JPH05254978A - Method and apparatus for producing compound semiconductor single crystal - Google Patents

Method and apparatus for producing compound semiconductor single crystal

Info

Publication number
JPH05254978A
JPH05254978A JP4089984A JP8998492A JPH05254978A JP H05254978 A JPH05254978 A JP H05254978A JP 4089984 A JP4089984 A JP 4089984A JP 8998492 A JP8998492 A JP 8998492A JP H05254978 A JPH05254978 A JP H05254978A
Authority
JP
Japan
Prior art keywords
crystal
semiconductor single
compound semiconductor
single crystal
shoulder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4089984A
Other languages
Japanese (ja)
Inventor
Koichi Murata
浩一 村田
Makoto Sato
佐藤  誠
Kazuyuki Ishihara
和幸 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4089984A priority Critical patent/JPH05254978A/en
Publication of JPH05254978A publication Critical patent/JPH05254978A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To suppress the generation of twin defects and to improve the yield of the AB type compd. semiconductor single crystal having a crystal structure of a sphalerite type by controlling the shape of the shoulder part of the crystal to a specific shape at the time of producing the above-mentioned single crystal by a boat method. CONSTITUTION:After a raw material melt is formed in a boat, a seed crystal is brought into contact with the raw material melt and is then cooled to gradually lower the temp. of the melt, by which the AB type compd. semiconductor single crystal having the crystal structure of the sphalerite type is grown. The crystal is grown by designating the angle of the shoulder part in a horizontal direction for the plane perpendicular to longitudinal direction of the crystal 1 as thetah and the angle of the shoulder part in a perpendicular direction for the plane perpendicular to the longitudinal direction of the crystal 1 as thetav and setting these angles at 75 deg.>theta>thetav>30 deg. relating to the shoulder part of the crystal 1 which is an increased diameter part from the seed crystal 2 to the straight cylindrical part of the AB type compd. semiconductor single crystal to be grown at this time. As a result, the generation frequencies of the twin defects is lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水平ブリッジマン法
(HB法)や温度傾斜法(GF法)等のボート法や、垂
直ブリッジマン法、コラクル法などによる化合物半導体
単結晶の製造装置および製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a compound semiconductor single crystal by a boat method such as a horizontal Bridgman method (HB method) or a temperature gradient method (GF method), a vertical Bridgman method or a colacle method. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】従来、ボート法による化合物半導体単結
晶の育成においては、単結晶の成長方位をボート長手方
向に平行に<111>方向で行い、結晶のウエハ面が
(100)面となるよう、結晶の長手方向(成長方向)
に対して所定の角度で斜めにウエハを切り出していた。
また、生産性の点から結晶成長方向に垂直にウエハを切
り出せるように、<100>方向で成長させる方法が一
部行われている。しかし、<100>方向の成長は、<
111>方向成長に比べ結晶欠陥である双晶欠陥が発生
し易く、歩留の低下を招いていた。
2. Description of the Related Art Conventionally, in growing a compound semiconductor single crystal by the boat method, the growth direction of the single crystal is set in the <111> direction parallel to the longitudinal direction of the boat so that the wafer surface of the crystal becomes the (100) plane. , Crystal longitudinal direction (growth direction)
The wafer was cut out obliquely at a predetermined angle.
Further, from the viewpoint of productivity, a method of growing in the <100> direction is partially performed so that the wafer can be cut out perpendicularly to the crystal growth direction. However, the growth in the <100> direction is
Twin defects, which are crystal defects, are more likely to occur than in the 111> direction growth, and the yield is reduced.

【0003】従来の液体封止垂直ブリッジマン法やコラ
クル法において、育成すべき結晶の成長方向に垂直な断
面形状は、成長方向を回転軸とした回転対称な形状をも
ち、一般に円形の断面形状をしている。このような結晶
を育成する場合には、種結晶から直胴部にかけての増径
部である結晶の肩部から、結晶欠陥である双晶欠陥が発
生し易く歩留の著しい低下を招いていた。
In the conventional liquid-sealed vertical Bridgman method and colacle method, the cross-sectional shape perpendicular to the growth direction of the crystal to be grown has a rotationally symmetric shape with the growth direction as a rotation axis, and is generally a circular cross-sectional shape. Are doing When growing such a crystal, twin defects, which are crystal defects, tend to occur from the shoulder portion of the crystal, which is the increased diameter portion from the seed crystal to the straight body portion, and the yield is significantly reduced. ..

【0004】また、従来のボート法や液体封止垂直ブリ
ッジマン法においては、双晶欠陥の発生し易い結晶の肩
部の形状はほぼ半円錐形か円錐形等(結晶成長方向に垂
直な面で見た場合ほぼ半円形か円形等)の形状とされて
いた。
Further, in the conventional boat method and liquid-sealed vertical Bridgman method, the shape of the shoulder portion of a crystal in which twin defects are likely to occur is approximately a semi-conical shape or a conical shape (a surface perpendicular to the crystal growth direction). The shape was almost semi-circular or circular when viewed at.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、従来
技術が有していた前述の問題点、即ち<100>方向成
長は<111>方向成長に比べ双晶欠陥が発生し易く、
歩留の低下を招いていたという問題点、および、従来の
液体封止垂直ブリッジマン法やコラクル法によって円形
の断面形状を有する結晶を育成する場合に、種結晶から
直胴部にかけての増径部である結晶の肩部から双晶欠陥
が発生し易く歩留の著しい低下を招いていたという問題
点を解消しようとするものである。
DISCLOSURE OF THE INVENTION The object of the present invention is that the above-mentioned problems of the prior art, that is, <100> direction growth is more likely to cause twin defects than <111> direction growth,
The problem that the yield was reduced, and when growing a crystal with a circular cross-sectional shape by the conventional liquid-sealed vertical Bridgman method or oracle method, the diameter increase from the seed crystal to the straight body part It is intended to solve the problem that twin defects are apt to be generated from the shoulder portion of the crystal, which is a portion, and the yield is remarkably reduced.

【0006】[0006]

【課題を解決するための手段】本発明は、前述の問題点
を解決すべくなされたものであり、第1の発明として、
閃亜鉛鉱型の結晶構造を有するAB型化合物半導体単結
晶をボート法を用いて製造する方法において、育成すべ
きAB型化合物半導体単結晶の種結晶から直胴部にかけ
ての増径部である結晶の肩部について、結晶の長手方向
に垂直な面に対する水平方向の前記肩部の角度をθh、
結晶の長手方向に垂直な面に対する垂直方向の前記肩部
の角度をθvとしたとき、75度>θh>θv>30度
として結晶を育成することを特徴とする化合物半導体単
結晶の製造法を提供する。
The present invention has been made to solve the above-mentioned problems, and as a first invention,
In a method for producing an AB type compound semiconductor single crystal having a zinc blende type crystal structure using a boat method, a crystal that is an increased diameter portion from a seed crystal of an AB type compound semiconductor single crystal to be grown to a straight body portion The angle of the shoulder with respect to the plane perpendicular to the longitudinal direction of the crystal is θh,
A method for producing a compound semiconductor single crystal is characterized in that the crystal is grown at 75 °>θh>θv> 30 °, where θv is the angle of the shoulder in the vertical direction with respect to the plane perpendicular to the longitudinal direction of the crystal. provide.

【0007】第2の発明として、閃亜鉛鉱型の結晶構造
を有するAB型化合物半導体単結晶を垂直ブリッジマン
法などの略鉛直方向に成長させて製造する方法におい
て、育成すべきAB型化合物半導体単結晶の種結晶から
直胴部にかけての増径部である結晶の肩部を、結晶長手
方向に平行で結晶長手方向中心軸にて直交する2つの断
面でみたときに、前記2つの断面において前記肩部が結
晶長手方向に垂直な面となす角θa、θbがθa≠θb
であることを特徴とする化合物半導体単結晶の製造法を
提供する。
As a second invention, an AB type compound semiconductor to be grown in a method of growing an AB type compound semiconductor single crystal having a zinc blende type crystal structure in a substantially vertical direction such as a vertical Bridgman method. When the shoulder portion of the crystal that is the increased diameter portion from the seed crystal of the single crystal to the straight body portion is viewed in two cross sections that are parallel to the crystal longitudinal direction and are orthogonal to the central axis of the crystal longitudinal direction, The angles θa and θb formed by the shoulder with respect to the plane perpendicular to the crystal longitudinal direction are θa ≠ θb.
A method for producing a compound semiconductor single crystal is provided.

【0008】第3の発明として、閃亜鉛鉱型の結晶構造
を有するAB型化合物半導体単結晶をボート法を用いて
製造する装置において、育成すべきAB型化合物半導体
単結晶の種結晶から直胴部にかけての増径部である結晶
の肩部について、結晶の長手方向に垂直な面に対する水
平方向の前記肩部の角度をθh、結晶の長手方向に垂直
な面に対する垂直方向の前記肩部の角度をθvとしたと
き、75度>θh>θv>30度となるように前記肩部
に相当するボート内面を形成してなることを特徴とする
化合物半導体単結晶の製造装置を提供する。
As a third invention, in an apparatus for producing an AB type compound semiconductor single crystal having a zinc blende type crystal structure by using a boat method, a straight body is formed from a seed crystal of the AB type compound semiconductor single crystal to be grown. As to the shoulder of the crystal which is the increased diameter portion to the part, the angle of the shoulder in the horizontal direction with respect to the plane perpendicular to the longitudinal direction of the crystal is θh, and the shoulder in the direction perpendicular to the plane perpendicular to the longitudinal direction of the crystal is Provided is an apparatus for producing a compound semiconductor single crystal, wherein an inner surface of a boat corresponding to the shoulder is formed so that when the angle is θv, 75 °>θh>θv> 30 °.

【0009】第4の発明として、閃亜鉛鉱型の結晶構造
を有するAB型化合物半導体単結晶を垂直ブリッジマン
法などの略鉛直方向に成長させて製造する装置におい
て、育成すべきAB型化合物半導体単結晶の種結晶から
直胴部にかけての増径部である結晶の肩部を、結晶長手
方向に平行で結晶長手方向中心軸にて直交する2つの断
面でみたときに、前記2つの断面において前記肩部が結
晶長手方向に垂直な面となす角θa、θbがθa≠θb
となるように前記肩部に相当するボート内面を形成した
ことを特徴とする化合物半導体単結晶の製造装置を提供
する。
As a fourth invention, an AB type compound semiconductor to be grown in an apparatus for growing an AB type compound semiconductor single crystal having a zinc blende type crystal structure in a substantially vertical direction such as the vertical Bridgman method. When the shoulder portion of the crystal that is the increased diameter portion from the seed crystal of the single crystal to the straight body portion is viewed in two cross sections that are parallel to the crystal longitudinal direction and are orthogonal to the central axis of the crystal longitudinal direction, The angles θa and θb formed by the shoulder with respect to the plane perpendicular to the crystal longitudinal direction are θa ≠ θb.
An inner surface of a boat corresponding to the shoulder is formed so that the compound semiconductor single crystal manufacturing apparatus is provided.

【0010】以下、本発明の構成を詳しく説明する。ボ
ート法によって化合物半導体単結晶を製造する場合にお
いて、育成すべきAB型化合物半導体単結晶を水平方向
からみた側面図と、鉛直上方からみた上面図をそれぞれ
図1と図2に示した。ここで、θhとθvは水平方向お
よび垂直方向(鉛直方向にほぼ一致する)の結晶肩部の
角度をそれぞれ示した。より詳細には、θvは結晶の長
手方向に垂直な面に対して、結晶の長手方向(成長方
向)中心軸を含む結晶の幅方向に垂直な面における垂直
方向の肩部の角度である。
The structure of the present invention will be described in detail below. When manufacturing a compound semiconductor single crystal by the boat method, a side view of an AB-type compound semiconductor single crystal to be grown in a horizontal direction and a top view in a vertical direction are shown in FIGS. 1 and 2, respectively. Here, θh and θv respectively indicate the angles of the crystal shoulders in the horizontal direction and the vertical direction (which substantially coincide with the vertical direction). More specifically, θv is the angle of the vertical shoulder portion in the plane perpendicular to the width direction of the crystal including the central axis in the crystal longitudinal direction (growth direction) with respect to the plane perpendicular to the crystal longitudinal direction.

【0011】図1において、種結晶2から直胴部にかけ
ての増径部である結晶肩部の結晶長手方向の長さをLh
とする。種結晶2から直胴部にかけて増径された垂直方
向の距離をHとすると、垂直方向の結晶肩部の角度θv
はarctan(Lh/H)と表せる。また、育成すべ
き結晶を鉛直上方からみた上面図の図2において、増径
部である結晶肩部の結晶長手方向の長さをLrとする。
直胴部の結晶長手方向に垂直な水平方向の直径から、種
結晶の結晶長手方向に垂直な水平方向の直径を差し引い
た長さの半分をRとすると、水平方向の結晶肩部の角度
θhは、arctan(Lr/R)と表せる。
In FIG. 1, the length in the crystal longitudinal direction of the crystal shoulder, which is the increased diameter portion from the seed crystal 2 to the straight body portion, is Lh.
And Assuming that the distance in the vertical direction increased from the seed crystal 2 to the straight body portion is H, the angle θv of the crystal shoulder portion in the vertical direction is
Can be expressed as arctan (Lh / H). Further, in FIG. 2 which is a top view of the crystal to be grown viewed from above vertically, the length in the crystal longitudinal direction of the crystal shoulder, which is the increased diameter portion, is Lr.
If the half of the length obtained by subtracting the horizontal diameter perpendicular to the crystal longitudinal direction of the seed crystal from the horizontal diameter perpendicular to the crystal longitudinal direction of the straight body is R, the angle of the horizontal crystal shoulder θh Can be represented as arctan (Lr / R).

【0012】ここで、75度>θh>θv>30度とす
る。このときのθhとθvの角度差が大きい方がより好
ましく、差が10度以上、好ましくは20度以上にする
ことがよい。また、θhを55度以上かつθvを55度
以下とすることで、さらに双晶欠陥の発生頻度を抑制す
る効果が大きくなり好ましい。
Here, it is assumed that 75 degrees>θh>θv> 30 degrees. At this time, it is more preferable that the angle difference between θh and θv is large, and the difference is preferably 10 degrees or more, and more preferably 20 degrees or more. Further, it is preferable that θh is 55 degrees or more and θv is 55 degrees or less because the effect of further suppressing the occurrence frequency of twin defects is increased.

【0013】前記AB型化合物半導体単結晶の(10
0)面に等価な一つの面が、結晶長手方向である結晶成
長方向に垂直な平面とほぼ平行となるようにすることに
より、結晶長手方向に垂直に(100)ウエハを切り出
せるために、コストメリットが大きく好ましい。
(10) of the AB type compound semiconductor single crystal
In order to cut out a (100) wafer perpendicular to the crystal longitudinal direction by making one plane equivalent to the (0) plane substantially parallel to a plane perpendicular to the crystal growth direction which is the crystal longitudinal direction, It has a large cost advantage and is preferable.

【0014】ボート長手方向に垂直な断面形状としては
円弧、楕円弧、5角形や6角形等の多角形、長円等の中
央部が上部と底部より幅の広い形状を用いる。好ましく
は、結晶成長方位と結晶をスライスして作成するウエハ
形状から、結晶の加工ロスを少なくするようにボートを
設計することが望ましい。また、前記ボート断面上部が
開口してあり、その開口部の幅が中央部最大幅の10〜
90%である開口部を設けることにより、ボートへの原
料のチャージを容易にすることや、育成中の結晶を観察
できることなどから好ましい。
As a sectional shape perpendicular to the longitudinal direction of the boat, an arc, an elliptic arc, a polygon such as a pentagon or a hexagon, and a shape such as an ellipse whose central portion is wider than the upper portion and the bottom portion are used. It is preferable to design the boat so as to reduce the processing loss of the crystal from the crystal growth orientation and the wafer shape created by slicing the crystal. Further, the boat cross-section upper portion is opened, and the width of the opening is 10 to 10 times the maximum width of the central portion.
Providing an opening of 90% is preferable because it makes it easy to charge the boat with the raw material and allows observation of crystals during growth.

【0015】ここで、H/Rを1.3≦H/R≦2.5
とすることにより、ボート長手方向に垂直な面に近い角
度で、より大きな円形(100)ウエハを無駄なく切り
だすことができる。さらに、H/Rがより2に近い方が
よりコストメリットがあるために好ましい。
Here, H / R is 1.3 ≦ H / R ≦ 2.5
By doing so, a larger circular (100) wafer can be cut without waste at an angle close to a plane perpendicular to the boat longitudinal direction. Further, it is preferable that H / R is closer to 2 because it has more cost merit.

【0016】鉛直方向に結晶を成長させる結晶製造法の
場合について、垂直ブリッジマン法による例で説明す
る。図3には、育成すべき結晶肩部の成長方向と垂直な
断面図を示す。ここで、a−a1およびb−b1断面
(結晶長手方向に平行で結晶長手方向中心軸にて直交す
る2つの断面)における結晶成長方向の断面図を図4と
図5に示す。図4、5それぞれの断面図で示す結晶肩部
の角度θaとθbが異なり、しかもそれらが30度以上
75度以下になるようにする。
A case of a crystal manufacturing method in which a crystal is grown in the vertical direction will be described with an example of the vertical Bridgman method. FIG. 3 shows a sectional view perpendicular to the growth direction of the crystal shoulder to be grown. Here, FIGS. 4 and 5 are cross-sectional views in the crystal growth direction in the aa1 and b-b1 cross sections (two cross sections parallel to the crystal longitudinal direction and orthogonal to the central axis of the crystal longitudinal direction). The angles θa and θb of the crystal shoulders shown in the cross-sectional views of FIGS. 4 and 5 are different, and they are set to 30 degrees or more and 75 degrees or less.

【0017】また、肩部の角度θaが55度以上でかつ
θbが55度以下であることにより、さらに双晶欠陥の
発生を抑制できる。また、このときのθaとθbの角度
差が大きい方がより好ましく、差が10度以上、好まし
くは20度以上にすることが望まれる。この場合、結晶
の肩部は長手方向に垂直な断面で見たときθaとθbが
異なる楕円形、菱形等の形状となるが、結晶の本体(直
胴部)は円形であってもよく、あるいは楕円形であって
もよい。ただし、結晶の本体(直胴部)はスライスおよ
び切削して円形のウェハを得るためには、断面が円形で
あることが好ましい。
Further, when the angle θa of the shoulder portion is 55 degrees or more and θb is 55 degrees or less, generation of twin defects can be further suppressed. Further, it is more preferable that the angle difference between θa and θb at this time is large, and it is desired that the difference be 10 degrees or more, preferably 20 degrees or more. In this case, the shoulder portion of the crystal has an elliptical shape, a rhombic shape, or the like in which θa and θb are different when viewed in a cross section perpendicular to the longitudinal direction, but the main body (straight body portion) of the crystal may be circular. Alternatively, it may be oval. However, in order to obtain a circular wafer by slicing and cutting the crystal body (straight body portion), it is preferable that the cross section is circular.

【0018】前記AB型化合物半導体単結晶をボート法
あるいは垂直ブリッジマン法等で製造する場合、種結晶
の(100)面に等価な一つの面が、結晶長手方向であ
る結晶成長方向に垂直な平面となす角が30度以内、さ
らには種結晶の(100)面に等価な一つの面が、結晶
長手方向である結晶成長方向に垂直な平面にほぼ一致し
ていること(種結晶の一つの<100>等価方向が結晶
長手方向にほぼ平行とされていること)が、(100)
ウエハを成長方向に垂直に切り出すことができるために
より好ましい。
When the AB type compound semiconductor single crystal is manufactured by the boat method or the vertical Bridgman method, one plane equivalent to the (100) plane of the seed crystal is perpendicular to the crystal growth direction which is the crystal longitudinal direction. The angle formed with the plane is within 30 degrees, and further, one plane equivalent to the (100) plane of the seed crystal is substantially aligned with the plane perpendicular to the crystal growth direction, which is the crystal longitudinal direction ( The two <100> equivalent directions are assumed to be substantially parallel to the crystal longitudinal direction).
It is more preferable because the wafer can be cut out perpendicularly to the growth direction.

【0019】本発明における閃亜鉛鉱型の結晶構造を有
するAB型化合物半導体単結晶としては、GaAs、I
nP等の3−5族化合物半導体単結晶、ZnSe等の2
−6族化合物半導体単結晶が用いられる。
The AB type compound semiconductor single crystal having a zinc blende type crystal structure according to the present invention includes GaAs and I.
Group 3-5 compound semiconductor single crystal such as nP, 2 such as ZnSe
A Group-6 compound semiconductor single crystal is used.

【0020】[0020]

【作用】本発明において、ボート法により結晶を育成す
る場合において、結晶形状を前述のように選ぶことによ
り双晶欠陥が低減し、結晶の歩留が向上することは実験
的には確かめられたがその作用機構については詳細には
明確でない。
In the present invention, it has been experimentally confirmed that, when a crystal is grown by the boat method, twin defects are reduced and the crystal yield is improved by selecting the crystal shape as described above. However, its mechanism of action is not clear in detail.

【0021】化合物半導体単結晶の例として、GaAs
単結晶の育成実験を試みた。実験は、θhとθvをそれ
ぞれ変えたボートを作成してそれぞれ一回ずつ育成実験
を行った。種結晶方位は<100>を結晶の長手方向
(成長方向)とした。この実験では、双晶欠陥が育成中
に観測された場合にはメルトバックを行い、双晶欠陥が
無くなるまで何回か育成を行い、その観測された双晶欠
陥の回数を調べた。
As an example of a compound semiconductor single crystal, GaAs
An attempt was made to grow a single crystal. In the experiment, boats in which θh and θv were changed were created, and each experiment was carried out once. The seed crystal orientation was <100> as the crystal longitudinal direction (growth direction). In this experiment, when twin defects were observed during growth, meltback was performed, growth was performed several times until the twin defects disappeared, and the number of observed twin defects was examined.

【0022】その結果、θh=θvでは特に双晶欠陥の
発生頻度が高く、8回以上のメルトバックを行ったが双
晶欠陥の無い結晶を得るには至らなかった。また、θh
>θvのときに双晶欠陥の発生頻度が低くなっている。
特にθh>55度>θvであるθh=60度、θv=5
0度で双晶欠陥が発生しなかった。
As a result, when θh = θv, the frequency of occurrence of twin defects was particularly high, and meltback was carried out 8 times or more, but crystals without twin defects were not obtained. Also, θh
When> θv, the frequency of occurrence of twin defects is low.
In particular, θh> 55 degrees> θv, θh = 60 degrees, θv = 5
Twin defects did not occur at 0 degree.

【0023】以上の結果より、θh、θvとも75度以
下でしかも30度以上であることにより、発生する双晶
欠陥の発生が抑制される。さらに、θhがθvより大き
くなるようにすることによりその効果が大きくなるので
好ましい。また、θhを55度以上で、しかもθvを5
5度以下とすることで、さらに双晶欠陥の発生頻度を抑
制する効果が大きくなることがわかった。
From the above results, when both θh and θv are 75 degrees or less and 30 degrees or more, the generation of twin defects is suppressed. Further, it is preferable that θh be larger than θv, because the effect becomes large. In addition, θh is 55 degrees or more, and θv is 5
It was found that the effect of suppressing the occurrence frequency of twin defects is further increased by setting the angle to 5 degrees or less.

【0024】次に鉛直方向に結晶を成長させる結晶製造
法の例として、GaAs単結晶を垂直ブリッジマン法で
育成実験を試みた。
Next, as an example of a crystal manufacturing method for growing a crystal in the vertical direction, an experiment for growing a GaAs single crystal by the vertical Bridgman method was tried.

【0025】実験は、θaとθbをそれぞれ変えたルツ
ボを作成してそれぞれ4回ずつ育成実験を行った。種結
晶方位は<100>を結晶の長手方向(成長方向)とし
た。この実験で、双晶欠陥の発生した結晶育成回数と発
生した双晶欠陥の本数を調べた。
In the experiment, crucibles having different θa and θb were prepared, and the growing experiment was conducted four times each. The seed crystal orientation was <100> as the crystal longitudinal direction (growth direction). In this experiment, the number of crystal growth times in which twin defects were generated and the number of twin defects in which crystals were generated were examined.

【0026】その結果、θaとθbの等しい成長軸に対
して回転対称な結晶形状の場合に比べて、回転対称でな
い非対称な形状の方が双晶発生頻度が小さいこと、また
肩部の角度は30度以上75度以下の時に双晶発生頻度
が低下していること、θa>55度>θbの時に特に双
晶欠陥の発生頻度が小さいことがわかった。
As a result, as compared with the case where the crystal shape is rotationally symmetric with respect to the growth axis where θa and θb are equal to each other, the frequency of twinning is smaller in the asymmetrical shape which is not rotationally symmetric, and the angle of the shoulder portion is smaller. It was found that the twinning occurrence frequency was reduced when the angle was 30 degrees or more and 75 degrees or less, and the twinning defect frequency was particularly low when θa> 55 degrees> θb.

【0027】以上の結果より、結晶肩部の角度θaとθ
bが異なり、しかも30度以上75度以下にされている
こと、さらに肩角度θaが55度以上でかつθbが55
度以下であることにより、さらに双晶欠陥の発生を抑制
できることがわかった。
From the above results, the angles θa and θ of the crystal shoulder are
b is different, and is set to 30 degrees or more and 75 degrees or less, and the shoulder angle θa is 55 degrees or more and θb is 55 degrees.
It was found that the occurrence of twin defects can be further suppressed by setting the ratio to be less than 100 degrees.

【0028】[0028]

【実施例】以下、GaAsの単結晶を製造する場合の実
施例について説明する。
EXAMPLES Examples for producing a GaAs single crystal will be described below.

【0029】(実施例1)ボート法により結晶を育成し
た場合の、育成すべき結晶の側面図と上面図をそれぞれ
図1、2に示した。図6には種結晶側からみた正面図を
示した。図7には、育成する場合の反応容器の長手方向
の側断面図を示している。図において2は種結晶、3は
ボート、4はGa、5は反応容器、6はAsを示してい
る。
(Example 1) FIGS. 1 and 2 are a side view and a top view of a crystal to be grown when the crystal is grown by the boat method. FIG. 6 shows a front view seen from the seed crystal side. FIG. 7 shows a side cross-sectional view in the longitudinal direction of the reaction container when growing. In the figure, 2 is a seed crystal, 3 is a boat, 4 is Ga, 5 is a reaction vessel, and 6 is As.

【0030】結晶育成実験は、θhとθvをそれぞれ変
えた8種類のボートを作成してそれぞれ一回ずつ育成実
験を行った。種結晶方位は<100>等価方向を結晶の
長手方向(成長方向)とした。
In the crystal growth experiment, eight kinds of boats having different θh and θv were prepared and the growth experiment was conducted once. For the seed crystal orientation, the <100> equivalent direction was taken as the longitudinal direction (growth direction) of the crystal.

【0031】図7のようにボート2の中にGa4を21
00gを入れ、反応容器5の他端にAs6を2300g
入れ、反応容器5内を真空状態に減圧し封じきる。次に
反応容器5を結晶育成炉にいれ、反応容器5内のAsを
600℃に加熱し、反応容器5内のAs蒸気圧を1at
mに維持し、反応容器5内ボート部を1200℃とし、
GaとAs蒸気を反応させGaAsを合成する。
As shown in FIG. 7, 21 Ga 4 is placed in the boat 2.
00g is put, and 2300g of As6 is added to the other end of the reaction vessel 5.
Then, the inside of the reaction vessel 5 is depressurized to a vacuum state and sealed. Next, the reaction vessel 5 is put into a crystal growth furnace, As in the reaction vessel 5 is heated to 600 ° C., and As vapor pressure in the reaction vessel 5 is set to 1 at.
m, maintaining the boat section in the reaction vessel 5 at 1200 ° C.,
Ga and As vapor react to synthesize GaAs.

【0032】その後、さらに昇温し種結晶温度を123
8℃、GaAs融液中の温度勾配を0.5℃/cm程度
にし、種結晶とGaAs融液を接触させる。その後、融
液の温度を徐々に下げて冷却し結晶の育成を行う。完全
に固化後さらに温度を室温まで下げて、結晶を取り出し
た。この実験では、双晶が育成中に観測された場合には
メルトバックを行い、双晶欠陥が無くなるまで何回か育
成を行い、その観測された双晶欠陥の回数を調べた。そ
れぞれのボート形状で育成中に観測された双晶発生回数
を表1にまとめた。
Thereafter, the temperature is further raised to set the seed crystal temperature to 123.
At 8 ° C., the temperature gradient in the GaAs melt is set to about 0.5 ° C./cm, and the seed crystal and the GaAs melt are brought into contact with each other. Then, the temperature of the melt is gradually lowered and cooled to grow crystals. After completely solidifying, the temperature was further lowered to room temperature, and crystals were taken out. In this experiment, when twins were observed during growth, meltback was performed, growth was performed several times until twin defects disappeared, and the number of observed twin defects was examined. Table 1 summarizes the number of twinning occurrences observed during the growth in each boat shape.

【0033】[0033]

【表1】 [Table 1]

【0034】この表1からわかるようにθh=θvの時
には、80度と20度で特に双晶欠陥の発生頻度が高
く、8回以上のメルトバックを行ったが双晶欠陥の無い
結晶を得るには至らなかった。また、θh>θvのとき
に双晶欠陥の発生頻度が低くなっている。特にθh>5
5度>θvであるθh=60度、θv=50度で双晶欠
陥が発生しなかった。このθh=60度、θv=50度
のボートでは、10回の結晶育成実験を行い再現性を確
かめた。その結果、双晶欠陥の発生頻度は、10回中1
回であった。また、その双晶欠陥が発生したときの結晶
育成中においても、メルトバックを1回行うことにより
双晶欠陥の無い結晶を得ることができた。
As can be seen from Table 1, when θh = θv, the frequency of occurrence of twin defects is particularly high at 80 ° and 20 °, and melt-back was performed 8 times or more, but crystals without twin defects were obtained. It didn't reach. Further, when θh> θv, the frequency of occurrence of twin defects is low. Especially θh> 5
Twin defects did not occur at θh = 60 ° and θv = 50 ° where 5 °> θv. In this boat with θh = 60 degrees and θv = 50 degrees, the crystal growth experiment was performed 10 times to confirm the reproducibility. As a result, the frequency of occurrence of twin defects was 1 in 10 times.
It was once. Further, even during the crystal growth when the twin defects were generated, it was possible to obtain a crystal without twin defects by performing the meltback once.

【0035】(実施例2)垂直ブリッジマン法により育
成すべき結晶の肩部の、結晶成長方向と垂直な断面図を
図3に示す。ここで、肩部の角度が最も大きくなるa−
a1断面および肩部の角度が最も小さくなるb−b1断
面における結晶成長方向の断面図を、図4と5に示す。
図8は従来の液体封止垂直ブリッジマン法によるGaA
s結晶育成用の炉内の模式的側面図を示す。図中1は結
晶、2は種結晶、7は液体封止材、8はルツボ、9はヒ
ーター、10は高圧容器を示す。
(Embodiment 2) FIG. 3 shows a sectional view of a shoulder portion of a crystal to be grown by the vertical Bridgman method, which is perpendicular to the crystal growth direction. Here, a- where the shoulder angle is the largest
4 and 5 are cross-sectional views in the crystal growth direction in the a1 cross section and the bb1 cross section in which the angle of the shoulder portion is the smallest.
FIG. 8 shows GaA by the conventional liquid-sealed vertical Bridgman method.
The typical side view in the furnace for s crystal growth is shown. In the figure, 1 is a crystal, 2 is a seed crystal, 7 is a liquid sealing material, 8 is a crucible, 9 is a heater, and 10 is a high-pressure container.

【0036】実験はθaとθbをそれぞれ変えたルツボ
を作成して、それぞれ4回ずつ育成実験を行った。種結
晶方位は<100>方向を結晶の長手方向(成長方向)
とした。この実験で双晶欠陥の発生した結晶育成回数
(結晶本数)と発生した双晶欠陥の本数を調べた。
In the experiment, crucibles having different θa and θb were prepared, and the growing experiment was conducted four times each. Seed crystal orientation is the <100> direction in the crystal longitudinal direction (growth direction)
And In this experiment, the number of crystal growth times (number of crystals) in which twin defects were generated and the number of twin defects in which crystals were generated were examined.

【0037】ルツボ8底部に種結晶2を配置した。次
に、約2000gの原料GaAs結晶および約260g
の液体封止材7(B2 O3 )を充填する。以後、通常の
垂直ブリッジマン炉において加熱を行い、液体封止材の
軟化、原料結晶の上部よりの融解、種付け工程を経て結
晶育成を行った。その後、下部より徐々に結晶を固化さ
せ結晶育成を終了した。それぞれのルツボ形状で育成中
に観測された双晶発生回数を表2にまとめた。
Seed crystal 2 was placed at the bottom of crucible 8. Next, about 2000 g of raw GaAs crystal and about 260 g
The liquid sealing material 7 (B2 O3) is filled. After that, heating was performed in a normal vertical Bridgman furnace to soften the liquid encapsulant, melt the raw material crystals from above, and perform seeding to grow crystals. After that, the crystal was gradually solidified from the lower part to complete the crystal growth. Table 2 summarizes the number of twinning occurrences observed during the growth in each crucible shape.

【0038】[0038]

【表2】 [Table 2]

【0039】その結果θaとθbが等しい成長軸に対し
て回転対称な結晶形状の場合に比べて、回転対称でない
非対称な形状の方が双晶発生頻度が小さい。また、肩部
の角度が30度以上75度以下の時に双晶発生頻度が低
下している。また、θa>55度>θbの時に特に双晶
欠陥の発生頻度が小さいことがわかった。このθa=6
0度、θb=50度のルツボでは、5回の結晶育成実験
を行い再現性を確かめた。その結果、双晶欠陥の発生頻
度は5回中1回であった。
As a result, the twinning frequency is lower in the asymmetrical shape that is not rotationally symmetric than in the case where the crystal shape is rotationally symmetric with respect to the growth axis where θa and θb are equal. Further, when the angle of the shoulder portion is 30 degrees or more and 75 degrees or less, the twinning occurrence frequency decreases. It was also found that the twin defect occurrence frequency was particularly small when θa> 55 °> θb. This θa = 6
With a crucible of 0 ° and θb = 50 °, reproducibility was confirmed by conducting five crystal growth experiments. As a result, the frequency of occurrence of twin defects was 1 in 5.

【0040】以上の結果より、結晶肩部の角度θaとθ
bが異なり、しかもそれらが30度以上75度以下であ
ること、さらに肩部の角度θaが55度以上でかつθb
が55度以下であることにより、さらに双晶欠陥の発生
を抑制できることがわかった。
From the above results, the angles θa and θ of the crystal shoulder are
b are different, and they are 30 degrees or more and 75 degrees or less, and the angle θa of the shoulder is 55 degrees or more and θb
It was found that when the value is 55 degrees or less, the generation of twin defects can be further suppressed.

【0041】[0041]

【発明の効果】以上述べたように、本発明は次のような
優れた効果がある。 (1)双晶欠陥の発生頻度が小さくなり歩留とスループ
ットが著しく向上する。
As described above, the present invention has the following excellent effects. (1) The frequency of occurrence of twin defects is reduced, and the yield and throughput are significantly improved.

【0042】(2)種結晶方位を<111>で育成する
場合に比べ、(100)ウエハを結晶から切り出す際
に、結晶の長手方向に垂直な面に近い方向(面)で切り
出せる。このため、加工ロスを低減することができ、1
つの結晶から切り出せるウエハ枚数も多くなる。
(2) Compared with the case where the seed crystal orientation is grown with <111>, the (100) wafer can be cut out from the crystal in a direction (plane) close to the plane perpendicular to the longitudinal direction of the crystal. Therefore, the processing loss can be reduced, and 1
The number of wafers that can be cut from one crystal also increases.

【0043】(3)ボートの長手方向に垂直な断面形状
が、低部の幅が狭く中央部の幅が広く上部の幅が再度狭
くなっているような形状、特に円形に近い形にすること
により、得られる結晶の(100)面方向の断面形状が
円形に近い形になる。従って、結晶より(100)面の
円形ウエハを求める場合、結晶をスライスしてそのまま
円形ウエハに近い形状が得られることから、切削による
損失を小さくすることが可能である。
(3) The cross-sectional shape perpendicular to the longitudinal direction of the boat should be such that the width of the lower portion is narrow, the width of the central portion is wide, and the width of the upper portion is narrow again, especially a shape close to a circle. As a result, the cross-sectional shape of the obtained crystal in the (100) plane direction is close to a circle. Therefore, when obtaining a circular wafer having a (100) plane from a crystal, the crystal can be sliced to obtain a shape similar to the circular wafer as it is, so that the loss due to cutting can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】ボート法により育成すべき結晶の側面図。FIG. 1 is a side view of a crystal to be grown by a boat method.

【図2】ボート法により育成すべき結晶の上面図。FIG. 2 is a top view of a crystal to be grown by the boat method.

【図3】垂直ブリッジマン法により育成すべき結晶の肩
部の、結晶成長方向と垂直な断面図。
FIG. 3 is a sectional view of a shoulder portion of a crystal to be grown by the vertical Bridgman method, which is perpendicular to the crystal growth direction.

【図4】図3の結晶肩部の角度が最も大きくなる部位で
あるa−a1断面図。
FIG. 4 is a cross-sectional view taken along the line aa1 of FIG. 3, where the crystal shoulder has the largest angle.

【図5】図3の結晶肩部の角度が最も小さくなる部位で
あるb−b1断面図。
5 is a cross-sectional view taken along the line bb1 of FIG. 3 where the angle of the crystal shoulder is the smallest.

【図6】ボート法により育成すべき結晶の種結晶側から
みた正面図。
FIG. 6 is a front view of a crystal to be grown by the boat method as seen from the seed crystal side.

【図7】ボート法により結晶育成する場合の反応容器の
長手方向の側断面図。
FIG. 7 is a side cross-sectional view in the longitudinal direction of a reaction container when a crystal is grown by the boat method.

【図8】液体封止垂直ブリッジマン法によるGaAs結
晶育成用の炉内の模式的な側面図。
FIG. 8 is a schematic side view of the inside of a furnace for growing a GaAs crystal by the liquid-sealed vertical Bridgman method.

【符号の説明】[Explanation of symbols]

1 :結晶 2 :種結晶 3 :ボート 4 :Ga 5 :反応容器 6 :As 7 :液体封止材 8 :ルツボ 9 :ヒーター 10:高圧容器 1: Crystal 2: Seed crystal 3: Boat 4: Ga 5: Reaction vessel 6: As 7: Liquid sealing material 8: Crucible 9: Heater 10: High pressure vessel

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】閃亜鉛鉱型の結晶構造を有するAB型化合
物半導体単結晶をボート法を用いて製造する方法におい
て、育成すべきAB型化合物半導体単結晶の種結晶から
直胴部にかけての増径部である結晶の肩部について、結
晶の長手方向に垂直な面に対する水平方向の前記肩部の
角度をθh、結晶の長手方向に垂直な面に対する垂直方
向の前記肩部の角度をθvとしたとき、75度>θh>
θv>30度として結晶を育成することを特徴とする化
合物半導体単結晶の製造法。
1. A method for producing an AB type compound semiconductor single crystal having a zinc blende type crystal structure using a boat method, wherein the AB type compound semiconductor single crystal to be grown is grown from a seed crystal to a straight body. Regarding the shoulder of the crystal that is the diameter portion, the angle of the shoulder in the horizontal direction with respect to the plane perpendicular to the longitudinal direction of the crystal is θh, and the angle of the shoulder in the vertical direction with respect to the plane perpendicular to the longitudinal direction of the crystal is θv. When it does, 75 degrees>θh>
A method for producing a compound semiconductor single crystal, which comprises growing the crystal with θv> 30 degrees.
【請求項2】前記肩部の角度θhとθvが75度>θh
>55度>θv>30度である請求項1の化合物半導体
単結晶の製造法。
2. The shoulder angles θh and θv are 75 degrees> θh
The method for producing a compound semiconductor single crystal according to claim 1, wherein> 55 °>θv> 30 °.
【請求項3】閃亜鉛鉱型の結晶構造を有するAB型化合
物半導体単結晶を垂直ブリッジマン法などの略鉛直方向
に成長させて製造する方法において、育成すべきAB型
化合物半導体単結晶の種結晶から直胴部にかけての増径
部である結晶の肩部を、結晶長手方向に平行で結晶長手
方向中心軸にて直交する2つの断面でみたときに、前記
2つの断面において前記肩部が結晶長手方向に垂直な面
となす角θa、θbがθa≠θbであることを特徴とす
る化合物半導体単結晶の製造法。
3. A seed of an AB-type compound semiconductor single crystal to be grown in a method of growing an AB-type compound semiconductor single crystal having a zinc blende type crystal structure in a substantially vertical direction such as a vertical Bridgman method. When the shoulder portion of the crystal, which is the increased diameter portion from the crystal to the straight body portion, is viewed in two cross sections which are parallel to the crystal longitudinal direction and orthogonal to the central axis in the crystal longitudinal direction, the shoulder portion in the two cross sections is A method for producing a compound semiconductor single crystal, wherein angles θa and θb formed with a plane perpendicular to the crystal longitudinal direction are θa ≠ θb.
【請求項4】前記肩部の角度θa、θbが75度>θa
>θb>30度である請求項3の化合物半導体単結晶の
製造法。
4. The shoulder angles θa and θb are 75 degrees> θa.
The method for producing a compound semiconductor single crystal according to claim 3, wherein>θb> 30 degrees.
【請求項5】前記肩部の角度θa、θbが75度>θa
>55度>θb>30度である請求項4の化合物半導体
単結晶の製造法。
5. The angles θa and θb of the shoulders are 75 degrees> θa
The method for producing a compound semiconductor single crystal according to claim 4, wherein> 55 degrees>θb> 30 degrees.
【請求項6】種結晶の一つの<100>等価方向が結晶
長手方向にほぼ平行とされている請求項1〜5いずれか
1項の化合物半導体単結晶の製造法。
6. The method for producing a compound semiconductor single crystal according to claim 1, wherein one <100> equivalent direction of the seed crystal is substantially parallel to the crystal longitudinal direction.
【請求項7】閃亜鉛鉱型の結晶構造を有するAB型化合
物半導体単結晶をボート法を用いて製造する装置におい
て、育成すべきAB型化合物半導体単結晶の種結晶から
直胴部にかけての増径部である結晶の肩部について、結
晶の長手方向に垂直な面に対する水平方向の前記肩部の
角度をθh、結晶の長手方向に垂直な面に対する垂直方
向の前記肩部の角度をθvとしたとき、75度>θh>
θv>30度となるように前記肩部に相当するボート内
面を形成してなることを特徴とする化合物半導体単結晶
の製造装置。
7. An apparatus for producing an AB type compound semiconductor single crystal having a zinc blende type crystal structure by using a boat method, wherein the AB type compound semiconductor single crystal to be grown is increased from a seed crystal to a straight body part. Regarding the shoulder of the crystal that is the diameter portion, the angle of the shoulder in the horizontal direction with respect to the plane perpendicular to the longitudinal direction of the crystal is θh, and the angle of the shoulder in the vertical direction with respect to the plane perpendicular to the longitudinal direction of the crystal is θv. When it does, 75 degrees>θh>
An apparatus for producing a compound semiconductor single crystal, wherein a boat inner surface corresponding to the shoulder is formed so that θv> 30 degrees.
【請求項8】閃亜鉛鉱型の結晶構造を有するAB型化合
物半導体単結晶を垂直ブリッジマン法などの略鉛直方向
に成長させて製造する装置において、育成すべきAB型
化合物半導体単結晶の種結晶から直胴部にかけての増径
部である結晶の肩部を、結晶長手方向に平行で結晶長手
方向中心軸にて直交する2つの断面でみたときに、前記
2つの断面において前記肩部が結晶長手方向に垂直な面
となす角θa、θbがθa≠θbとなるように前記肩部
に相当するボート内面を形成したことを特徴とする化合
物半導体単結晶の製造装置。
8. A seed of an AB type compound semiconductor single crystal to be grown in an apparatus for growing an AB type compound semiconductor single crystal having a zinc blende type crystal structure in a substantially vertical direction, such as a vertical Bridgman method. When the shoulder portion of the crystal, which is the increased diameter portion from the crystal to the straight body portion, is viewed in two cross sections which are parallel to the crystal longitudinal direction and orthogonal to the central axis in the crystal longitudinal direction, the shoulder portion in the two cross sections is 1. An apparatus for producing a compound semiconductor single crystal, wherein a boat inner surface corresponding to the shoulder is formed so that angles θa and θb formed with a plane perpendicular to the crystal longitudinal direction are θa ≠ θb.
JP4089984A 1992-03-13 1992-03-13 Method and apparatus for producing compound semiconductor single crystal Withdrawn JPH05254978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4089984A JPH05254978A (en) 1992-03-13 1992-03-13 Method and apparatus for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4089984A JPH05254978A (en) 1992-03-13 1992-03-13 Method and apparatus for producing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH05254978A true JPH05254978A (en) 1993-10-05

Family

ID=13985925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4089984A Withdrawn JPH05254978A (en) 1992-03-13 1992-03-13 Method and apparatus for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH05254978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025870A1 (en) * 2000-05-25 2001-12-06 Wacker Siltronic Halbleitermat Single crystal rod and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025870A1 (en) * 2000-05-25 2001-12-06 Wacker Siltronic Halbleitermat Single crystal rod and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7226506B2 (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JPH05254978A (en) Method and apparatus for producing compound semiconductor single crystal
JP2018095490A (en) Method for manufacturing silicon single crystal, silicon single crystal and silicon single crystal wafer
US7361219B2 (en) Method for producing silicon wafer and silicon wafer
JPH1087392A (en) Production of compound semiconductor single crystal
US11053606B2 (en) Method of producing silicon single crystal, and silicon single crystal wafer
JPH05279163A (en) Production of compound semiconductor single crystal and apparatus therefor
JPH09157086A (en) Method for growing signal crystal
JPH0517278A (en) Method and apparatus for producing compound semiconductor crystal
JP2002234792A (en) Method of producing single crystal
JP2961115B2 (en) Method for manufacturing piezoelectric crystal
JPH05221772A (en) Method and device for producing compound semiconductor single crystal
JPH0748199A (en) Apparatus for producing compound semiconductor single crystal and production thereof
JPH0748196A (en) Production of compound semiconductor single crystal
JPH01139223A (en) Manufacture of circular wafer of compound semiconductor single crystal
JPH09110575A (en) Crucible for producing single crystal and production of single crystal
JP2003226599A (en) Method of manufacturing single crystal
JPS6270293A (en) Production of compound semiconductor single crystal
JPH0517196B2 (en)
JPH0761886A (en) Production of single crystal and compound semiconductor and production device therefor
JPH05881A (en) Apparatus for producing compound semiconductor crystal and method therefor
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH08104589A (en) Boat and production of compound semiconductor single crystal by boat method
JPS61127698A (en) Method for pulling up titanium tetraborate single crystal
JPH05279165A (en) Apparatus for producing compound semiconductor single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518