JP4473476B2 - Manufacturing method of core for low noise winding transformer - Google Patents
Manufacturing method of core for low noise winding transformer Download PDFInfo
- Publication number
- JP4473476B2 JP4473476B2 JP2001284912A JP2001284912A JP4473476B2 JP 4473476 B2 JP4473476 B2 JP 4473476B2 JP 2001284912 A JP2001284912 A JP 2001284912A JP 2001284912 A JP2001284912 A JP 2001284912A JP 4473476 B2 JP4473476 B2 JP 4473476B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- sheet
- transformer
- vibration
- noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【0001】
【発明の属する分野】
本発明は巻きトランスのコアとその製造方法に関し、特に振動発生が少ない低騒音巻きトランス用コアの製造方法に関するものである。
【0002】
【従来の技術】
電気、電子機器に幅広く使用される磁性材料において、磁界印加時の長さ変化の度合い(これを磁気ひずみと呼ぶ)は変圧器騒音の原因となるため、品質管理における重要な評価項目の一つとなっている。近年、電機機器からの騒音は、生活環境快適化の要求と共にさらに規制が厳しくなりつつある。このため、磁気ひずみの低減による低騒音化の研究が盛んに行われている。
【0003】
トランスの鉄心に用いられる一方向性電磁鋼板については、大きな進歩が見られ、還流磁区を減少させることで磁気ひずみを低減する手法がある。ここで言う還流磁区とは、磁界印加方向に対して直角に向いている磁化を有する領域である。この磁化が印加磁界により磁界と平行方向に向けて動くときに磁気ひずみが生じる。従って、還流磁区量が少ないほど磁気ひずみは小さくなる。主な磁気ひずみ低減の手法として、以下のものが知られている。
▲1▼結晶粒の<001>方向を圧延方向に揃え、磁化回転により形状変化を生じさせる還流磁区を作らない方法(T.Nozawa et al, “Relationship Between Total Losses under Tensile Stress in 3 Percent Si-Fe Single Crystals and Their Orientations near (110) [001]”,IEEE Trans. on Mag., Vol. MAG-14, No.4,1978.)
▲2▼塑性歪を開放することで還流磁区を消去する方法(特開平7−305115号公報、[画記的な方向性珪素鋼板オリエントコア・ハイビーの開発]:OHM1972.2)、
▲3▼被膜張力を鋼板に印加することで還流磁区を消去する方法(T.Nozawa et al, “Relationship Between Total Losses under Tensile Stress in 3 Percent Si-Fe Single Crystals and Their Orientations near (110) [001]”,IEEE Trans. on Mag., Vol. MAG-14, No.4,1978.)
【0004】
一方、鋼板すなわちコアシートの磁気ひずみの低減のみではなく、コアの発生する振動を抑える方式でも騒音の低減が図られている。コアの発生する振動を抑える方式で騒音を低減する方法として、例えば、振動の伝播を切るためエア空間やシリコーンゴムを設ける方法(特開平5−251246)、制振材と吸音材を鉄心脚の外部に配置して騒音を低減する方法(特開平8−45751、特開2000−82622、特開2000−124044)、リアクトルのギャップ部を振動が抑えられる接着材で固定する方法(特開平8−111322)、樹脂中間層をもつ電磁鋼板を用いる方法(特開平8−250339)がある。
