JPH05279165A - Apparatus for producing compound semiconductor single crystal - Google Patents

Apparatus for producing compound semiconductor single crystal

Info

Publication number
JPH05279165A
JPH05279165A JP10162092A JP10162092A JPH05279165A JP H05279165 A JPH05279165 A JP H05279165A JP 10162092 A JP10162092 A JP 10162092A JP 10162092 A JP10162092 A JP 10162092A JP H05279165 A JPH05279165 A JP H05279165A
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
boat
compound semiconductor
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10162092A
Other languages
Japanese (ja)
Inventor
Ichiro Ishikawa
一郎 石川
Koichi Murata
浩一 村田
Makoto Sato
佐藤  誠
Tomoyuki Ishihara
知幸 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10162092A priority Critical patent/JPH05279165A/en
Publication of JPH05279165A publication Critical patent/JPH05279165A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To enable prevention of generation of twin defects and improvement of the yield and the throughput, in producing a compound semiconductor single crystal by the boat method. CONSTITUTION:In the seed crystal-setting part of a boat 3, a seed crystal is put at a position projecting by 5mm toward the shoulder part side from the inflection point from the seed crystal-setting part of the boat 3 to the shoulder part. The crystal growth side end part of the seed crystal 1 is an upward inclined plane formed by cutting one edge of a rectangular parallelepiped. The angle between the above-mentioned inclined plane and the horizontal plane is about 35 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボート法による化合物
半導体単結晶の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a compound semiconductor single crystal by the boat method.

【0002】[0002]

【従来の技術】近年電子工業の分野において、結晶欠陥
の少ないGaAs、InP、InAsなどの化合物半導
体単結晶を安価に製造する方法が種々研究されている。
2. Description of the Related Art In recent years, in the field of electronics industry, various researches have been conducted on various methods for inexpensively producing a compound semiconductor single crystal such as GaAs, InP, InAs having few crystal defects.

【0003】化合物半導体単結晶の製造方法としては、
ボート法と引上げ法がよく知られているが、このうちボ
ート法は引上げ法に比べて温度勾配が小さく、ストイキ
オメトリー制御が容易であるなどの理由で、結晶欠陥の
少ない単結晶を製造することができる利点がある。
As a method for producing a compound semiconductor single crystal,
The boat method and pulling method are well known. Among them, the boat method produces a single crystal with few crystal defects because the temperature gradient is smaller than the pulling method and stoichiometry control is easy. There is an advantage that can be.

【0004】ボート法には、水平ブリッジマン法(HB
法)と温度傾斜法(GF法)とがあるが、いずれも一端
に種結晶を置いた長尺なボートに原料融液を入れ、ボー
トをアンプル管に封入し、このアンプル管を長手方向に
温度勾配を設けた横形炉内に入れ、種結晶の側から結晶
固化して単結晶を製造する方法である。
The boat method includes the horizontal Bridgman method (HB
Method) and the temperature gradient method (GF method). In both cases, the raw material melt is put in a long boat having a seed crystal at one end, and the boat is sealed in an ampoule tube, and the ampoule tube is placed in the longitudinal direction. This is a method of producing a single crystal by placing it in a horizontal furnace provided with a temperature gradient and solidifying the crystal from the seed crystal side.

【0005】化合物半導体単結晶をボート法により製造
する場合には、製造すべき化合物半導体単結晶の直胴部
の長手方向に垂直な断面の面積に対して2〜3割程度か
又はそれ以下の面積の断面を有する種結晶を用い、その
種結晶から結晶径を徐々に太らせて単結晶の直胴部の目
標径に至らせるための肩部を設けて行うのが一般的であ
る。この際、種結晶のシーディング面から前記肩部へ至
るまでの結晶の首部で双晶欠陥が入りやすく、メルトバ
ック作業回数を増やし、スループットや歩留を下げる結
果となっていた。
When the compound semiconductor single crystal is manufactured by the boat method, it is about 20 to 30% or less of the area of a cross section of the compound semiconductor single crystal to be manufactured which is perpendicular to the longitudinal direction of the straight body part. Generally, a seed crystal having an area cross section is used, and a shoulder portion for gradually increasing the crystal diameter from the seed crystal to reach the target diameter of the straight body portion of the single crystal is provided. At this time, twin defects are likely to occur in the neck portion of the crystal from the seeding surface of the seed crystal to the shoulder portion, resulting in an increase in the number of meltback operations and a reduction in throughput and yield.

【0006】従来の結晶を育成中のボートの側断面図を
図2に示す。従来の種結晶2の結晶成長側の端部から肩
部に至るまでの間に、種結晶2の径とほぼ同じ径を有す
る結晶の首部が10〜40mm程度存在することで、種
結晶2に原料融液を接触させる種付け工程が安定になさ
れていた。このように種付け工程を行った後に、肩部で
結晶径を太らせる方法で単結晶が製造されていた。図2
において符号3はボート、4は原料融液を示している。
FIG. 2 shows a side sectional view of a conventional boat during the growth of a conventional crystal. Since a neck portion of a crystal having a diameter substantially the same as the diameter of the seed crystal 2 is present in the seed crystal 2 from the end on the crystal growth side of the conventional seed crystal 2 to the shoulder portion, the seed crystal 2 has The seeding step of contacting the raw material melt was performed stably. After performing the seeding step in this way, a single crystal was manufactured by a method of increasing the crystal diameter at the shoulder. Figure 2
In FIG. 3, reference numeral 3 indicates a boat, and 4 indicates a raw material melt.

【0007】[0007]

【発明が解決しようとする課題】上述のように、従来単
結晶を製造する場合、種結晶から種結晶とほぼ同じ径の
首部を形成し、その後結晶径を徐々に太らせて単結晶の
直胴部を目標の径に至らせるのが一般的であった。しか
し、この首部形成時に重大な結晶欠陥である双晶欠陥が
発生しやすく、双晶欠陥が発生すると歩留りおよびスル
ープットが大きく低下してしまうという問題があった。
特に、種結晶の<100>方向と等価な一つの方向をボ
ート長手方向とほぼ平行にした場合には、この首部から
の双晶欠陥が多発し重大な問題となっていた。
As described above, in the case of producing a conventional single crystal, a neck portion having substantially the same diameter as that of the seed crystal is formed from the seed crystal, and then the crystal diameter is gradually increased to form a straight portion of the single crystal. It was common to bring the torso to the target diameter. However, there has been a problem that twin defects, which are serious crystal defects, are likely to occur at the time of forming the neck portion, and when twin defects are generated, the yield and the throughput are significantly reduced.
In particular, when one direction equivalent to the <100> direction of the seed crystal is made substantially parallel to the boat longitudinal direction, twin defects from this neck frequently occur, which is a serious problem.

【0008】下記表1には、ボート長手方向に種結晶方
位<100>で結晶成長を10回行った場合の首部、肩
部、直胴部での双晶の発生頻度を示した。表1から分か
るように、双晶欠陥は、首部に集中していることが分か
る。また、典型的な結晶の首部から肩部にかけての長手
方向垂直断面のエッチング後のスケッチを図3に示し
た。この図から、他の部分とは結晶成長メカニズムの異
なる晶癖(ファセット)5が、首部に集中しているのが
分かる。このファセットが双晶欠陥の起点となり易いた
めに、首部から双晶欠陥が多発していると推測できる。
Table 1 below shows the occurrence frequency of twins in the neck, shoulders, and straight body when the crystal was grown 10 times in the longitudinal direction of the boat in the seed crystal orientation <100>. As can be seen from Table 1, twin defects are concentrated in the neck. Further, a sketch of a typical crystal after etching of a vertical cross section in the longitudinal direction from the neck to the shoulder is shown in FIG. From this figure, it can be seen that crystal habits (facets) 5 having a different crystal growth mechanism from the other parts are concentrated in the neck. Since this facet is likely to be a starting point of twin defects, it can be inferred that twin defects frequently occur from the neck.

【0009】[0009]

【表1】 [Table 1]

【0010】そこで、例えば双晶欠陥の低減技術の1例
として、種結晶から前記肩部へ至るまでの間に種結晶と
ほぼ同じ幅を有する結晶の首部を存在させないように、
種結晶の原料融液と接する側の端部を、種結晶設置部か
ら肩部への変曲点を越えて肩部側へさらに突き出すこと
などが考えられる。
Therefore, for example, as an example of a technique for reducing twin defects, a neck portion of a crystal having substantially the same width as that of the seed crystal does not exist between the seed crystal and the shoulder.
It is conceivable that the end of the seed crystal on the side in contact with the raw material melt may be further projected to the shoulder side beyond the inflection point from the seed crystal installation portion to the shoulder.

【0011】しかし、従来の種結晶の形状が図2に示す
ように断面が略長方形(全体の形状は略直方体やかまぼ
こ形)であるため、前述の双晶欠陥の低減技術では、原
料融液と種結晶の境界部(以下種結晶のS/L界面部と
する)が非常に見ずらくなり、種結晶のS/L界面部に
おいて温度調整をすることが大変困難であった。そのた
め種結晶を大きく溶け込ますことがしばしば生じた。ボ
ート法では一般に温度勾配が5℃/cm以下と極めて小
さく、そのためシーディング時(種結晶に原料融液を接
触させ結晶成長を開始する時)に、種結晶の原料融液と
接する側の端部が数〜10mm程度溶け込むのが普通で
あり、温度調整の微妙なくるいにより種結晶を通常より
も大きく溶け込ますことが生じていた。
However, as shown in FIG. 2, the conventional seed crystal has a substantially rectangular cross section (the overall shape is a substantially rectangular parallelepiped or a semi-cylindrical shape). The boundary between the seed crystal and the seed crystal (hereinafter referred to as the S / L interface of the seed crystal) became very difficult to see, and it was very difficult to adjust the temperature at the S / L interface of the seed crystal. Therefore, it often happens that the seed crystal is largely melted. In the boat method, the temperature gradient is generally as small as 5 ° C / cm or less, and therefore the end of the seed crystal that comes into contact with the raw material melt during seeding (when starting the crystal growth by bringing the raw material melt into contact with the seed crystal). It is common for the part to melt for several to 10 mm, and the seed crystal melted more than usual due to the subtleties of temperature adjustment.

【0012】従って、結晶の首部が再発生あるいはより
長くなることになり、首部で結晶が成長し双晶欠陥が発
生しやすくなり、歩留、スループットを低下させてい
た。
Therefore, the neck portion of the crystal is regenerated or becomes longer, the crystal grows in the neck portion, and twin defects are likely to occur, resulting in a decrease in yield and throughput.

【0013】本発明は、上記問題点に鑑みてなされたも
ので、その目的は歩留り、スループットを大きく低下さ
せてしまう双晶欠陥の発生頻度を低減する化合物半導体
単結晶製造装置を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide an apparatus for producing a compound semiconductor single crystal for reducing the frequency of occurrence of twin defects, which significantly lowers the yield and the throughput. is there.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、化合物半導体単結晶をボート法により製
造する装置において、種結晶の結晶成長側端部を上向き
の斜面としたことを特徴とする化合物半導体単結晶の製
造装置を提供するものである。
In order to achieve the above object, the present invention is characterized in that, in an apparatus for producing a compound semiconductor single crystal by a boat method, a crystal growth side end of a seed crystal is an upward slope. An apparatus for producing a compound semiconductor single crystal is provided.

【0015】以下、本発明を更に詳細に説明する。本発
明は、例えばGaAs、InP、InAsなどの化合物
半導体単結晶を、公知のボート法により製造する。ボー
ト法は、一端に種結晶を置いた長尺なボートに原料融液
を入れ、そのボートをアンプル管に封入し、このアンプ
ル管を長手方向に温度勾配を設けた横形炉内に入れ、種
結晶の側から結晶固化して単結晶を製造する方法であ
る。前述したように、ボート法には水平ブリッジマン法
(HB法)と、温度傾斜法(GF法)とがあるが、いず
れの方法によってもよい。また、使用するアンプル管、
横形炉、原料融液等は従来の方法において用いられるも
のをそのまま用いることができる。
The present invention will be described in more detail below. In the present invention, for example, a compound semiconductor single crystal such as GaAs, InP, or InAs is manufactured by a known boat method. The boat method is to put the raw material melt in a long boat with a seed crystal at one end, to enclose the boat in an ampoule tube, and to put this ampoule tube in a horizontal furnace with a temperature gradient in the longitudinal direction. This is a method of producing a single crystal by solidifying the crystal from the crystal side. As described above, the boat method includes the horizontal Bridgman method (HB method) and the temperature gradient method (GF method), but any method may be used. Also, the ampoule tube used,
As the horizontal furnace, the raw material melt, and the like, those used in the conventional method can be used as they are.

【0016】本発明において、結晶成長側の端部を20
°以上の角度の斜面とした種結晶を、結晶成長用ボート
の種結晶外径とほぼ同じ径を有する種結晶設置部に設置
することにより、シーディングの際に種結晶のS/L界
面部が見やすくなる。その結果、種結晶の原料融液中へ
の溶け込みを観察しながら温度調整が容易にできるよう
になる。
In the present invention, the end on the crystal growth side is set to 20.
By installing a seed crystal having an inclined surface with an angle of ≧ ° in the seed crystal installation part having a diameter substantially the same as the seed crystal outer diameter of the crystal growth boat, the S / L interface part of the seed crystal at the time of seeding Is easier to see. As a result, the temperature can be easily adjusted while observing the dissolution of the seed crystal in the raw material melt.

【0017】また、種結晶から結晶の肩部へ至る結晶の
首部の長さが5mm以下になるようにすると、首部で発
生しやすい双晶欠陥の発生を抑えることができるため、
より好ましい。さらに首部をなくすために、ボートの種
結晶設置部に種結晶を設置する際に、種結晶の結晶成長
側端部の位置を種結晶設置部と肩部間に存在する変曲点
より肩部側へ突き出して設置した方が、種結晶結晶が溶
け込んで再発生する結晶の首部もより短くなり双晶欠陥
も入りにくくなるのでより好ましい。
Further, if the length of the neck portion of the crystal from the seed crystal to the shoulder portion of the crystal is set to 5 mm or less, it is possible to suppress the generation of twin defects which are likely to occur in the neck portion.
More preferable. Furthermore, in order to eliminate the neck, when installing the seed crystal in the seed crystal installation part of the boat, the position of the end part of the seed crystal on the crystal growth side should be adjusted from the inflection point existing between the seed crystal installation part and the shoulder part to the shoulder part. It is more preferable to install it so as to protrude to the side, because the neck portion of the crystal that is regenerated by melting the seed crystal becomes shorter and twin defects are less likely to enter.

【0018】ここで、種結晶の結晶成長側端部の位置が
前記変曲点からみて種結晶設置部側にある場合の位置と
変曲点間距離Lを+で表し、種結晶の結晶成長側端部の
位置が変曲点からみて肩部側へ突き出されている場合の
位置と変曲点間距離Lを−で表すとすれば、Lは−15
≦L≦+5の範囲が好ましい。Lが+5より大きいと首
部が長くなり双晶欠陥が発生しやすくなる点で不都合で
あり、Lが−15より小さい(より肩部側へ突き出され
ている)と種付け工程が難しくなる点で好ましくない。
Here, when the position of the end portion of the seed crystal on the crystal growth side is on the seed crystal installation portion side with respect to the inflection point and the distance L between the inflection points is represented by +, the crystal growth of the seed crystal is shown. If the position of the side end is projected toward the shoulder side from the inflection point and the distance L between the inflection points is represented by −, L is −15.
The range of ≦ L ≦ + 5 is preferable. When L is larger than +5, the neck portion becomes long and twin defects are likely to occur, which is inconvenient, and when L is smaller than -15 (protruding toward the shoulder side), the seeding step becomes difficult, which is preferable. Absent.

【0019】また、種結晶の方位の<100>方向を結
晶の長手方向(成長方向)にほぼ平行にして結晶成長す
ることが、結晶からその長手方向にほぼ垂直に(10
0)ウェハを切り出せるため、コストメリットが大きく
なり好ましい。種結晶の形状は、略直方体、かまぼこ形
等の断面が略長方形のものを、結晶成長側端面が上向き
の斜面となるように形成した形状とする。
Further, crystal growth is performed with the <100> direction of the orientation of the seed crystal substantially parallel to the longitudinal direction (growth direction) of the crystal.
0) Since the wafer can be cut out, cost merit is increased, which is preferable. The shape of the seed crystal is a substantially rectangular parallelepiped shape, a semicylindrical shape or the like having a substantially rectangular cross section, and is formed such that the end surface on the crystal growth side is an upward slope.

【0020】[0020]

【作用】表1に示したように結晶の首部は双晶欠陥が発
生しやすい。これは、図3のように首部で双晶欠陥の起
点となりうる晶癖(ファセット)5が多く発生している
ためと考えられる。この首部でファセットが多く発生す
る原因については、次のように考えられる。首部成長時
に成長中の結晶と接触している高温の融液の量が、他の
部分の成長時と比べ極端に小さい。このため、固液界面
付近の温度勾配が他の部分の成長時と比べ小さくなり過
冷却が大きくなることにより、ファセットが発生しやす
いと考えられる。
As shown in Table 1, twin defects are likely to occur in the crystal neck. It is considered that this is because many crystal habits (facets) 5, which can be the origin of twin defects, are generated in the neck portion as shown in FIG. The reason why a lot of facets are generated in the neck is considered as follows. The amount of high-temperature melt that is in contact with the growing crystal during neck growth is extremely smaller than during growth of other parts. Therefore, it is considered that the facet is likely to occur because the temperature gradient in the vicinity of the solid-liquid interface is smaller than that in the growth of other portions and the supercooling is large.

【0021】本発明において、上記のように双晶欠陥の
発生しやすい結晶の首部を短くするか、あるいは首部を
形成することなく種結晶から直接肩部を成長させること
により、双晶欠陥の発生を抑制することができる。さら
に、種結晶の溶け込みの状態が単結晶育成炉の覗き窓よ
り明確に観察でき、種結晶の溶け込み量をコントロール
しやすい。また、双晶欠陥の入りやすい結晶の首部を短
くするかあるいはなくすることができるので、双晶欠陥
の発生を抑制することができる。
In the present invention, twin crystal defects are generated by shortening the neck portion of the crystal in which twin defects are likely to occur as described above, or by directly growing the shoulder portion from the seed crystal without forming the neck portion. Can be suppressed. Further, the state of the melted seed crystal can be clearly observed through the viewing window of the single crystal growth furnace, and the melted amount of the seed crystal can be easily controlled. Further, since the neck portion of the crystal in which twin defects are likely to occur can be shortened or eliminated, the occurrence of twin defects can be suppressed.

【0022】[0022]

【実施例】【Example】

(実施例)以下、GaAsの単結晶を育成する場合の実
施例について説明する。図1には、ボート3に種結晶1
と原料融液4とを入れ、種付け工程直後の状態が示され
ている。結晶育成用のボート3の、種結晶外径とほぼ同
じ径を有する種結晶設置部に種結晶を設置した位置は、
図のようにボートの種結晶設置部分から増径部である肩
部への変曲点より肩部側へ5mm迫り出した位置とし
た。種結晶1の結晶成長側端部は、直方体の一端を切り
欠いて上向きの斜面とした形状とされている。前記斜面
の水平面に対する角度は約35°である。
(Example) An example of growing a GaAs single crystal will be described below. In FIG. 1, a boat 3 has a seed crystal 1
And the raw material melt 4 are put in and the state immediately after the seeding step is shown. The position where the seed crystal is installed in the seed crystal installation part of the boat 3 for growing a crystal, which has a diameter substantially the same as the outer diameter of the seed crystal,
As shown in the figure, the position was set to be 5 mm closer to the shoulder side than the inflection point from the seed crystal installation portion of the boat to the shoulder portion which is the increased diameter portion. The crystal growth side end of the seed crystal 1 has a shape in which one end of a rectangular parallelepiped is cut out to form an upward slope. The angle of the slope with respect to the horizontal plane is about 35 °.

【0023】前記斜面の水平面に対する角度は、単結晶
育成炉の覗き窓から種結晶のS/L界面部が明瞭に観察
されるためには、20°〜70°程度の範囲が好まし
い。20°より小さいと、S/L界面位置の観察はしや
すいが傾斜面の長さが長くなり種結晶を不要に長くする
点で不都合であり、70°より大きいと覗き窓からのS
/L界面位置の観察が困難になる点で好ましくない。
The angle of the inclined surface with respect to the horizontal plane is preferably in the range of about 20 ° to 70 ° so that the S / L interface of the seed crystal can be clearly observed from the observation window of the single crystal growing furnace. If it is less than 20 °, it is easy to observe the S / L interface position, but it is inconvenient in that the length of the inclined surface becomes long and the seed crystal becomes unnecessarily long.
It is not preferable because it is difficult to observe the position of the / L interface.

【0024】GaAs種結晶1の<100>方向とボー
ト長手方向が略平行になるように設置した。ボート3の
中にGa2100gを入れ、反応容器の他端にAsを2
300g入れ、反応容器内を真空状態に減圧し封じき
る。次に反応容器を結晶育成炉にいれ、反応容器内のA
sを600℃に加熱し反応容器内のAs蒸気圧を1at
mに維持し、反応容器内ボート部を1200℃とし、G
aとAs蒸気を反応させGaAsを合成する。その後、
さらに昇温し種結晶温度を1238℃、GaAs融液中
の温度勾配を0.5℃/cm程度にし、種結晶とGaA
s融液を接触させる。
The GaAs seed crystal 1 was set so that the <100> direction and the boat longitudinal direction were substantially parallel to each other. Ga2100g is put in the boat 3, and As is added to the other end of the reaction vessel.
Put 300 g and depressurize the inside of the reaction vessel to a vacuum state and seal. Next, put the reaction vessel in the crystal growth furnace and
s is heated to 600 ° C. and the vapor pressure of As in the reaction vessel is set to 1 at
m, keep the boat in the reaction vessel at 1200 ° C, and
GaAs is synthesized by reacting a and As vapor. afterwards,
The temperature of the seed crystal was further raised to 1238 ° C., the temperature gradient in the GaAs melt was set to about 0.5 ° C./cm, and the seed crystal and GaA were changed.
s Contact the melt.

【0025】このとき、結晶成長側端部に上向きの斜面
を有する種結晶に融液を接触させる種付け方法を採用す
ることにより、覗き窓から種結晶のS/L界面部を観察
しつつ、種結晶が原料融液中へ溶け込まないようにして
温度調整ができた。その結果、結晶の首部がない状態で
結晶成長を開始することができた。その後、融液の温度
を徐々に下げて冷却し、首部のない結晶の育成を行う。
完全に固化後さらに温度を室温まで下げて、結晶を取り
出すことによりGaAs単結晶4150gを得ることが
できた。双晶欠陥は発生することなく、安定して結晶を
得ることができた。
At this time, by adopting a seeding method of bringing the melt into contact with a seed crystal having an upward slope on the crystal growth side end, while observing the S / L interface portion of the seed crystal from the sight window, the seed crystal is observed. The temperature could be adjusted so that the crystals did not melt into the raw material melt. As a result, the crystal growth could be started without the crystal neck. Then, the temperature of the melt is gradually lowered and cooled to grow a crystal without a neck.
After completely solidifying, the temperature was further lowered to room temperature and the crystals were taken out to obtain 4150 g of GaAs single crystal. A twin crystal defect did not occur, and a crystal could be stably obtained.

【0026】(比較例)従来の首部を形成する方法で、
結晶を成長させた場合について説明する。図2には、結
晶育成中の状態が示されている。図中の符号は、図1と
同じものについては同様の符号を付している。2は略直
方体の種結晶、3はボート、4は原料融液を示してい
る。結晶育成用のボート3の、種結晶外径とほぼ同じ径
を有する種結晶設置部に種結晶を設置した位置は、図2
のようにボートの種結晶設置部分から増径部である肩部
への変曲点から30mmの位置とした。以下、実施例と
同様の方法で原料の合成を行い、原料融液を種結晶と接
触させる際には、種結晶と同じ径の首部に原料融液を流
し込むことにより種付けを行った。結晶の成長は実施例
と同様に行った。
(Comparative Example) A conventional neck forming method,
The case of growing a crystal will be described. FIG. 2 shows a state during crystal growth. Regarding the reference numerals in the figure, the same constituents as those in FIG. 1 are designated by the same reference numerals. 2 is a substantially rectangular parallelepiped seed crystal, 3 is a boat, and 4 is a raw material melt. As shown in FIG.
As described above, the position was 30 mm from the inflection point from the seed crystal installation portion of the boat to the shoulder portion that is the increased diameter portion. Hereinafter, the raw material was synthesized in the same manner as in the example, and when the raw material melt was brought into contact with the seed crystal, seeding was performed by pouring the raw material melt into the neck having the same diameter as the seed crystal. Crystal growth was performed in the same manner as in the example.

【0027】比較例における結晶育成中には、首部より
双晶欠陥が発生したため、育成工程中に結晶を溶かし込
み再度成長を行うメルトバックを5回行ったが、双晶欠
陥のない単結晶を得ることはできなかった。
Since twin defects were generated from the neck during the crystal growth in the comparative example, meltback was performed 5 times by melting the crystals and growing again during the growing process, but single crystals without twin defects were obtained. I couldn't get it.

【0028】ボート長手方向に種結晶方位<100>で
結晶成長を行った場合において、従来方法である首部が
30mmで略直方体の種結晶を用いた場合、双晶欠陥の
発生頻度は10回の結晶育成中9回で発生本数も33本
と双晶が多発した。これに対して、本発明の首部の長さ
が5mm以下で、かつ結晶成長側の端部が上向きの斜面
とされている種結晶を用いて同様の育成を行った場合の
双晶欠陥の発生頻度は15回中1回で、発生本数も2本
と双晶欠陥発生の抑制に本発明が大きな効果のあること
が確かめられた。
In the case where crystal growth was carried out in the longitudinal direction of the boat with a seed crystal orientation <100>, when a conventional seed crystal having a neck portion of 30 mm and a substantially rectangular parallelepiped shape was used, the frequency of occurrence of twin defects was 10 times. Twin generation occurred frequently, with the number of occurrence being 33 during 9 times of crystal growth. On the other hand, generation of twin defects when the same growth is performed using a seed crystal having a neck length of 5 mm or less and an end on the crystal growth side having an upward slope in the present invention It was confirmed that the present invention had a great effect on the suppression of twin defect generation, with the frequency being once in 15 times and the number of occurrence being 2.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
単結晶成長に致命的な欠陥である双晶欠陥の発生頻度を
大きく低減することができる。このことにより、歩留り
およびスループットの向上が可能になる。また、種付け
後の種結晶のS/L界面部のようすを明瞭に観察するこ
とができるので、種付け時の温度を制御しやすくなり、
結晶の首部を短くするかあるいはなくすことができる。
育成すべき化合物半導体が閃亜鉛鉱型の結晶構造を有す
るAB型化合物半導体であり、種結晶の<100>方向
に等価な一つの方向がボート長手方向にほぼ平行である
場合には、結晶の首部に非常に双晶欠陥が入りやすい
が、本発明は特にこの成長方位で育成する際に有効であ
る。
As described above, according to the present invention,
The frequency of occurrence of twin defects, which are fatal defects in single crystal growth, can be greatly reduced. This makes it possible to improve yield and throughput. Further, since the appearance of the S / L interface portion of the seed crystal after seeding can be clearly observed, it becomes easy to control the temperature during seeding,
The crystal neck can be shortened or eliminated.
When the compound semiconductor to be grown is an AB type compound semiconductor having a zinc blende type crystal structure and one direction equivalent to the <100> direction of the seed crystal is substantially parallel to the boat longitudinal direction, Although twin defects are very likely to occur in the neck, the present invention is particularly effective when growing in this growth direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物半導体単結晶の製造装置の一実
施例を示し、原料融液を結晶成長側端部が上向きの斜面
とされた種結晶に接触させる種付けを行った直後のボー
ト側断面図である。
FIG. 1 shows an embodiment of an apparatus for producing a compound semiconductor single crystal according to the present invention, in which a raw material melt is brought into contact with a seed crystal having an upwardly inclined end on the crystal growth side, and immediately after the seeding, the boat side FIG.

【図2】従来装置により結晶を育成中のボートの側断面
図である。
FIG. 2 is a side sectional view of a boat during the growth of crystals by a conventional apparatus.

【図3】従来装置で育成した結晶の、種結晶から肩部に
かけての結晶長手方向断面をエッチング後のスケッチで
ある。
FIG. 3 is a sketch after etching a cross section in the crystal longitudinal direction from a seed crystal to a shoulder of a crystal grown by a conventional apparatus.

【符号の説明】[Explanation of symbols]

1:種結晶 2:従来の種結晶 3:ボート 4:原料融液 5:結晶内晶癖(ファセット) 6:成長縞 1: Seed crystal 2: Conventional seed crystal 3: Boat 4: Raw material melt 5: Crystal habit (facet) in crystal 6: Growth stripe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 知幸 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomoyuki Ishihara 1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】化合物半導体単結晶をボート法により製造
する装置において、種結晶の結晶成長側端部を上向きの
斜面としたことを特徴とする化合物半導体単結晶の製造
装置。
1. An apparatus for producing a compound semiconductor single crystal by a boat method, wherein an end of a seed crystal on a crystal growth side is an upward slope, and the apparatus for producing a compound semiconductor single crystal.
【請求項2】化合物半導体単結晶をボート法により製造
する装置において、種結晶の結晶成長側端部の位置が、
ボートの種結晶設置部分から肩部への変曲点からみて種
結晶設置部側にある場合の前記位置と変曲点間距離Lを
+で表し、前記位置が変曲点からみて肩部側へ突き出さ
れている場合の前記位置と変曲点間距離Lを−で表すと
すれば、−15mm≦L≦+5mmとなるよう種結晶が
設置されている請求項1の化合物半導体単結晶の製造装
置。
2. In an apparatus for producing a compound semiconductor single crystal by the boat method, the position of the crystal growth side end of the seed crystal is
The distance L between the position and the inflection point in the case of being on the seed crystal installation part side from the inflection point from the seed crystal installation part to the shoulder part of the boat is represented by +, and the position is the shoulder part side as seen from the inflection point. The compound semiconductor single crystal according to claim 1, wherein the seed crystal is installed so that the distance L between the position and the point of inflection when protruding to the side is represented by −, and −15 mm ≦ L ≦ + 5 mm. apparatus.
【請求項3】育成すべき化合物半導体単結晶が閃亜鉛鉱
型の結晶構造を有するAB型化合物半導体単結晶であ
り、種結晶の<100>方向に等価な一つの方向を、ボ
ート長手方向にほぼ平行として種結晶を設置してなる請
求項1又は2の化合物半導体単結晶の製造装置。
3. A compound semiconductor single crystal to be grown is an AB type compound semiconductor single crystal having a zinc blende type crystal structure, and one direction equivalent to the <100> direction of the seed crystal is set in the boat longitudinal direction. The apparatus for producing a compound semiconductor single crystal according to claim 1 or 2, wherein seed crystals are installed substantially parallel to each other.
JP10162092A 1992-03-27 1992-03-27 Apparatus for producing compound semiconductor single crystal Withdrawn JPH05279165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10162092A JPH05279165A (en) 1992-03-27 1992-03-27 Apparatus for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10162092A JPH05279165A (en) 1992-03-27 1992-03-27 Apparatus for producing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH05279165A true JPH05279165A (en) 1993-10-26

Family

ID=14305448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10162092A Withdrawn JPH05279165A (en) 1992-03-27 1992-03-27 Apparatus for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH05279165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015297A1 (en) * 1994-11-11 1996-05-23 Japan Energy Corporation Process for bulk crystal growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015297A1 (en) * 1994-11-11 1996-05-23 Japan Energy Corporation Process for bulk crystal growth
US5871580A (en) * 1994-11-11 1999-02-16 Japan Energy Corporation Method of growing a bulk crystal

Similar Documents

Publication Publication Date Title
KR102140604B1 (en) METHOD FOR GROWING β-Ga₂O₃BASED SINGLE CRYSTAL
JP3806791B2 (en) Method for producing compound semiconductor single crystal
JPH05279165A (en) Apparatus for producing compound semiconductor single crystal
JPH05246791A (en) Method and device for producing compound semiconductor single crystal
JP3831913B2 (en) Method for producing compound semiconductor single crystal
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP4529712B2 (en) Method for producing compound semiconductor single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
JPH0987086A (en) Production of single crystal
JPS5938187B2 (en) Method for producing Group 3-5 compound semiconductor single crystal
JPH09110575A (en) Crucible for producing single crystal and production of single crystal
JP3018429B2 (en) Method and apparatus for producing single crystal
JPS60118696A (en) Method for growing indium phosphide single crystal
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JPH05279164A (en) Production of iii-v group compound semiconductor single crystal and apparatus therefor
JPH05254980A (en) Method and apparatus for producing compound semiconductor single crystal
JP2003342096A (en) Method for producing compound semiconductor single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JPH05254979A (en) Mehtod and apparatus for producing compound semiconductor single crystal
JP2864808B2 (en) III-V compound semiconductor single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH06279198A (en) Production of semi-insulating gallium arsenide semiconductor single crystal
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPH04362082A (en) Apparatus and method for producing compound semiconductor crystal
JPH0748199A (en) Apparatus for producing compound semiconductor single crystal and production thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608