JPS59130409A - Laminated core - Google Patents

Laminated core

Info

Publication number
JPS59130409A
JPS59130409A JP546983A JP546983A JPS59130409A JP S59130409 A JPS59130409 A JP S59130409A JP 546983 A JP546983 A JP 546983A JP 546983 A JP546983 A JP 546983A JP S59130409 A JPS59130409 A JP S59130409A
Authority
JP
Japan
Prior art keywords
core
laminated
steel sheets
magnetic
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP546983A
Other languages
Japanese (ja)
Inventor
Kazuo Yamada
一夫 山田
Yoshikazu Takekoshi
竹腰 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP546983A priority Critical patent/JPS59130409A/en
Publication of JPS59130409A publication Critical patent/JPS59130409A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials

Abstract

PURPOSE:To obtain a laminated core which has a high rigidity and is prevented from being deteriorated in the magnetic characteristics, by laminating silicon steel sheets larger in thickness tnan thin amorphous steel sheets, and setting the proportion in sectional area of the silicon steel sheets to the entire sectional area at a specific value. CONSTITUTION:Packets 4 are fixed by being tightened at their outer peripheral portions with an insulating tape 7. The core of each packet 4 is constituted by a laminated magnetic core 5 which is formed by laminating as a main body a mlutiplicity of thin amorphous steel sheets 3 as an amorphous magnetic material. As a reinforcing magnetic core, a predetermined number of silicon steel sheets 6 larger in thickness than the thin amorphous steel sheets 3 are combined and laminated on each of side surfaces of each laminated magnetic core 5 such as to cover the whole of the corresponding side surface of the magnetic core 5. The reinforcing magnetic cores constitued by the laminated silicon steel sheets 6 are laminated such as to cover a sectional area which amounts to 10% or less of the entire sectional area of the laminated core. Thus, as a compared with a laminated core constituted only by the thin amorphous steel sheets 3, the iron loss is increased about 10%, but the core rigidity is improved about ten times.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非晶質磁性金属板を積層してなる積層鉄心に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a laminated iron core formed by laminating amorphous magnetic metal plates.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に変圧器に用いる鉄心には、主磁束に対するうず電
流損を低減するために、帯状鋼板を積層した積層鉄心が
多く用いられている。
Generally, in order to reduce eddy current loss with respect to the main magnetic flux, a laminated iron core in which strip steel plates are laminated is often used as an iron core used in a transformer.

しかして、近年鉄損の非常に少ない非晶質磁性材料の開
発が進み、電気機器鉄心として実用化されるようになっ
てきた。この鉄心用の非晶質磁性材料は急冷超高速巻取
りによシ10〜1000μm程度の厚さで帯状に製造さ
れる薄鋼板であり、硬度がビッカース硬度Hv=100
0と高く脆い材料である。また、この非晶質磁性材料は
急冷時の歪感受性が大きく、このままでは極端に磁化特
性が悪く鉄損も増大している。このために使用に際して
は、鉄心加工後に非酸化性雰囲気中で磁場中熱処理を施
して、鉄損磁化特性の向上を図っている。
However, in recent years, amorphous magnetic materials with extremely low iron loss have been developed and are now being put into practical use as iron cores for electrical equipment. This amorphous magnetic material for the iron core is a thin steel plate manufactured into a strip with a thickness of about 10 to 1000 μm by rapid cooling and ultra-high speed winding, and has a hardness of Vickers hardness Hv = 100.
It is a brittle material with a high resistance value of 0. Furthermore, this amorphous magnetic material has a high strain sensitivity during rapid cooling, and if left as it is, the magnetization characteristics will be extremely poor and the iron loss will increase. For this reason, when used, heat treatment is performed in a magnetic field in a non-oxidizing atmosphere after core processing to improve core loss magnetization characteristics.

しかるに、非晶質磁性材料である薄鋼板は磁場中熱処理
を施す際に、材料表面が酸化などを起すと、磁気的性質
が損なわれるとともに非常に跪くなフ、このような状態
で使用すると材料に加わるホさな局部応力によってもク
ラックが発生し破壊へと発展する場合がある。すなわち
、非晶質薄鋼板を使用して積層鉄心を構成する場合に、
前記の現象を考慮した構造設計をしないと、鉄心製造工
程中に加わる局部応力や、変圧器運転中における電磁振
動などによシ疲労破壊を起しかねない。
However, when thin steel sheets, which are amorphous magnetic materials, undergo heat treatment in a magnetic field, if the surface of the material oxidizes, the magnetic properties will be lost and the material will deteriorate. Even small local stresses applied to the structure can cause cracks and lead to destruction. In other words, when constructing a laminated core using amorphous thin steel sheets,
If the structure is not designed in consideration of the above phenomenon, fatigue failure may occur due to local stress applied during the core manufacturing process or electromagnetic vibration during transformer operation.

従って、この非晶質薄鋼板を積層して構成した積層鉄心
においては、必要な磁気特性を得る対策に加えて、応力
に耐え得る高い剛性をもたせて鉄心を保護する対策が必
要となる。
Therefore, in a laminated core constructed by laminating these amorphous thin steel plates, in addition to measures to obtain the necessary magnetic properties, measures are required to protect the core by providing it with high rigidity capable of withstanding stress.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなされたもので、非晶質薄鋼
板が応力によシ材料破壊しないように高り剛性をもたし
、且つ剛性を高める上での磁気特性の劣化を防止した積
層鉄心を提供するものである。
The present invention has been made in view of the above-mentioned circumstances, and provides high rigidity to an amorphous thin steel plate to prevent the material from breaking due to stress, and prevents deterioration of magnetic properties while increasing the rigidity. It provides a laminated iron core.

〔発明の概要〕[Summary of the invention]

本発明の積層鉄心は、非晶質磁性材料である薄鋼板を積
層してなる積層磁心に、非晶質薄鋼板よυ厚肉のけい素
鋼板を積層して剛性を高め、且つこのけい素鋼板の積層
に伴う鉄心剛性の向上および鉄損劣化を考慮して、けい
素鋼板の断面積の割合を鉄心総面積の10チ以内に設定
したものである。
The laminated core of the present invention has a laminated magnetic core formed by laminating thin steel plates made of an amorphous magnetic material, and is laminated with a thick silicon steel plate in addition to the amorphous thin steel plate to increase the rigidity. In consideration of the improvement in core rigidity and the deterioration of core loss due to lamination of steel plates, the proportion of the cross-sectional area of silicon steel plates is set within 10 inches of the total area of the core.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面で示す実施例について説明する。 Embodiments of the present invention illustrated in the drawings will be described below.

第1図は積層鉄心の一例として単相変圧器に用いる鉄心
の概略的構成を示している。この積層鉄心は継鉄心1と
脚鉄心2を夫々2組づつ交互にラップ接合して矩形枠状
に組合せたものである。継鉄心1と脚鉄心2は夫々非晶
質磁性材料である非晶質薄鋼板3を所定形状に打抜形成
し、この非晶質鋼板3を多数積層して固定することによ
シ製造されている。
FIG. 1 shows a schematic configuration of an iron core used in a single-phase transformer as an example of a laminated iron core. This laminated core is made up of two sets of yoke cores 1 and leg cores 2 which are alternately lap-bonded and assembled into a rectangular frame shape. The yoke core 1 and the leg core 2 are each manufactured by punching and forming an amorphous thin steel plate 3, which is an amorphous magnetic material, into a predetermined shape, and then stacking and fixing a large number of these amorphous steel plates 3. ing.

第2図は本発明の一実施例として第1図で示す積層鉄心
を段付積層構造としたものにおける横断面を示している
。ここで、図中4は順次幅寸法を小さくして階段状に積
層したパケットであシ、これらノクケット4は外周部を
絶縁テープ7で締付けて固定されている。中央部の74
ケツト4を例にとシバケラトの鉄心構成を述べると、図
中5は非晶質磁性材料である非晶質薄鋼板3を主体とし
て多数積層してなる積層磁心である。
FIG. 2 shows a cross section of a laminated core shown in FIG. 1 having a stepped laminated structure as an embodiment of the present invention. Here, numerals 4 in the figure are packets stacked in a stepwise manner with the width dimension gradually decreasing, and these packets 4 are fixed by tightening the outer periphery with an insulating tape 7. 74 in the center
Taking the case 4 as an example, the core structure of Shibakerat will be described. In the figure, 5 is a laminated magnetic core formed by laminating a large number of amorphous thin steel plates 3, which are amorphous magnetic materials, as a main body.

図中6は通常の溶解材からなシ非晶質薄鋼板3よシ大な
る板厚を有するけい素鋼板であシ、このけい素鋼板6は
積層磁心5の両側面部に補強磁心として所定枚数を組合
せて積層され積層磁心5の両側面全体を覆っている。同
様にして他のパケット4も構成されている。
In the figure, reference numeral 6 denotes a silicon steel plate which is not made of a normal melted material and has a thickness greater than that of the amorphous thin steel plate 3. A predetermined number of silicon steel plates 6 are placed on both side surfaces of the laminated magnetic core 5 as reinforcing magnetic cores. are laminated in combination to cover both sides of the laminated magnetic core 5. Other packets 4 are constructed in the same manner.

このような鉄心構造においては、非晶質薄鋼板3を積層
した積層磁心5の鉄心剛性が、非晶質薄鋼板3より厚肉
のけい素鋼板6を積層することによシ向上する。すなわ
ち、積層磁心5とけい素鋼板6とからなる鉄心の剛性F
は、鉄心を構成する材料の縦弾性係数Eと断面二次モー
メントエの積として表わされる。すなわち、F=E、I
工+E2I2  となる。
In such an iron core structure, the core rigidity of the laminated magnetic core 5 in which the amorphous thin steel plates 3 are laminated is improved by laminating the silicon steel plates 6, which are thicker than the amorphous thin steel plates 3. That is, the rigidity F of the iron core composed of the laminated magnetic core 5 and the silicon steel plate 6 is
is expressed as the product of the longitudinal elastic modulus E and the moment of inertia of the material constituting the core. That is, F=E, I
Engineering + E2I2.

但し、El:積層磁心5の縦弾性係数 工1:積層磁心5の断面二次モーメントE2=けい素鋼
板6の縦弾性係数 ■2:けい素鋼板6の断面二次モーメント。
However, El: Modulus of longitudinal elasticity of the laminated magnetic core 5 1: Moment of inertia of area of the laminated magnetic core 5 E2 = Coefficient of longitudinal elasticity of the silicon steel plate 6 2: Moment of inertia of area of the silicon steel plate 6.

積層磁心5とけい素鋼板6の各縦断面係数EllE2は
夫々略等しい値(1,5X 10 ’に9/m2)であ
る。
The longitudinal section coefficients EllE2 of the laminated magnetic core 5 and the silicon steel plate 6 are approximately the same value (1.5 x 10' = 9/m2).

このため、鉄心の剛性は鉄心総断面積に対する積層磁心
5とけい素鋼板6の各断面二次モーメントの比率、すな
わち各断面の大きさの比率で算出できる。積層磁心5の
各非磁性薄鋼板3の個々の断面二次モーメントおよびけ
い素鋼板6個々の断面二次モーメントエは、板幅b1板
厚tとした場合に板厚tの3乗に比例するのでI=bt
3/12で表わされるから、非晶質薄鋼板3の枚数’k
nt 、けい素鋼板6の枚数をn2とすると、鉄心の剛
性Fは、 で近似される。
Therefore, the rigidity of the core can be calculated from the ratio of the moment of inertia of each section of the laminated magnetic core 5 and the silicon steel plate 6 to the total cross-sectional area of the core, that is, the ratio of the size of each section. The individual moment of inertia of each non-magnetic thin steel plate 3 of the laminated magnetic core 5 and the moment of inertia of each silicon steel plate 6 are proportional to the cube of the plate thickness t, where plate width b1 plate thickness t. So I=bt
Since it is expressed as 3/12, the number of amorphous thin steel plates 3'k
nt and the number of silicon steel plates 6 is n2, the rigidity F of the iron core is approximated by:

但し、tl:非晶質薄鋼板3の板厚 t2:けい素鋼板6の板厚 である。例えば非晶質薄鋼板3の板厚tlは30μm1
け1素鋼板6の板厚t2は300珈である。
However, tl is the plate thickness of the amorphous thin steel plate 3, and t2 is the plate thickness of the silicon steel plate 6. For example, the thickness tl of the amorphous thin steel plate 3 is 30 μm1
The plate thickness t2 of the plain steel plate 6 is 300 mm.

ここで、鉄心総断面積におけるけい素鋼板6の断面積の
割合は、 n2″′t2 ””nl、tl+。2..2X100(チ)  −−−
−−−−−−−−曲(2)となる。
Here, the ratio of the cross-sectional area of the silicon steel plate 6 to the total cross-sectional area of the iron core is n2'''t2 ''nl, tl+.2..2X100 (chi) ---
----------- Song (2).

第3図は(1)式および(2)式よシ鉄心の剛性Fと鉄
心総断面積に占めるけい素鋼壊6の断面積の割合yの関
係を示す線図であフ、鉄心の全てに非晶質薄鋼板を使用
した場合の鉄心剛性Fを1としている。第3図にょル鉄
心総断面積に占めるけい素鋼板6の断面積の割合i10
%とした場合、鉄心剛性は約10倍になることが判る。
Figure 3 is a diagram showing the relationship between the stiffness F of the iron core and the ratio y of the cross-sectional area of the silicon steel fracture 6 to the total cross-sectional area of the iron core, according to equations (1) and (2). The core stiffness F is set to 1 when an amorphous thin steel plate is used. Figure 3: Ratio of the cross-sectional area of silicon steel plate 6 to the total cross-sectional area of the iron core i10
%, it can be seen that the core rigidity increases approximately 10 times.

このようにわずかなけ1素鋼板6を積層磁心5に積層す
ることによシ、鉄心剛性は著しく改善される。
By laminating a small number of bare steel plates 6 on the laminated magnetic core 5 in this manner, the core rigidity is significantly improved.

次にけい素鋼板6を積層磁心5に積層することによる鉄
心における鉄損の変化について説明する。一般に非晶質
薄鋼板は飽和磁束密度が1.6T程度と低いため、鉄心
の定格磁束密度としてはおよそ1.3Tで使用される。
Next, changes in iron loss in the core due to lamination of the silicon steel plates 6 on the laminated magnetic core 5 will be explained. In general, amorphous thin steel sheets have a low saturation magnetic flux density of about 1.6T, so the iron core is used with a rated magnetic flux density of about 1.3T.

磁束密度1.3Tでの鉄損はおよそ0.20WAである
。この磁束密度1.3 T ’i得るための磁化力でけ
い素鋼板6を励磁した場合、けい素鋼板6の磁束密度は
およそ1.5Tとなシ、鉄損は0.45 w/kI?で
ある。第3図には鉄心総断面積に占めるけい素鋼板6の
断面積割合yから、前記の値を用いて計算した鉄損値W
を併記している。第3図よシ鉄心総面積におけるけい素
鋼板6の断面積全10チとした場合でも、鉄損はせいぜ
い1.1倍程度であ少、非晶質薄鋼板3を用いた鉄心と
しての磁気特性は活かされて込る。また、この値は熱処
理条件の相違による磁気特性のバラツキ程度である。
The iron loss at a magnetic flux density of 1.3T is approximately 0.20WA. When the silicon steel plate 6 is excited with the magnetizing force to obtain this magnetic flux density of 1.3 T 'i, the magnetic flux density of the silicon steel plate 6 is approximately 1.5 T, and the iron loss is 0.45 w/kI? It is. Figure 3 shows the iron loss value W calculated using the above value from the cross-sectional area ratio y of the silicon steel plate 6 to the total cross-sectional area of the core.
is also listed. As shown in Figure 3, even if the cross-sectional area of the silicon steel plates 6 in the total area of the core is 10 mm, the iron loss is only about 1.1 times at most, which is small. Characteristics are put to good use. Moreover, this value is the degree of variation in magnetic properties due to differences in heat treatment conditions.

このように本発明による鉄心構成では、非晶質薄鋼板3
からなる積層磁心5に、けい素鋼板6を積層してなる補
強磁心を鉄心総断面積の10%以内の断面積で積層する
ことにより、非晶質薄鋼板3のみで積層磁心を構成した
場合に比して鉄損は約1096増加するが鉄心剛性が約
10倍に向上する。従って、鉄心組立時の応力および変
圧器運転時の電磁振動に対しても充分な強度を有する積
層鉄心を得ることができる。
In this way, in the core configuration according to the present invention, the amorphous thin steel plate 3
When a laminated magnetic core is constructed only from amorphous thin steel plates 3 by laminating a reinforcing magnetic core made by laminating silicon steel plates 6 on a laminated magnetic core 5 with a cross-sectional area within 10% of the total cross-sectional area of the core. The iron loss increases by about 1096, but the core rigidity improves by about 10 times. Therefore, it is possible to obtain a laminated core that has sufficient strength against stress during core assembly and electromagnetic vibration during transformer operation.

さらに、第2図で示す実施例においては、各段ノ(ケラ
ト4における段付部8は締付力によル応力集中を受ける
ことになるが、この部分はけい素鋼板6によ)保護され
るために、積層磁心5への応力集中が緩和されている。
Furthermore, in the embodiment shown in FIG. 2, each step (the stepped portion 8 of the kerato 4 receives stress concentration due to the tightening force, but this portion is protected by the silicon steel plate 6). Therefore, stress concentration on the laminated magnetic core 5 is alleviated.

このため、強度的に信頼性が高い鉄心となって−る。ま
た、各段パケット全体を外周よシ絶縁チーf7でバイン
ドする際、積層磁心5の端部では締付力によるクラック
等の発生が懸念されるが、本構成ではこれらの接触部は
全てけい素鋼板6で保護されているために、この影響は
低減される。
This makes the core highly reliable in terms of strength. Furthermore, when the entire packets of each stage are bound with the insulation chip f7 around the outer periphery, there is a concern that cracks may occur at the ends of the laminated magnetic core 5 due to the tightening force, but in this configuration, all of these contact parts are made of silicon. Since it is protected by the steel plate 6, this effect is reduced.

第4図は本発明の他の実施例における積層鉄心の横断面
を示している。この場合は鉄心横断面が矩形をなしてい
る。この実施例では積層磁心5全体の両側面部および内
部にけい素鋼板6を補強磁心として分散させて積層して
いる。け1素鋼板6を積層してなる補強磁心の鉄心総面
積に対する断面積の割合は10%以内である。
FIG. 4 shows a cross section of a laminated core in another embodiment of the present invention. In this case, the core cross section is rectangular. In this embodiment, silicon steel plates 6 are dispersed and laminated as reinforcing magnetic cores on both side surfaces and inside the entire laminated magnetic core 5. The ratio of the cross-sectional area of the reinforcing magnetic core formed by laminating the single-layer steel plates 6 to the total core area is within 10%.

この実施例においても鉄損特性を損なうことなく、鉄心
剛性を大幅に向上できる。
Also in this embodiment, the core rigidity can be significantly improved without impairing the core loss characteristics.

〔発明の効果〕〔Effect of the invention〕

本発明の積層鉄心は以上説明したように、非晶質薄鋼板
を積層してなる鉄心の鉄損特性全損なうことなく、鉄心
剛性を大幅に向上でき、鉄心加工時や使用時に外部応力
による破損を防止できる。
As explained above, the laminated core of the present invention can significantly improve the core rigidity without completely impairing the core loss characteristics of the core made by laminating amorphous thin steel plates, and the core can be damaged by external stress during core processing or use. can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は積層鉄心の一例を示す斜視図、第2図は本発明
の一実施例を示すもので、第1図A−A線に沿う横断面
図、第3図は鉄心剛性、鉄損およびけい素鋼板の鉄心総
断面積に対する割合の関係を示す線図、第4図は本発明
の他の実施例を示すもので、第1図A−A線に沿う横断
面図である。 1・・・継鉄心、2・・・脚鉄心、3・・・非晶質薄鋼
板、4・・・パケット、5・・・積層磁心、6・・・け
い素鋼板、7・・・絶縁テープ。 出願人代理人  弁理士 鈴 江 武 彦1図 3 第2図 183図 Y (’/11) 1B4図 58.19 昭和  年   月−゛ 特許庁長官   若 杉 和 夫 殿 1、事件の表示 特願昭58−5469号 2、発明の名称 積層鉄心 3、補正をする者 事件との関係 特許出願人 (307)  束東芝浦電気株式会社 4、代理人 明細書、図面    −−m− 7、補正の内容 2%    fil  明細書第6頁第9行目−とある
のを るのi「1.2倍程度」と訂正し、同頁第15行目に「
約10%]とあるのt「約20%」と訂正する・
Fig. 1 is a perspective view showing an example of a laminated core, Fig. 2 is a cross-sectional view taken along line A-A in Fig. 1, and Fig. 3 is a cross-sectional view showing an embodiment of the present invention. FIG. 4 shows another embodiment of the present invention, and is a cross-sectional view taken along line A-A in FIG. 1. DESCRIPTION OF SYMBOLS 1... Yoke core, 2... Leg core, 3... Amorphous thin steel plate, 4... Packet, 5... Laminated magnetic core, 6... Silicon steel plate, 7... Insulation tape. Applicant's representative Patent attorney Takehiko Suzue 1 Figure 3 Figure 2 183 Figure Y ('/11) 1B4 Figure 58.19 Showa year month - Chief of the Japan Patent Office Kazuo Wakasugi 1, Patent application for indication of the case No. 58-5469 No. 2, Name of the invention Laminated core 3, Relationship with the case of the person making the amendment Patent applicant (307) Toshibaura Electric Co., Ltd. 4, Attorney's specification, drawings --m- 7, Contents of the amendment 2% fil On page 6, line 9 of the specification, the statement was corrected to ``about 1.2 times,'' and on line 15 of the same page, it was changed to ``approximately 1.2 times.''
About 10%] Correct it to ``about 20%.''

Claims (1)

【特許請求の範囲】[Claims] 非晶質磁性薄鋼板を積層してなる積層磁心に、前記非晶
質磁性薄鋼板よシ厚肉のけい素鋼板を積層し、積層した
このけh素鋼板の断面積の割合を、鉄心全断面積の10
%以内に設定したことを特徴とする積層鉄心。
A thicker silicon steel plate than the amorphous magnetic thin steel plate is laminated on a laminated magnetic core formed by laminating amorphous magnetic thin steel plates, and the ratio of the cross-sectional area of the laminated silicon steel plate to the entire core is 10 of cross-sectional area
A laminated iron core characterized by being set within %.
JP546983A 1983-01-17 1983-01-17 Laminated core Pending JPS59130409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP546983A JPS59130409A (en) 1983-01-17 1983-01-17 Laminated core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP546983A JPS59130409A (en) 1983-01-17 1983-01-17 Laminated core

Publications (1)

Publication Number Publication Date
JPS59130409A true JPS59130409A (en) 1984-07-27

Family

ID=11612095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP546983A Pending JPS59130409A (en) 1983-01-17 1983-01-17 Laminated core

Country Status (1)

Country Link
JP (1) JPS59130409A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311652A (en) * 2006-05-19 2007-11-29 Denso Corp Amorphous laminated wood, manufacturing method therefor, and manufacturing method for iron core of rotating electric machine
CN101937758A (en) * 2010-09-14 2011-01-05 上海置信电气非晶有限公司 Circular-section amorphous alloy iron-core structure
EP2698796A1 (en) * 2012-08-16 2014-02-19 Siemens Aktiengesellschaft Core for a transformer or a coil and transformer with such a core
CN105489354A (en) * 2016-01-18 2016-04-13 西安交通大学 Fiber interlayer transformer iron core and stacking method thereof
CN106024323A (en) * 2016-06-29 2016-10-12 无锡康柏斯机械科技有限公司 Distribution transformer special for electric vehicle
CN107316735A (en) * 2016-06-29 2017-11-03 施三武 A kind of special distribution transformer of electric automobile
EP3306626A4 (en) * 2015-05-27 2019-01-23 Hitachi Industrial Equipment Systems Co., Ltd. Stacked core structure, and transformer equipped with same
CN110121752A (en) * 2016-12-02 2019-08-13 Abb瑞士股份有限公司 Meromict transformer core

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311652A (en) * 2006-05-19 2007-11-29 Denso Corp Amorphous laminated wood, manufacturing method therefor, and manufacturing method for iron core of rotating electric machine
CN101937758A (en) * 2010-09-14 2011-01-05 上海置信电气非晶有限公司 Circular-section amorphous alloy iron-core structure
EP2698796A1 (en) * 2012-08-16 2014-02-19 Siemens Aktiengesellschaft Core for a transformer or a coil and transformer with such a core
EP3306626A4 (en) * 2015-05-27 2019-01-23 Hitachi Industrial Equipment Systems Co., Ltd. Stacked core structure, and transformer equipped with same
CN105489354A (en) * 2016-01-18 2016-04-13 西安交通大学 Fiber interlayer transformer iron core and stacking method thereof
CN106024323A (en) * 2016-06-29 2016-10-12 无锡康柏斯机械科技有限公司 Distribution transformer special for electric vehicle
CN107316735A (en) * 2016-06-29 2017-11-03 施三武 A kind of special distribution transformer of electric automobile
CN110121752A (en) * 2016-12-02 2019-08-13 Abb瑞士股份有限公司 Meromict transformer core

Similar Documents

Publication Publication Date Title
US4364020A (en) Amorphous metal core laminations
US6737951B1 (en) Bulk amorphous metal inductive device
KR910003292B1 (en) Planar inductor
US4668931A (en) Composite silicon steel-amorphous steel transformer core
JPS59130409A (en) Laminated core
US7471183B2 (en) Transformer
JP4092791B2 (en) Low loss and low noise iron core and manufacturing method thereof
JPS59210623A (en) Magnetic core
JP6762187B2 (en) Magnetic core piece and magnetic core
JP2019125750A (en) Amorphous core and transformer
JPS6171612A (en) Manufacture of laminated core
JP3574955B2 (en) Transformer winding core
JPS59175110A (en) Wound core type stationary induction electric apparatus
US4656452A (en) Transformer telephone influence tractor core shunt
JP2020178411A (en) Stator iron core and motor
JPH0239404A (en) Manufacture of transformer iron core
JPH0697646B2 (en) Amorphous magnetic alloy winding iron core
JPS5852807A (en) Electromagnetic device
JPS59178710A (en) Laminated iron core
JPS6174314A (en) Manufacture of transformer core
JPS6060707A (en) Manufacture of laminated core for induction machine
JPH04303904A (en) Iron-core type reactor provided with gap
JPH0474403A (en) Shell-type transformer
JPS58162014A (en) Thin transformer
JP2023146181A (en) Three-phase tripod wound iron core and three-phase tripod wound iron core transformer using the same