主にこれらの手法により、コアシートの磁気ひずみ、あるいはコアの振動を低減し電気機器の低騒音化が図られてきた。
【0005】
【発明が解決しようとする課題】
電気機器のさらなる低騒音化への要求は強く、目的を達するためには一層高度な技術が必要となる。従来の低騒音化の研究は還流磁区の消滅によるコアシートの磁気ひずみの低減を主な目的としてきた。ところが、時間的に変化する磁界を加えると、トランスのコアとして組んだ場合、コアシートの伸縮はコアシートが必ずしも平坦ではないためコアシート面に垂直な振動に変化する。この振動によって空気の疎密波が生じ音となって広がる。今までこの振動を低減するためコアシートの磁気ひずみを小さくするように上述した結晶方位の先鋭化、塑性歪の開放、張力の印加等、従来技術として確立されている。ほかに外部に振動を伝播させない防振構造を設ける対策がある。しかしながら、さらなる低騒音化への要求に対処するためには、空気粒子の振動原因となるコアシートの面振動を抑えることが課題となる。
【0006】
このような課題に対して樹脂中間層をもつ複層電磁鋼板で構成したコアが積みトランスにおいて既に提案されているが、巻きトランスでは歪取りのため最終工程でコアを800℃で焼鈍する必要があり、この場合、樹脂中間層が変質し、目的の鉄心を製造することが出来ない。
【0007】
本発明の課題は、コアシート面に垂直な振動を抑える樹脂中間層を持ち、最終歪み取り焼鈍後の樹脂中間層の変質を避ける条件を見出し、低騒音化を効果的に実現する、振動発生が少ない低騒音巻きトランス用コアの製造法を提供することである。
【0008】
【課題を解決するための手段】
本発明の具体的な手段は、以下の通りである。
(1) コアシートとして通常の電磁鋼板を用い、コアに成形し、焼鈍する工程A、
コアシートの一部として2枚の電磁鋼板の積層間に10〜100μmの厚さの樹脂中間層を有する複層電磁鋼板をコアに成形し、歪み取り焼鈍しない工程B、および
前記工程Aのコアをばらした後、前記程Bで成形したコアシートを混在させてコアにし、巻線を挿入する工程Cとからなり、
前記A工程のコアシートに対する前記B工程のコアシートの重量比が3〜10であること
を特徴とする低騒音巻きトランス用コアの製造方法。
【0009】
【発明の実施の形態】
すでに述べたように現在までの低騒音化の主な方法はコアシートの磁気ひずみを小さくし、面振動を低減させていた。また、コアの振動を外部に伝播させない防振構造をとっていた。しかしながら本発明者らは、トランスのコアにおいてコアシートの積層間に粘性と弾性を併せ持つ粘弾性体層を挿入する方法において、コアシートの面振動を小さくし、騒音を低減する手法を巻きトランスにおいても効果的に実現するため鋭意研究を行った。以下実験にもとづき説明する。
【0010】
図1に巻きトランスのコアの一般的な製造工程を示す。始めにコイルを所要の幅にスリットして、所定の長さに剪断したコアシートを巻き付け、これを長方形に成形するため四方から治具を用いて押さえる。この時、中の径がつぶれないように鉄製の金型をはさみ、成形を行う。次いで、成形されたコアを800℃で歪取り焼鈍し、巻線を鉄心に挿入するためコアをばらし、コアをコの字状に開ける。巻線を挿入した後、再度コアシートを組み合わせる。この工程ではコアの歪み取り焼鈍時にコアシートの積層間の樹脂が変質してしまい、振動吸収の効果を享受することができない。
【0011】
以上の問題を解決するため焼鈍による歪取りの利点と樹脂中間層の変質を防ぐ両方の条件を満足する工程を検討した。図2に本発明に係る工程を示す。工程Aはコアシートとして通常の電磁鋼板を用い、コアに成形し、焼鈍する。工程Bではコアシートとして樹脂中間層を有する複層電磁鋼板を用い、コアに成形し焼鈍しない。本発明では工程Aのコアをばらした後、工程Bで成形したコアシートを混在させてコアにし、巻線を挿入する(工程C)。ここで工程Aと工程Bのコアシートの重量比を3〜10程度とすることにより歪みによる鉄損の大きな増加を防ぎつつ、コアの振動吸収すなわちトランスの騒音低減を図ることが出来る。
【0012】
次に本発明の限定理由について述べる。
まず、コアを形成する電磁鋼板の積層間の樹脂層の厚さは、10μm未満では振動吸収能が不十分となり、100μmを越えると非磁性層が増加したため、電磁鋼板中の磁束密度が上昇し、低騒音の効果が得られなくなるため10〜100μmと限定した。また、コア中に樹脂層を複数ヶ所設ける理由は実験で1ヶ所のみの場合は低騒音の効果がみられなかったためである。
複数ヶ所へコア厚の1%以上の厚さになるまで樹脂層を設ける理由は、これ未満の樹脂層厚では騒音低減が顕著に現れなかったためである。
さらに、樹脂層を有する複層電磁鋼板を歪み取り焼鈍せずに用いる理由は、高温での樹脂層の変質による振動吸収能の消失を回避するためである。樹脂としてはポリイソブチレンやポリエステル、ニトリルゴム等を使用するが、振動吸収能を持つ樹脂であれば良く、これらの種類を規定するものではない。以下、実施例をもとに説明する。
【0013】
【実施例】
[実施例1]
通常の方法で製造された板厚0.23mmの一方向性電磁鋼板によって巻き鉄心を作り、16kVA 三相鉄心形トランスを作製した。Aはラップ接合で樹脂層としてニトリルゴム、Dはバット接合で樹脂層としてポリエステルを用いた複層電磁鋼板を通常の電磁鋼板に挟んで積層した。ここで用いた樹脂層の厚さは50μmである。樹脂層はその厚さがトランスの全層厚に対して5%となるように等間隔に挿入した。A、Dは従来の製造法と同様に鉄心に成形後、焼鈍し、鉄心をばらして巻き線を挿入してコアにした。この場合、焼鈍により樹脂層が変質して振動吸収能力が消失し、騒音は高くなった。
【0014】
本発明の条件を満たす方法で製造したトランスにおいて、Bはラップ接合で樹脂層としてニトリルゴム、Cはバット接合で樹脂層としてポリエステルを用いた複層電磁鋼板を通常の電磁鋼板に挟んで積層した。樹脂層はその厚さがトランスの全層厚に対して5%となるように等間隔に挿入した。樹脂層がある複層電磁鋼板は焼鈍せず、樹脂層のない電磁鋼板を焼鈍し、バラシ作業後、これらを組み合わせた。これらのトランスを50Hz 1.65Tで励磁し、騒音を測定した結果を表1に示す。B、Cは樹脂層が変質しないで存在し、騒音は比較例に比し約5dB低くなった。
【0015】
【表1】
【0016】
[実施例2]
通常の方法で製造された板厚0.27mmの一方向性電磁鋼板によって巻き鉄心を作り、20kVA 三相鉄心形トランスを作製した。Eはラップ接合で樹脂層として厚さが40μmのポリエステルを用いた複層電磁鋼板を通常の電磁鋼板に挟んで積層した。樹脂層はその厚さがトランスの全層厚に対して5%となるように等間隔に挿入した。Eは従来の製造法と同様に鉄心に成形後、焼鈍し、鉄心をばらして巻き線を挿入してコアにした。この場合、焼鈍により樹脂層が変質して振動吸収能力が消失し、騒音は高くなった。
【0017】
本発明の条件を満たす方法で製造したトランスFにおいてもEと同様な樹脂を用いた複層電磁鋼板を通常の電磁鋼板に挟んで、同様な接合法で積層した。樹脂層はその厚さがトランスの全層厚に対して5%となるように等間隔に挿入した。樹脂層がある複層電磁鋼板は焼鈍せず、樹脂層のない電磁鋼板を焼鈍し、バラシ作業後、これらを組み合わせた。これらのトランスを60Hz 1.7Tで励磁したときの騒音を表2に示す。本発明例のFでは樹脂層が変質せず、騒音を約5dB低くすることが出来た。
【0018】
【表2】
【0019】
【発明の効果】
以上説明したように、本発明によれば鋼板面に垂直な振動を抑える樹脂中間層が最終歪み取り焼鈍で変質することを防ぎ、低騒音化を効果的に実現する、優れた低騒音巻きトランス製造法が容易に提供でき、電機機器の低騒音化が図られ、産業上の利益は極めて大きい。
【図面の簡単な説明】
【図1】巻きトランス鉄心の製造工程を示したものである。
【図2】本発明技術である工程を示したものである。[0001]
[Field of the Invention]
The present invention relates to a core for a wound transformer and a method for manufacturing the same, and more particularly to a method for manufacturing a core for a low-noise wound transformer that generates less vibration.
[0002]
[Prior art]
In magnetic materials widely used in electrical and electronic equipment, the degree of change in length when a magnetic field is applied (called magnetostriction) causes transformer noise, and is therefore an important evaluation item in quality control. It has become. In recent years, noise from electric appliances is becoming more restrictive along with a demand for comfortable living environment. For this reason, research on noise reduction by reducing magnetostriction has been actively conducted.
[0003]
With regard to the unidirectional electrical steel sheet used for the iron core of the transformer, great progress has been made and there is a technique for reducing magnetostriction by reducing the reflux magnetic domain. The reflux magnetic domain referred to here is a region having magnetization that is oriented at right angles to the magnetic field application direction. Magnetostriction occurs when this magnetization moves in the direction parallel to the magnetic field by the applied magnetic field. Therefore, the smaller the reflux magnetic domain amount, the smaller the magnetostriction. The following are known as main methods for reducing magnetostriction.
(1) A method in which the <001> direction of the crystal grains is aligned with the rolling direction and a reflux magnetic domain that causes a shape change by magnetization rotation is not created (T. Nozawa et al, “Relationship Between Total Losses under Tensile Stress in 3 Percent Si- (Fe Single Crystals and Their Orientations near (110) [001] ”, IEEE Trans. On Mag., Vol. MAG-14, No. 4, 1978.)
(2) A method of erasing the reflux magnetic domain by releasing plastic strain (Japanese Patent Laid-Open No. 7-305115, [Development of a directional silicon steel orient core / hibey: OHM1972.2),
(3) A method of erasing the reflux domain by applying film tension to the steel sheet (T. Nozawa et al, “Relationship Between Total Losses under Tensile Stress in 3 Percent Si-Fe Single Crystals and Their Orientations near (110) [001] ] ”, IEEE Trans. On Mag., Vol. MAG-14, No.4, 1978.)
[0004]
On the other hand, not only the reduction of the magnetostriction of the steel sheet, that is, the core sheet, but also the method of suppressing the vibration generated by the core is aimed at reducing the noise. As a method of reducing noise by suppressing the vibration generated by the core, for example, a method of providing an air space or silicone rubber to cut off the propagation of vibration (Japanese Patent Laid-Open No. 5-251246), a damping material and a sound absorbing material are attached to the core leg. A method of reducing noise by placing it outside (JP-A-8-45751, JP-A-2000-82622, JP-A-2000-124044), and a method of fixing the gap portion of the reactor with an adhesive that can suppress vibration (JP-A-8-85). 111322), and a method using a magnetic steel sheet having a resin intermediate layer (Japanese Patent Laid-Open No. 8-250339).
Mainly by these methods, the magnetostriction of the core sheet or the vibration of the core has been reduced to reduce the noise of the electrical equipment.
[0005]
[Problems to be solved by the invention]
There is a strong demand for further noise reduction of electrical equipment, and more advanced technology is required to achieve the purpose. The conventional research on noise reduction has been mainly aimed at reducing the magnetostriction of the core sheet by the disappearance of the reflux magnetic domain. However, when a time-varying magnetic field is applied, when the transformer core is assembled, the expansion and contraction of the core sheet changes to vibration perpendicular to the core sheet surface because the core sheet is not necessarily flat. This vibration creates a dense wave of air and spreads as sound. Until now, in order to reduce this vibration, the above-mentioned sharpening of crystal orientation, release of plastic strain, application of tension, etc. have been established so as to reduce the magnetostriction of the core sheet. In addition, there is a measure to provide an anti-vibration structure that does not propagate vibration to the outside. However, in order to cope with the demand for further noise reduction, it is a problem to suppress the surface vibration of the core sheet that causes air particle vibration.
[0006]
For such a problem, a core composed of a multilayered electrical steel sheet having a resin intermediate layer has already been proposed in a stacking transformer. However, in a winding transformer, it is necessary to anneal the core at 800 ° C. in the final process for distortion removal. In this case, the resin intermediate layer is altered, and the target iron core cannot be manufactured.
[0007]
The object of the present invention is to have a resin intermediate layer that suppresses vibration perpendicular to the core sheet surface, find conditions for avoiding alteration of the resin intermediate layer after final strain relief annealing, and effectively realize low noise generation. It is to provide a manufacturing method of a core for a low noise winding transformer with a small amount of noise.
[0008]
[Means for Solving the Problems]
Specific means of the present invention are as follows.
(1) Using a normal electromagnetic steel sheet as a core sheet, forming into a core and annealing step A,
Step B, in which a multilayer electromagnetic steel sheet having a resin intermediate layer having a thickness of 10 to 100 μm between two magnetic steel sheets laminated as a part of the core sheet is formed into a core and is not subjected to strain relief annealing , and
After separating the core of the step A, the core sheet formed in step B is mixed to form a core, and the step C includes inserting a winding.
Low noise winding method for manufacturing a transformer core, wherein the weight ratio of the core sheet of the step B to the core sheet of the A step is 3-10.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As already mentioned, the main method of noise reduction up to now has been to reduce the magnetostriction of the core sheet and reduce the surface vibration. Moreover, the vibration-proof structure which did not propagate the vibration of a core outside was taken. However, in the method of inserting a viscoelastic body layer having both viscosity and elasticity between core sheet laminations in the core of the transformer, the present inventors have adopted a technique for reducing the surface vibration of the core sheet and reducing noise in the winding transformer. In order to realize it effectively, we conducted intensive research. This will be described below based on experiments.
[0010]
FIG. 1 shows a general manufacturing process of a core of a winding transformer. First, the coil is slit to a required width, a core sheet sheared to a predetermined length is wound, and pressed from four sides using a jig to form a rectangular sheet. At this time, an iron mold is sandwiched so that the inside diameter is not crushed and molding is performed. Next, the molded core is subjected to strain relief annealing at 800 ° C., the core is separated to insert the winding wire into the iron core, and the core is opened in a U shape. After inserting the winding, combine the core sheets again. In this step, the resin between the core sheets is altered during the core distortion removal annealing, and the vibration absorption effect cannot be enjoyed.
[0011]
In order to solve the above problems, a process that satisfies both the advantages of strain relief by annealing and the prevention of alteration of the resin intermediate layer was investigated. FIG. 2 shows a process according to the present invention. In step A, a normal electromagnetic steel sheet is used as the core sheet, which is formed into a core and annealed. In step B, a multilayer electromagnetic steel sheet having a resin intermediate layer is used as a core sheet, and the core sheet is molded into a core and not annealed. In the present invention, after the core of Step A is released, the core sheet formed in Step B is mixed to form a core, and the winding is inserted (Step C). Here, by setting the weight ratio of the core sheet of the process A and the process B to about 3 to 10, the core vibration can be absorbed, that is, the transformer noise can be reduced while preventing a large increase in iron loss due to distortion.
[0012]
Next, the reasons for limiting the present invention will be described.
First, if the thickness of the resin layer between the laminations of the electrical steel sheets forming the core is less than 10 μm, the vibration absorption capacity becomes insufficient, and if it exceeds 100 μm, the number of non-magnetic layers increases, so the magnetic flux density in the electrical steel sheet increases. And, since the effect of low noise cannot be obtained, it is limited to 10 to 100 μm. Moreover, the reason why a plurality of resin layers are provided in the core is that the effect of low noise was not observed in the case of only one location in the experiment.
The reason why the resin layer is provided at a plurality of locations until the thickness becomes 1% or more of the core thickness is that noise reduction does not appear remarkably at a resin layer thickness less than this.
Furthermore, the reason why the multilayer electromagnetic steel sheet having the resin layer is used without being subjected to strain relief annealing is to avoid the loss of the vibration absorbing ability due to the alteration of the resin layer at a high temperature. As the resin, polyisobutylene, polyester, nitrile rubber, or the like is used. However, any resin having vibration absorption ability may be used, and these types are not specified. In the following, description will be given based on examples.
[0013]
【Example】
[Example 1]
A wound iron core was made from a unidirectional electrical steel sheet with a thickness of 0.23 mm manufactured by a conventional method, and a 16 kVA three-phase core transformer was produced. A is a lap joint and nitrile rubber is used as a resin layer, D is a butt joint and polyester is used as a resin layer. The thickness of the resin layer used here is 50 μm. The resin layers were inserted at equal intervals so that the thickness was 5% with respect to the total thickness of the transformer. A and D were formed into an iron core in the same manner as in the conventional manufacturing method, and then annealed, and the core was separated and a winding was inserted into a core. In this case, the resin layer was altered by annealing, the vibration absorbing ability was lost, and the noise increased.
[0014]
In the transformer manufactured by the method satisfying the conditions of the present invention, B is a lap joint and a nitrile rubber is used as a resin layer, and C is a butt joint and a multilayer electrical steel sheet using polyester as a resin layer is sandwiched between ordinary electrical steel sheets. . The resin layers were inserted at equal intervals so that the thickness was 5% with respect to the total thickness of the transformer. The multilayer electrical steel sheet with the resin layer was not annealed, the electrical steel sheet without the resin layer was annealed, and these were combined after the brushing operation. Table 1 shows the results of excitation of these transformers at 50 Hz 1.65 T and measurement of noise. B and C existed without deterioration of the resin layer, and the noise was about 5 dB lower than that of the comparative example.
[0015]
[Table 1]
[0016]
[Example 2]
A wound iron core was made from a unidirectional electrical steel sheet with a thickness of 0.27 mm manufactured by a normal method to produce a 20 kVA three-phase iron core transformer. E was laminated by sandwiching a multilayered electrical steel sheet using polyester having a thickness of 40 μm as a resin layer by lap joining with a normal electrical steel sheet. The resin layers were inserted at equal intervals so that the thickness was 5% with respect to the total thickness of the transformer. In the same manner as in the conventional manufacturing method, E was formed into an iron core and then annealed, and the core was released to insert a winding into a core. In this case, the resin layer was altered by annealing, the vibration absorbing ability was lost, and the noise increased.
[0017]
In the transformer F manufactured by the method satisfying the conditions of the present invention, a multilayer electromagnetic steel sheet using the same resin as E was sandwiched between ordinary electromagnetic steel sheets and laminated by the same joining method. The resin layers were inserted at equal intervals so that the thickness was 5% with respect to the total thickness of the transformer. The multilayer electrical steel sheet with the resin layer was not annealed, the electrical steel sheet without the resin layer was annealed, and these were combined after the brushing operation. Table 2 shows the noise when these transformers are excited at 60 Hz 1.7 T. In F of the present invention example, the resin layer did not change and the noise could be reduced by about 5 dB.
[0018]
[Table 2]
[0019]
【The invention's effect】
As described above, according to the present invention, the resin intermediate layer that suppresses vibration perpendicular to the steel plate surface is prevented from being deteriorated by final strain relief annealing, and an excellent low noise winding transformer that effectively realizes low noise. The manufacturing method can be provided easily, the noise of the electrical equipment can be reduced, and the industrial profit is extremely large.
[Brief description of the drawings]
FIG. 1 shows a manufacturing process of a wound transformer core.
FIG. 2 shows a process which is a technique of the present invention.
Claims (1)
コアシートの一部として2枚の電磁鋼板の積層間に10〜100μmの厚さの樹脂中間層を有する複層電磁鋼板をコアに成形し、歪み取り焼鈍しない工程B、および
前記工程Aのコアをばらした後、前記程Bで成形したコアシートを混在させてコアにし、巻線を挿入する工程Cとからなり、
前記A工程のコアシートに対する前記B工程のコアシートの重量比が3〜10であること
を特徴とする低騒音巻きトランス用コアの製造方法。 Using a normal electromagnetic steel sheet as a core sheet, forming into a core and annealing step A,
Step B, in which a multilayer electromagnetic steel sheet having a resin intermediate layer having a thickness of 10 to 100 μm between two magnetic steel sheets laminated as a part of the core sheet is formed into a core and is not subjected to strain relief annealing , and
After separating the core of the step A, the core sheet formed in step B is mixed to form a core, and the step C includes inserting a winding.
Low noise winding method for manufacturing a transformer core, wherein the weight ratio of the core sheet of the step B to the core sheet of the A step is 3-10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001284912A JP4473476B2 (en) | 2001-09-19 | 2001-09-19 | Manufacturing method of core for low noise winding transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001284912A JP4473476B2 (en) | 2001-09-19 | 2001-09-19 | Manufacturing method of core for low noise winding transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003092217A JP2003092217A (en) | 2003-03-28 |
JP4473476B2 true JP4473476B2 (en) | 2010-06-02 |
Family
ID=19108153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001284912A Expired - Fee Related JP4473476B2 (en) | 2001-09-19 | 2001-09-19 | Manufacturing method of core for low noise winding transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4473476B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101685700B (en) * | 2008-09-28 | 2012-11-14 | 特变电工衡阳变压器有限公司 | Method for increasing contact area of main body motherboard of reactor and basic platform |
-
2001
- 2001-09-19 JP JP2001284912A patent/JP4473476B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003092217A (en) | 2003-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6737951B1 (en) | Bulk amorphous metal inductive device | |
US6873239B2 (en) | Bulk laminated amorphous metal inductive device | |
KR102295144B1 (en) | Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core | |
US8427272B1 (en) | Method of reducing audible noise in magnetic cores and magnetic cores having reduced audible noise | |
TW511104B (en) | High performance bulk metal magnetic component | |
JP4092791B2 (en) | Low loss and low noise iron core and manufacturing method thereof | |
JP6531613B2 (en) | Low noise winding transformer and method of manufacturing the same | |
JP4473476B2 (en) | Manufacturing method of core for low noise winding transformer | |
JPS59210623A (en) | Magnetic core | |
US20230368959A1 (en) | Magnetic core and magnetic device | |
JP3485540B2 (en) | Low noise transformer | |
JP3255211B2 (en) | Core for low noise transformer and reactor | |
KR102596935B1 (en) | Laminated block core, laminated block, and method of manufacturing laminated block | |
EP1160340B1 (en) | Grain-oriented electrical steel sheet for low-noise transformer | |
JPS59130409A (en) | Laminated core | |
JPH03204911A (en) | Transformer core | |
JP2003100523A (en) | Low-noise laminated core and wound core using high- silicon steel plate | |
JP2019125750A (en) | Amorphous core and transformer | |
JP4276618B2 (en) | Low iron loss unidirectional electrical steel sheet | |
JPS6060707A (en) | Manufacture of laminated core for induction machine | |
JP4437939B2 (en) | Low iron loss unidirectional electrical steel sheet | |
JPH04311011A (en) | Manufacture of wound core for transformer | |
CA3199067A1 (en) | Core for stationary electromagnetic apparatus | |
JPH08107022A (en) | Lamination core and wound core of low noise wherein high silicon steel plate is used | |
JP2784386B2 (en) | Magnetic multilayer film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100302 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140312 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |