7 μm thick polyimide film used as the insulating layers 3a and 3c, starting from the side closest to the planar coil 1.
, B, and C were laminated in this order to form ferromagnetic layers 5a to 5f, thereby manufacturing a planar inductor. Comparative example 1

【0019】実施例1において用いたものと同じスパイ
ラルコイルの両面に7μm厚のポリイミドフィルムを介
して強磁性体箔Aを3枚積層して強磁性体層5a〜fを
形成し、平面インダクタを作製した。 実施例2
Three sheets of ferromagnetic foil A are laminated on both sides of the same spiral coil as used in Example 1 via a 7 μm thick polyimide film to form ferromagnetic layers 5a to 5f, and a planar inductor is formed. Created. Example 2

【0020】単ロール法により作製された、(Co0.
8 Fe0.2 )78Si8 B14なる組成を有し
、平均厚16μm、幅25mmの非晶質合金を強磁性体
箔に用いたこと以外は実施例1と同様にして平面インダ
クタを作製した。なお、3種の強磁性体箔A’、B’、
C’に付与された磁気異方性エネルギーの大きさはA’
:4×103erg/cc、B’:2×103 erg
/cc、C’:1×103 erg/ccであった。 比較例2
[0020] (Co0.
A planar inductor was produced in the same manner as in Example 1 except that an amorphous alloy having a composition of 8Fe0.2)78Si8B14, an average thickness of 16 μm, and a width of 25 mm was used for the ferromagnetic foil. In addition, three types of ferromagnetic foils A', B',
The magnitude of the magnetic anisotropy energy given to C' is A'
:4×103erg/cc, B':2×103erg
/cc, C': 1 x 103 erg/cc. Comparative example 2

【0021】強磁性体箔Aの代わりに強磁性体箔A’を
用いたこと以外は比較例1と同じ方法で平面インダクタ
を作製した。これら実施例1及び比較例1で作製した平
面インダクタについて、インダクタンスLの直流重畳特
性を測定した結果を図3に、実施例2及び比較例2で作
製した平面インダクタについて、インダクタンスLの直
流重畳特性を測定した結果を図4に示す。これらの図か
ら明かなように、本発明によれば平面インダクタのLの
低下を伴うこと無く直流重畳特性は改善される。
A planar inductor was produced in the same manner as in Comparative Example 1 except that ferromagnetic foil A' was used instead of ferromagnetic foil A. Figure 3 shows the results of measuring the DC superposition characteristics of inductance L for the planar inductors fabricated in Example 1 and Comparative Example 1. Figure 4 shows the measurement results. As is clear from these figures, according to the present invention, the DC superimposition characteristics are improved without a decrease in L of the planar inductor.

【0022】[0022]

【発明の効果】以下詳述したように本発明によれば、イ
ンダクタンスが高く、直流重畳特性において優れた平面
インダクタを提供することができる。
As described in detail below, according to the present invention, it is possible to provide a planar inductor with high inductance and excellent DC superimposition characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  (a)実施例に係る平面インダクタの平面
図、(b)(a)のA−A’断面図。
FIG. 1 (a) A plan view of a planar inductor according to an example, and (b) a sectional view taken along line AA' in (a).

【図2】  (a)実施例に係るレーザ照射のパターン
を示す図、(b)実施例に係るレーザ照射により得られ
た磁気異方性の方向を示す図。
FIG. 2 (a) A diagram showing a pattern of laser irradiation according to an example, and (b) a diagram showing the direction of magnetic anisotropy obtained by laser irradiation according to an example.

【図3】  実施例1、比較例1で作製した平面インダ
クタの特性を示す図。
FIG. 3 is a diagram showing the characteristics of planar inductors manufactured in Example 1 and Comparative Example 1.

【図4】  実施例2、比較例2で作製した平面インダ
クタの特性を示す図。
FIG. 4 is a diagram showing the characteristics of planar inductors manufactured in Example 2 and Comparative Example 2.

【図5】  従来の平面インダクタを示す図。FIG. 5 is a diagram showing a conventional planar inductor.

【符号の説明】[Explanation of symbols]

1…平面状コイル 2a、2b…スパイラルコイル 3a、3b、3c、3d、3e、3f、3g…絶縁層4
…スルーホール 5a、5b、5c、5d、5e、5f…強磁性体層6a
、6b…端子
1... Planar coils 2a, 2b... Spiral coils 3a, 3b, 3c, 3d, 3e, 3f, 3g... Insulating layer 4
...Through holes 5a, 5b, 5c, 5d, 5e, 5f...Ferromagnetic layer 6a
, 6b...terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  スパイラルコイルの両面に絶縁層を介
して複数の強磁性体層を設けた平面インダクタにおいて
、前記強磁性体層は磁束と直角方向に一軸磁気容易軸を
有する磁気異方性を有し、かつ前記磁気異方性の大きさ
が、前記スパイラルコイルとの距離が大きくなるに従い
、小さくなっていることを特徴とする平面インダクタ。
1. A planar inductor in which a plurality of ferromagnetic layers are provided on both sides of a spiral coil with insulating layers interposed therebetween, wherein the ferromagnetic layer has magnetic anisotropy with a uniaxial magnetic easy axis in a direction perpendicular to the magnetic flux. and the magnitude of the magnetic anisotropy decreases as the distance from the spiral coil increases.
JP03144422A 1991-06-17 1991-06-17 Planar inductor Expired - Fee Related JP3141893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03144422A JP3141893B2 (en) 1991-06-17 1991-06-17 Planar inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03144422A JP3141893B2 (en) 1991-06-17 1991-06-17 Planar inductor

Publications (2)

Publication Number Publication Date
JPH04368105A true JPH04368105A (en) 1992-12-21
JP3141893B2 JP3141893B2 (en) 2001-03-07

Family

ID=15361817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03144422A Expired - Fee Related JP3141893B2 (en) 1991-06-17 1991-06-17 Planar inductor

Country Status (1)

Country Link
JP (1) JP3141893B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594180A2 (en) * 1992-10-21 1994-04-27 Matsushita Electric Industrial Co., Ltd. A mechanical sensor
JP2015201606A (en) * 2014-04-10 2015-11-12 株式会社村田製作所 Method of manufacturing multilayer substrate, and multilayer substrate
US9934905B2 (en) 2013-11-28 2018-04-03 Murata Manufacturing Co., Ltd. Method of manufacturing multilayer board, multilayer board, and electromagnet
WO2018097112A1 (en) * 2016-11-28 2018-05-31 株式会社村田製作所 Multilayer substrate, structure for mounting multilayer substrate to circuit board, method for mounting multilayer substrate, and method for producing multilayer substrate
WO2018123410A1 (en) * 2016-12-28 2018-07-05 株式会社村田製作所 Inductor and dc-dc converter
US11456108B2 (en) 2016-10-18 2022-09-27 Murata Manufacturing Co., Ltd. Multilayer board and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511344B2 (en) 2007-12-18 2016-12-06 Ultraviolet Sciences, Inc. Ultraviolet light treatment chamber
US9808544B2 (en) 2005-08-31 2017-11-07 Ultraviolet Sciences, Inc. Ultraviolet light treatment chamber

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594180A3 (en) * 1992-10-21 1995-02-15 Matsushita Electric Ind Co Ltd A mechanical sensor.
US5450755A (en) * 1992-10-21 1995-09-19 Matsushita Electric Industrial Co., Ltd. Mechanical sensor having a U-shaped planar coil and a magnetic layer
EP0594180A2 (en) * 1992-10-21 1994-04-27 Matsushita Electric Industrial Co., Ltd. A mechanical sensor
US9934905B2 (en) 2013-11-28 2018-04-03 Murata Manufacturing Co., Ltd. Method of manufacturing multilayer board, multilayer board, and electromagnet
JP2015201606A (en) * 2014-04-10 2015-11-12 株式会社村田製作所 Method of manufacturing multilayer substrate, and multilayer substrate
US11456108B2 (en) 2016-10-18 2022-09-27 Murata Manufacturing Co., Ltd. Multilayer board and manufacturing method thereof
US10893618B2 (en) 2016-11-28 2021-01-12 Murata Manufacturing Co., Ltd. Method for manufacturing multilayer substrate
WO2018097112A1 (en) * 2016-11-28 2018-05-31 株式会社村田製作所 Multilayer substrate, structure for mounting multilayer substrate to circuit board, method for mounting multilayer substrate, and method for producing multilayer substrate
JP6380716B1 (en) * 2016-11-28 2018-08-29 株式会社村田製作所 Multilayer substrate, mounting structure of multilayer substrate on circuit board, and method for manufacturing multilayer substrate
US20190082542A1 (en) * 2016-11-28 2019-03-14 Murata Manufacturing Co., Ltd. Multilayer substrate, structure of multilayer substrate mounted on circuit board, method for mounting multilayer substrate, and method for manufacturing multilayer substrate
WO2018123410A1 (en) * 2016-12-28 2018-07-05 株式会社村田製作所 Inductor and dc-dc converter
JPWO2018123410A1 (en) * 2016-12-28 2019-10-31 株式会社村田製作所 Inductor and DC-DC converter
US10714252B2 (en) 2016-12-28 2020-07-14 Murata Manufacturing Co., Ltd. Inductor and DC-DC converter
US20190295761A1 (en) * 2016-12-28 2019-09-26 Murata Manufacturing Co., Ltd. Inductor and dc-dc converter
CN110121753A (en) * 2016-12-28 2019-08-13 株式会社村田制作所 Inductor and DC-DC converter

Also Published As

Publication number Publication date
JP3141893B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US4959631A (en) Planar inductor
JP2958892B2 (en) Planar inductor
US6466122B1 (en) Planar inductor
US6603382B1 (en) Inductive element having improved superposed DC current characteristic
JPH09213530A (en) Plane transformer
JPH08203736A (en) Coil device with core
JPH04368105A (en) Planar inductor
JPH08203739A (en) Air-core coil device
JPH05275247A (en) Thin inductor/transformer
JPH0582349A (en) Spiral thin film coil
JP2735295B2 (en) Planar inductor
JPH03276604A (en) Plane inductor
JPS6276509A (en) Thin type transformer
JP3162692B2 (en) Inductors and transformers
JP2958893B2 (en) Planar inductor
JP3490149B2 (en) Multilayer chip transformer
JP2000182850A (en) Thin-film transformer
JP2019165169A (en) Coil component and electronic apparatus
JPS5898906A (en) Iron core
JPH10270253A (en) Inductance element and lc composite element
JPH03280511A (en) Heat treatment of ferromagnetic foil in a magnetic field
JP2572686Y2 (en) Induction magnet
JPH01157508A (en) Plane inductor
JP2001257120A (en) Multiple cylindrical choke coil
JPH09199327A (en) Coil component

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees