JPH05221772A - Method and device for producing compound semiconductor single crystal - Google Patents

Method and device for producing compound semiconductor single crystal

Info

Publication number
JPH05221772A
JPH05221772A JP19584691A JP19584691A JPH05221772A JP H05221772 A JPH05221772 A JP H05221772A JP 19584691 A JP19584691 A JP 19584691A JP 19584691 A JP19584691 A JP 19584691A JP H05221772 A JPH05221772 A JP H05221772A
Authority
JP
Japan
Prior art keywords
crystal
boat
compound semiconductor
equivalent
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19584691A
Other languages
Japanese (ja)
Inventor
Nobuhiro Kito
信弘 鬼頭
Koichi Murata
浩一 村田
Tomoyuki Ishihara
知幸 石原
Makoto Sato
佐藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP19584691A priority Critical patent/JPH05221772A/en
Publication of JPH05221772A publication Critical patent/JPH05221772A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To suppress the generation of crystal defects in the device for producing the AB-type single crystal of zinc blende structure by the boat method by inclining the specified direction of the single crystal provided on the growth surface side of a seed crystal in the specified direction. CONSTITUTION:One direction equivalent to the <100> direction of the AB-type compd. semiconductor single crystal is provided on the growth surface side of a seed crystal, the direction is turned from the seed crystal setting part of a boat toward the bottom surface and inclined to the horizontal direction of the boat through an angle theta of 5-30 deg.. When a GaAs single crystal is grown, for example, one direction A equivalent to the <100> direction of the single crystal 1 is provided on the crystal growth surface side of the seed crystal 1, and a seed crystal is inclined downward to the longitudinal (horizontal) direction of the boat through the angle of theta, formed and set. Consequently, the frequency of generation of twin defects is reduced, and the yield and throughput are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水平ブリッジマン法
(HB法)や温度傾斜法(GF法)等のボート法による
化合物半導体単結晶の製造装置及び製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for producing a compound semiconductor single crystal by a boat method such as a horizontal Bridgman method (HB method) or a temperature gradient method (GF method).

【0002】[0002]

【従来の技術】従来、ボート法による化合物半導体単結
晶の育成においては、単結晶の成長方位をボート長手方
向に平行に<111>方向で行い、結晶のウエハ面が
(100)面となるよう、結晶の長手方向(成長方向)
に対して所定の角度で斜めにウエハを切り出していた。
また、生産性の点から結晶成長方向に垂直にウエハを切
り出せるように、<100>方向で成長させる方法が一
部行われている。しかし、<100>方向の成長は、<
111>方向成長に比べ結晶欠陥である双晶欠陥が発生
し易く、歩留の低下を招いていた。
2. Description of the Related Art Conventionally, in growing a compound semiconductor single crystal by the boat method, the growth direction of the single crystal is set in the <111> direction parallel to the longitudinal direction of the boat so that the wafer surface of the crystal becomes the (100) plane. , Crystal longitudinal direction (growth direction)
The wafer was cut out obliquely at a predetermined angle.
Further, from the viewpoint of productivity, a method of growing in the <100> direction is partially performed so that the wafer can be cut out perpendicularly to the crystal growth direction. However, the growth in the <100> direction is
Twin defects, which are crystal defects, are more likely to occur than in the 111> direction growth, and the yield is reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、従来
技術が有していた前述の欠点を解消しようとするもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art.

【0004】[0004]

【課題を解決するための手段】本発明は、前述の問題点
を解決すべくなされたものであり、閃亜鉛鉱型の結晶構
造を有するAB型化合物半導体単結晶をボート法により
製造する装置において、前記AB型化合物半導体単結晶
の<100>方向に等価な一つの方向が種結晶の結晶成
長面側に設けてあり、前記<100>方向に等価な一つ
の方向は、ボートの種結晶設置部から底面方向に向かっ
ておりかつボートの水平方向に対して5゜〜30゜傾け
られていることを特徴とする化合物半導体単結晶の製造
装置、および、閃亜鉛鉱型の結晶構造を有するAB型化
合物半導体単結晶をボート法により製造する方法におい
て、前記AB型化合物半導体単結晶の<100>方向に
等価な一つの方向を種結晶の結晶成長面側に設けてあ
り、前記<100>方向に等価な一つの方向は、ボート
の種結晶設置部から底面方向に向かっておりかつボート
の水平方向に対して5゜〜30゜傾けた方向にして、結
晶を育成することを特徴とする化合物半導体単結晶の製
造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides an apparatus for producing an AB type compound semiconductor single crystal having a zinc blende type crystal structure by a boat method. , One direction equivalent to the <100> direction of the AB type compound semiconductor single crystal is provided on the crystal growth surface side of the seed crystal, and one direction equivalent to the <100> direction is the seed crystal installation of the boat. And a AB having a zincblende type crystal structure, and a device for manufacturing a compound semiconductor single crystal, which is inclined from the bottom toward the bottom and is inclined 5 to 30 degrees with respect to the horizontal direction of the boat. In the method for producing a type compound semiconductor single crystal by the boat method, one direction equivalent to the <100> direction of the AB type compound semiconductor single crystal is provided on the crystal growth surface side of the seed crystal, and the <100> One direction, which is equivalent to the direction, is that the crystal is grown in a direction from the seed crystal installation portion of the boat toward the bottom direction and inclined at 5 ° to 30 ° with respect to the horizontal direction of the boat. A method for producing a compound semiconductor single crystal is provided.

【0005】以下、本発明の実施例に従って説明する。
ここでは、一つの実施例としてGaAs単結晶を育成し
た例で説明する。図1は、結晶育成用ボートに対する種
結晶の方位を示す。図中1は種結晶、2はボートを示し
ている。種結晶の<100>方向に等価な一つの方向A
が種結晶の結晶成長面側に設けられ、ボートの長手方向
(水平方向)Bに対して下方へ角度θ傾くように種結晶
を作製し設置する。
An embodiment of the present invention will be described below.
Here, an example in which a GaAs single crystal is grown will be described as one example. FIG. 1 shows the orientation of the seed crystal with respect to the crystal growing boat. In the figure, 1 is a seed crystal and 2 is a boat. One direction A equivalent to the <100> direction of the seed crystal
Is provided on the crystal growth surface side of the seed crystal, and the seed crystal is prepared and installed so as to be inclined at an angle θ downward with respect to the longitudinal direction (horizontal direction) B of the boat.

【0006】図3のように、結晶成長方向からみて、A
方向軸である<100>等価方向に垂直な(100)等
価面3に、隣接する一つの(111)等価面4、5をそ
の(100)等価面3の上方に選ぶことが、双晶欠陥の
発生を抑制できるので好ましい。
As shown in FIG. 3, when viewed from the crystal growth direction, A
It is a twinning defect to select one adjacent (111) equivalent plane 4, 5 above the (100) equivalent plane 3 to the (100) equivalent plane 3 perpendicular to the <100> equivalent direction which is the direction axis. It is preferable because the occurrence of

【0007】さらに図2のように、(111)等価面の
うち、3−5族化合物半導体の場合には5族元素面であ
る(111)As等価面4A、2−6族化合物半導体の
場合には6族元素面を上方に選ぶことが、双晶欠陥の発
生をより抑制できるので望ましい。
Further, as shown in FIG. 2, among the (111) equivalent planes, in the case of a 3-5 group compound semiconductor, a (111) As equivalent plane 4A which is a group 5 element plane and in the case of a 2-6 group compound semiconductor. It is desirable to select the group 6 element face upward because it can further suppress the generation of twin defects.

【0008】本発明における閃亜鉛鉱型の結晶構造を有
するAB型化合物半導体単結晶としては、GaAs、I
nP等の3−5族化合物半導体単結晶、ZnSe等の2
−6族化合物半導体単結晶が用いられる。
The AB type compound semiconductor single crystal having a zinc blende type crystal structure according to the present invention includes GaAs and I.
Group 3-5 compound semiconductor single crystal such as nP, 2 such as ZnSe
A Group-6 compound semiconductor single crystal is used.

【0009】[0009]

【作用】本発明において、種結晶方位を前述のように選
ぶことにより双晶欠陥が低減することは、実験的には確
かめられたがその作用機構については必ずしも明確では
ない。
In the present invention, it has been confirmed experimentally that twin defects are reduced by selecting the seed crystal orientation as described above, but its action mechanism is not always clear.

【0010】実験的には、図2のように一つの(11
1)等価面である(111)As等価面4Aを(10
0)等価面3の上方にした場合に比べ、図3のように
(111)Ga等価面等の3族元素の等価面5を(10
0)等価面3の上方にした場合は約2倍の双晶発生回数
が観測された。また、図4の方位に種結晶を設置した場
合には約5倍の双晶発生回数が観測された。これらのこ
とから、図2のように一つの(111)等価面である
(111)As等価面4Aを(100)等価面3の上方
にすることがより好ましいことがわかった。
Experimentally, as shown in FIG.
1) The (111) As equivalent surface 4A which is the equivalent surface is converted into (10
0) As compared with the case where it is above the equivalent plane 3, the equivalent plane 5 of the group 3 element such as the (111) Ga equivalent plane is set to (10
0) About 2 times the number of twins was observed when it was above the equivalent plane 3. In addition, when the seed crystal was installed in the orientation shown in FIG. 4, the number of times twinning was generated was about 5 times. From these, it was found that it is more preferable to place one (111) As equivalent surface 4A, which is one (111) equivalent surface, above the (100) equivalent surface 3 as shown in FIG.

【0011】これらの結果は、結晶学的にみて<100
>方向に等価な方位、すなわち<010>、<001
>、<−100>、<0−10>、<00−1>方向
(−は逆方向を示す)に対して行っても当然同じ結果に
なることが考えられる。
These results are crystallographically <100.
Azimuth equivalent to the> direction, that is, <010>, <001
It is conceivable that the same result can be obtained even if the operation is performed in the>, <-100>, <0-10>, and <00-1> directions (-indicates the opposite direction).

【0012】また、ボート形状はその長手方向に垂直な
断面形状が半分以上楕円形で、その楕円の偏平率を、得
られる結晶の(100)面方向の断面形状が円形に近い
形になるようにしたボートを用いることにより、単結晶
より(100)円形ウエハを切り出す場合、スライスし
てそのまま円形ウエハに近い形状が得られることから、
切削による損失を小さくすることができる。
Further, the boat shape is such that the cross-sectional shape perpendicular to the longitudinal direction is an ellipse of more than half, and the flatness of the ellipse is such that the obtained crystal has a cross-sectional shape in the (100) plane direction close to a circle. When a (100) circular wafer is cut out from a single crystal by using the boat described above, a shape close to the circular wafer can be obtained by slicing,
The loss due to cutting can be reduced.

【0013】[0013]

【実施例】以下、GaAsの単結晶を製造する場合の実
施例について説明する。
EXAMPLES Examples for producing a GaAs single crystal will be described below.

【0014】図1は結晶育成用のボート2に対する種結
晶1の方位を示す。図2は種結晶1の結晶成長方向から
みた(100)等価面3と、それに隣接する(111)
等価面の関係を示す。図5はボート2を用いて育成する
場合の反応容器の長手方向の断面図を示す。図6は結晶
育成用ボートの長手方向に垂直な断面形状が半円型をし
たボートの断面図を示す。図7は結晶育成用ボートの長
手方向に垂直な断面形状が、80%が楕円形状で残りの
上部が開口したボートの断面図を示す。
FIG. 1 shows the orientation of the seed crystal 1 with respect to the boat 2 for growing a crystal. FIG. 2 shows the (100) equivalent plane 3 seen from the crystal growth direction of the seed crystal 1 and the (111) equivalent plane 3 adjacent to it.
The relationship between equivalent planes is shown. FIG. 5 shows a cross-sectional view in the longitudinal direction of the reaction vessel when the boat 2 is used for growth. FIG. 6 shows a cross-sectional view of a boat for growing crystals which has a semicircular cross section perpendicular to the longitudinal direction. FIG. 7 shows a cross-sectional view of the boat for crystal growth which has a sectional shape perpendicular to the longitudinal direction, in which 80% is elliptical and the remaining upper portion is open.

【0015】図において1は種結晶、2はボート、3は
(100)等価面、4Aは(111)As等価面、5A
は(111)Ga等価面、6はGa、7は反応容器、8
はAsを示している。
In the figure, 1 is a seed crystal, 2 is a boat, 3 is a (100) equivalent plane, 4A is a (111) As equivalent plane, and 5A.
Is a (111) Ga equivalent surface, 6 is Ga, 7 is a reaction vessel, 8
Indicates As.

【0016】(実施例1)図6の結晶育成用ボートの長
手方向に垂直な断面形状が半円型をしたボートを用い
て、図1のようにGaAs種結晶1をボート2の所定の
位置に、種結晶1の<100>方向Aとボート長手方向
(水平方向)Bとのなす角を下方へθ=10°傾けて設
置する。このとき、図2のように種結晶1の結晶成長方
向からみて、前記A方向に垂直な(100)等価面3に
隣接する(111)As等価面4Aの一つを(100)
等価面3の上方になるようにした。
Example 1 A GaAs seed crystal 1 is placed at a predetermined position on a boat 2 as shown in FIG. 1 using a boat having a semicircular cross section perpendicular to the longitudinal direction of the boat for growing crystals shown in FIG. Then, the angle between the <100> direction A of the seed crystal 1 and the boat longitudinal direction (horizontal direction) B is inclined downward by θ = 10 °. At this time, as shown in FIG. 2, one of the (111) As equivalent planes 4A adjacent to the (100) equivalent plane 3 perpendicular to the A direction as viewed from the crystal growth direction of the seed crystal 1 is (100).
It is arranged above the equivalent plane 3.

【0017】図5のようにボート2の中にGa6を21
00gを入れ、反応容器7の他端にAs8を2300g
入れ反応容器7内を真空状態に減圧し封じきる。次に反
応容器7を結晶育成炉にいれ、反応容器7内のAsを6
00℃に加熱し、反応容器7内のAs蒸気圧を1atm
に維持し、反応容器7内ボート部を1200℃とし、G
aとAs蒸気を反応させGaAsを合成する。
As shown in FIG. 5, 21 Ga 6 is placed in the boat 2.
00g is put and 2300g of As8 is added to the other end of the reaction vessel 7.
The inside of the reaction vessel 7 is depressurized to a vacuum state and sealed. Next, the reaction vessel 7 is placed in a crystal growth furnace, and As in the reaction vessel 7 is changed to 6
It is heated to 00 ° C and the As vapor pressure in the reaction vessel 7 is set to 1 atm.
Maintain the boat inside the reaction vessel 7 at 1200 ° C.
GaAs is synthesized by reacting a and As vapor.

【0018】その後、さらに昇温し種結晶温度を123
8℃、GaAs融液中の温度勾配を0.5℃/cm程度
にし、種結晶とGaAs融液を接触させる。その後、融
液の温度を徐々に下げて、冷却し結晶の育成を行う。結
晶育成中に結晶の観察は容易にボート上方からできる。
完全に固化後さらに温度を室温まで下げて、結晶を取り
出すことによりGaAs単結晶4150gを得ることが
できた。
Thereafter, the temperature is further raised to set the seed crystal temperature to 123.
At 8 ° C., the temperature gradient in the GaAs melt is set to about 0.5 ° C./cm, and the seed crystal and the GaAs melt are brought into contact with each other. Then, the temperature of the melt is gradually lowered and cooled to grow crystals. Crystals can be easily observed from above the boat during crystal growth.
After completely solidifying, the temperature was further lowered to room temperature and the crystals were taken out to obtain 4150 g of GaAs single crystal.

【0019】種結晶の方位を<100>方向でθ=0゜
とした場合に多発した双晶欠陥は、ほとんど発生するこ
とがなく安定して結晶を得ることができた。
When the orientation of the seed crystal was set to θ = 0 ° in the <100> direction, twin defects frequently occurred were hardly generated, and the crystal could be stably obtained.

【0020】(実施例2)図7に示したような、結晶育
成用ボートの長手方向に垂直な断面形状が、80%が楕
円形状をしたボートを用い、図1のようにGaAs種結
晶1をボート2の所定の位置に、種結晶1の<100>
方向Aとボート長手方向(水平方向)Bとのなす角を下
方へθ=10°傾けて設置する。このとき、図2のよう
に種結晶の結晶成長方向からみて、A方向に垂直な(1
00)等価面3に隣接する(111)As等価面4Aの
一つを(100)等価面3の上方になるようにした。
(Embodiment 2) As shown in FIG. 7, a GaAs seed crystal 1 is used as shown in FIG. 1 by using a boat for growing crystals which has an elliptical cross section perpendicular to the longitudinal direction of 80%. At a predetermined position on the boat 2 and the <100> of the seed crystal 1.
The angle between the direction A and the boat longitudinal direction (horizontal direction) B is inclined downward by θ = 10 °. At this time, as seen from the crystal growth direction of the seed crystal as shown in FIG.
One of the (111) As equivalent planes 4A adjacent to the (00) equivalent plane 3 is located above the (100) equivalent plane 3.

【0021】図5のようにボート2の中にGa6を21
00gを入れ、反応容器7の他端にAs8を2300g
入れ反応容器7内を真空状態に減圧し封じきる。次に反
応容器7を結晶育成炉にいれ、実施例1と同様の方法で
結晶育成を行い、GaAs単結晶4150gを得ること
ができた。
As shown in FIG. 5, 21 Ga 6 is placed in the boat 2.
00g is put and 2300g of As8 is added to the other end of the reaction vessel 7.
The inside of the reaction vessel 7 is depressurized to a vacuum state and sealed. Next, the reaction vessel 7 was placed in a crystal growth furnace, and crystal growth was carried out in the same manner as in Example 1 to obtain 4150 g of a GaAs single crystal.

【0022】種結晶の方位を<100>方向でθ=0゜
とした場合に多発した双晶欠陥は、ほとんど発生するこ
とがなく安定して結晶を得ることができた。
When the orientation of the seed crystal was set to θ = 0 ° in the <100> direction, twin defects frequently occurred were hardly generated, and the crystal could be stably obtained.

【0023】得られた結晶から(100)面円形ウエハ
を作成する場合は、得られた結晶の(100)面方向の
断面形状が円形に近い形になるようにできる。前記ボー
ト形状により、単結晶より(100)円形ウエハを求め
る場合、スライスしてそのまま円形ウエハに近い形状が
得られる。このため、切削による損失を小さくすること
が可能である。
When a (100) plane circular wafer is prepared from the obtained crystal, the cross section of the obtained crystal in the (100) plane direction can be made into a shape close to a circle. When obtaining a (100) circular wafer from a single crystal based on the boat shape, the shape close to the circular wafer can be obtained by slicing. Therefore, it is possible to reduce the loss due to cutting.

【0024】化合物半導体単結晶の実施例として、さら
にθの値を様々に変えてGaAs単結晶の育成実験を試
みた。図2のように(111)As等価面4Aを(10
0)等価面3の上方にした。前記θを−30゜から30
゜までの範囲で8通りに変え、それぞれ1回づつ育成実
験を行った。この実験では、双晶が育成中に観測された
場合にはメルトバックを行い、双晶欠陥が無くなるまで
何回か育成を行いその観測された双晶欠陥の回数を調べ
た。
As an example of the compound semiconductor single crystal, an experiment for growing a GaAs single crystal was tried by changing various values of θ. As shown in FIG. 2, the (111) As equivalent surface 4A is converted into (10
0) Above the equivalent plane 3. The θ is -30 to 30
Up to 8 degrees were changed in 8 ways, and the growing experiment was performed once each. In this experiment, when twins were observed during growth, meltback was performed, growth was performed several times until twin defects disappeared, and the number of observed twin defects was examined.

【0025】それぞれの実験で育成中に観測された双晶
発生回数を表1にまとめた。表1からわかるように、θ
=−30゜から0゜までは比較的双晶発生回数が多い
が、5゜から30゜では双晶発生頻度が低下しているの
が分かる。
The number of twinning occurrences observed during the growth in each experiment is summarized in Table 1. As can be seen from Table 1, θ
It can be seen that the frequency of twinning is relatively large from -30 ° to 0 °, but the frequency of twinning decreases from 5 ° to 30 °.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】以上述べたように、本発明は次のような
優れた効果がある。
As described above, the present invention has the following excellent effects.

【0028】(1)種結晶方位を<100>で育成する
場合に比べ、双晶欠陥の発生頻度が小さくなり歩留及び
スループットが向上する。
(1) As compared with the case where the seed crystal orientation is grown to <100>, the occurrence frequency of twin defects is reduced and the yield and throughput are improved.

【0029】(2)種結晶方位を<111>で育成する
場合に比べ、(100)ウエハを結晶から切り出す際
に、結晶の長手方向に垂直な方向に近い方向で切り出せ
る。このため、加工ロスを低減することができ、一つの
結晶から切り出せるウエハ枚数も多くなる。
(2) When the (100) wafer is cut out from the crystal, the cutting can be performed in a direction close to the direction perpendicular to the longitudinal direction of the crystal, as compared with the case where the seed crystal orientation is <111>. Therefore, processing loss can be reduced, and the number of wafers that can be cut out from one crystal increases.

【0030】(3)ボートの長手方向に垂直な断面形状
を半分以上楕円形とすれば、その楕円の偏平率を、得ら
れる結晶の(100)面方向の断面形状が円形に近い形
になるよう設定できる。したがって、結晶より(10
0)面の円形ウエハを求める場合、結晶をスライスして
そのまま円形ウエハに近い形状が得られることから、切
削による損失を小さくすることが可能である。
(3) If the cross-sectional shape perpendicular to the longitudinal direction of the boat is elliptical more than half, the flatness of the ellipse is such that the crystal obtained has a cross-sectional shape in the (100) plane direction close to a circle. Can be set to Therefore, (10
In the case of obtaining a circular wafer of 0) plane, the crystal is sliced to obtain a shape close to the circular wafer as it is, so that the loss due to cutting can be reduced.

【0031】(4)経済性および作業性の向上により製
品のコストの低減ができる。
(4) Product cost can be reduced by improving economy and workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】結晶育成用ボートに対する種結晶の方位を示す
側断面図。
FIG. 1 is a side sectional view showing the orientation of a seed crystal with respect to a crystal growing boat.

【図2】種結晶の結晶成長方向からみた(100)等価
面と、それに隣接する(111)As等価面の関係を示
す正面図。
FIG. 2 is a front view showing the relationship between a (100) equivalent plane viewed from the crystal growth direction of a seed crystal and a (111) As equivalent plane adjacent thereto.

【図3】種結晶の結晶成長方向からみた(100)等価
面と、それに隣接する(111)等価面の関係を示す正
面図。
FIG. 3 is a front view showing a relationship between a (100) equivalent plane viewed from a crystal growth direction of a seed crystal and a (111) equivalent plane adjacent thereto.

【図4】種結晶の結晶成長方向からみた(100)等価
面と、それに隣接する(111)等価面の関係を示し、
(100)等価面の上部に別の(100)等価面がある
場合の正面図。
FIG. 4 shows a relationship between a (100) equivalent plane viewed from the crystal growth direction of a seed crystal and a (111) equivalent plane adjacent thereto,
The front view at the time of there being another (100) equivalent surface in the upper part of a (100) equivalent surface.

【図5】ボートを用いて育成する場合の反応容器の長手
方向の断面図。
FIG. 5 is a cross-sectional view in the longitudinal direction of a reaction container in the case of growing using a boat.

【図6】長手方向に垂直な断面形状が半円型をしたボー
トの断面図。
FIG. 6 is a cross-sectional view of a boat having a semicircular cross-sectional shape perpendicular to the longitudinal direction.

【図7】長手方向に垂直な断面形状が、円周の80%が
楕円形状をしたボートの断面図。
FIG. 7 is a cross-sectional view of a boat whose cross-sectional shape perpendicular to the longitudinal direction has an elliptical shape of 80% of the circumference.

【符号の説明】[Explanation of symbols]

1 種結晶 2 ボート 3 (100)等価面 4 5族元素の等価面 5 3族元素の等価面 4A (111)As等価面 5A (111)Ga等価面 6 Ga 7 反応容器 8 As 1 seed crystal 2 boat 3 (100) equivalent surface 4 5 group 5 element equivalent surface 5 3 group element equivalent surface 4A (111) As equivalent surface 5A (111) Ga equivalent surface 6 Ga 7 reaction vessel 8 As

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月16日[Submission date] April 16, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of code

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【符号の説明】 1 種結晶 2 ボート 3 (100)等価面 4 5族元素の等価面 5 3族元素の等価面 4A (111)As等価面 5A (111)Ga等価面 6 Ga 7 反応容器 8 As[Description of Reference Signs] 1 seed crystal 2 boat 3 (100) equivalent surface 4 equivalent surface of group 5 element 5 equivalent surface of group 3 element 4A (111) As equivalent surface 5A (111) Ga equivalent surface 6 Ga 7 reaction vessel 8 As

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 誠 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Sato 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】閃亜鉛鉱型の結晶構造を有するAB型化合
物半導体単結晶をボート法により製造する装置におい
て、前記AB型化合物半導体単結晶の<100>方向に
等価な一つの方向が種結晶の結晶成長面側に設けてあ
り、前記<100>方向に等価な一つの方向は、ボート
の種結晶設置部から底面方向に向かっておりかつボート
の水平方向に対して5゜〜30゜傾けられていることを
特徴とする化合物半導体単結晶の製造装置。
1. An apparatus for producing an AB type compound semiconductor single crystal having a zinc blende type crystal structure by a boat method, wherein one direction equivalent to the <100> direction of the AB type compound semiconductor single crystal is a seed crystal. Is provided on the crystal growth surface side of the boat, and one direction equivalent to the <100> direction is from the seed crystal installation portion of the boat toward the bottom direction and is inclined 5 ° to 30 ° with respect to the horizontal direction of the boat. An apparatus for producing a compound semiconductor single crystal, which is characterized in that
【請求項2】閃亜鉛鉱型の結晶構造を有するAB型化合
物半導体単結晶をボート法により製造する方法におい
て、前記AB型化合物半導体単結晶の<100>方向に
等価な一つの方向を種結晶の結晶成長面側に設けてあ
り、前記<100>方向に等価な一つの方向は、ボート
の種結晶設置部から底面方向に向かっておりかつボート
の水平方向に対して5゜〜30゜傾けた方向にして、結
晶を育成することを特徴とする化合物半導体単結晶の製
造方法。
2. A method of manufacturing an AB type compound semiconductor single crystal having a zinc blende type crystal structure by a boat method, wherein one direction equivalent to the <100> direction of the AB type compound semiconductor single crystal is a seed crystal. Is provided on the crystal growth surface side of the boat, and one direction equivalent to the <100> direction is from the seed crystal installation portion of the boat toward the bottom direction and is inclined 5 ° to 30 ° with respect to the horizontal direction of the boat. A method for producing a compound semiconductor single crystal, which comprises growing a crystal in a vertical direction.
【請求項3】結晶成長方向からみて、種結晶の前記<1
00>方向に等価な一つの方向に垂直な(100)等価
面に隣接する一つの(111)等価面を、前記(10
0)等価面の上方に選ぶ請求項2の化合物半導体単結晶
の製造方法。
3. The seed crystal <1 as viewed from the crystal growth direction.
One (111) equivalent plane adjacent to the (100) equivalent plane perpendicular to one direction equivalent to the 00> direction is
0) The method for producing a compound semiconductor single crystal according to claim 2, which is selected above the equivalent plane.
【請求項4】前記(111)等価面のうち3−5族化合
物半導体の場合には5族元素面、2−6族化合物半導体
の場合には6族元素面を上方に選ぶ請求項3の化合物半
導体単結晶の製造方法。
4. A group 5 element plane in the case of a 3-5 group compound semiconductor and a group 6 element plane in the case of a 2-6 group compound semiconductor are selected upward from the (111) equivalent planes. Method for producing compound semiconductor single crystal.
【請求項5】ボートの長手方向に垂直な断面形状が半分
以上楕円弧であり、その楕円の偏平率を、得られる結晶
の(100)面方向の断面形状が円形に近い形になるよ
うにしたことを特徴とする請求項2の化合物半導体単結
晶の製造方法。
5. The boat has a cross-sectional shape perpendicular to the longitudinal direction of more than half an elliptic arc, and the flatness of the ellipse is such that the crystal obtained has a cross-sectional shape in the (100) plane direction close to a circle. 3. The method for producing a compound semiconductor single crystal according to claim 2.
【請求項6】閃亜鉛鉱型の結晶構造を有するAB型化合
物半導体がGaAs単結晶である請求項2の化合物半導
体単結晶の製造方法。
6. The method for producing a compound semiconductor single crystal according to claim 2, wherein the AB type compound semiconductor having a zinc blende type crystal structure is a GaAs single crystal.
JP19584691A 1991-07-10 1991-07-10 Method and device for producing compound semiconductor single crystal Withdrawn JPH05221772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19584691A JPH05221772A (en) 1991-07-10 1991-07-10 Method and device for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19584691A JPH05221772A (en) 1991-07-10 1991-07-10 Method and device for producing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH05221772A true JPH05221772A (en) 1993-08-31

Family

ID=16347986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19584691A Withdrawn JPH05221772A (en) 1991-07-10 1991-07-10 Method and device for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH05221772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878202B2 (en) * 2001-04-03 2005-04-12 Hitachi Cable, Ltd. Method for growing single crystal of compound semiconductor and substrate cut out therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878202B2 (en) * 2001-04-03 2005-04-12 Hitachi Cable, Ltd. Method for growing single crystal of compound semiconductor and substrate cut out therefrom

Similar Documents

Publication Publication Date Title
US20170198407A1 (en) Methods for producing improved crystallinity group iii-nitride crystals from initial group iii-nitride seed by ammonothermal growth
US9096950B2 (en) Nitride crystal and method for producing the same
EP2245218B1 (en) Method for producing group iii nitride wafers and group iii nitride wafers
JP2004323348A (en) Method for manufacturing silicon carbide single crystal
WO2009096125A1 (en) Iii-group nitride single-crystal ingot, iii-group nitride single-crystal substrate, method for manufacturing iii-group nitride single-crystal ingot, and method for manufacturing iii-group nitride single-crystal substrate
JP6526811B2 (en) Method of processing a group III nitride crystal
JP2006290677A (en) Method for manufacturing nitride-based compound semiconductor crystal and method for manufacturing nitride-based compound semiconductor substrate
US20150337453A1 (en) Group iii nitride bulk crystals and their fabrication method
JP4385764B2 (en) Method for producing diamond single crystal substrate
JP2007176718A (en) Method and apparatus for manufacturing silicon carbide single crystal
JPH07273048A (en) Manufacture method of compound semiconductor single crystal and single crystal substrate using such method
JPH05221772A (en) Method and device for producing compound semiconductor single crystal
US7361219B2 (en) Method for producing silicon wafer and silicon wafer
KR102346307B1 (en) Silicon single crystal manufacturing method and silicon single crystal wafer
JPH0517278A (en) Method and apparatus for producing compound semiconductor crystal
JPH0748196A (en) Production of compound semiconductor single crystal
JP5883912B2 (en) Nitride crystal and method for producing the same
JP2008273804A (en) SEMI-INSULATING GaAs WAFER AND METHOD FOR PRODUCING THE SAME
JPH0748199A (en) Apparatus for producing compound semiconductor single crystal and production thereof
JPH08217599A (en) Production of zinc-selenium homoepitaxial single crystal film
JPH05254978A (en) Method and apparatus for producing compound semiconductor single crystal
JPH0761886A (en) Production of single crystal and compound semiconductor and production device therefor
JP2016172692A (en) Nitride crystal and production method thereof
JPS6270293A (en) Production of compound semiconductor single crystal
JP2015078121A (en) Nitride crystal and its production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008