JPH05218652A - Manufacture of ceramic multilayer wiring board - Google Patents

Manufacture of ceramic multilayer wiring board

Info

Publication number
JPH05218652A
JPH05218652A JP1590992A JP1590992A JPH05218652A JP H05218652 A JPH05218652 A JP H05218652A JP 1590992 A JP1590992 A JP 1590992A JP 1590992 A JP1590992 A JP 1590992A JP H05218652 A JPH05218652 A JP H05218652A
Authority
JP
Japan
Prior art keywords
wiring board
green sheet
ceramic
atmosphere
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1590992A
Other languages
Japanese (ja)
Inventor
Shoichi Iwanaga
昭一 岩永
Heikichi Tanei
平吉 種井
Shosaku Ishihara
昌作 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1590992A priority Critical patent/JPH05218652A/en
Publication of JPH05218652A publication Critical patent/JPH05218652A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten unbindering process by unbinding a multilayer structure, wherein objects in each of which copper paste is printed on a glass ceramic green sheet and in a through hole and a wiring pattern is made are stacked, in steam atmosphere in high concentration. CONSTITUTION:In the manufacture of a multilayer wiring board capable of increasing signal transmission speed, wherein copper being a low melting point metal, as a conductor material, and glass ceramic lower in dielectric constant are baked at the same time, first a through hole is made in the green sheet for a glass ceramic wiring board, and copper paste is printed in this green sheet and on the green sheet so as to stick a conductor wiring pattern. Next, the multilayer structure being made by stacking these glass ceramic green sheets, whereon wiring patterns are made, into a multilayer is heated in nitrogen atmosphere at high steam pressure to decompose and remove the binder contained in the green sheet and the copper paste. Then, the low resistance of the wiring is maintained by baking it in reductive atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSI素子を搭載した
多層配線基板、特に、低融点金属である銅を導体材料と
し、これと誘電率の低いガラスセラミックとを同時に焼
成する、信号伝般速度の高速化が可能な多層配線基板の
製造方法に関する。さらに詳細にいえば、上記のガラス
セラミックおよび銅を導体材料とした高密度パッケージ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board on which an LSI element is mounted, and in particular, a low melting point metal, copper, is used as a conductor material, and this and a glass ceramic having a low dielectric constant are simultaneously fired. The present invention relates to a method for manufacturing a multi-layer wiring board that can increase speed. More specifically, it relates to a method for manufacturing a high-density package using the above-mentioned glass ceramic and copper as conductor materials.

【0002】[0002]

【従来の技術】多層配線基板は高い実装密度が達成でき
るので半導体集積回路素子及び他の素子を実装するため
の高密度パッケージ基板としてマイクロエレクトロニク
スの分野で広く用いられるようになった。
2. Description of the Related Art Since a multi-layer wiring board can achieve high packaging density, it has been widely used in the field of microelectronics as a high-density package substrate for mounting semiconductor integrated circuit elements and other elements.

【0003】この種のセラミック多層基板の導体回路を
形成するのに用いられる導体材料として、これまでモリ
ブデン、タングステンなどの高融点金属または、金、
銀、パラジウムなどの貴金属が用いられているが、前者
は電気抵抗が高く、また、後者は価格が高い、またはマ
イグレーションを起こす等の欠点を有するので、これら
よりも電気抵抗が低く、かつ価格が安い銅が最も優れた
導体材料である。
As a conductor material used for forming a conductor circuit of a ceramic multilayer substrate of this type, a refractory metal such as molybdenum or tungsten, or gold, has been used so far.
Although noble metals such as silver and palladium are used, the former has a high electric resistance, and the latter has a drawback such as high price or migration, so the electric resistance is lower than these and the price is lower. Cheap copper is the best conductor material.

【0004】銅を用いたセラミック多層配線基板の製造
において従来バインダの分解と除去、銅配線およびセラ
ミック成分の焼結を行う焼成工程は中性雰囲気で行われ
ていた。焼成を中性雰囲気で行なう理由は大気中では銅
が酸化されて、電気抵抗が極端に増大し、導体として役
立たなくなるためである。
In the manufacture of a ceramic multilayer wiring board using copper, the firing process for decomposing and removing the binder and sintering the copper wiring and the ceramic component has conventionally been carried out in a neutral atmosphere. The reason why firing is carried out in a neutral atmosphere is that copper is oxidized in the air, the electric resistance is extremely increased, and it is no longer useful as a conductor.

【0005】[0005]

【発明が解決しようとする課題】この方法では基板材料
や導体材料に含まれるバインダを中性雰囲気中で除去す
ることになるが、中性雰囲気ではバインダの分解反応が
著しく遅いため、これを除去するためには非常に長い時
間かかってしまい、かつ完全にバインダを除去すること
が困難なため炭素質残渣として基板内に残ったり、気孔
発生の原因となる。特に大型で積層数の多い多層配線基
板ではバインダの除去に100〜300時間という長時
間を要し、かつ大量の窒素ガスを必要とする。このた
め、生産性が悪く、生産コストが高いという欠点をも
つ。
According to this method, the binder contained in the substrate material and the conductor material is removed in a neutral atmosphere. However, since the binder decomposition reaction is extremely slow in a neutral atmosphere, this is removed. It takes a very long time to do so, and it is difficult to completely remove the binder, so that it may remain in the substrate as a carbonaceous residue or cause generation of pores. Particularly, in a large-sized multilayer wiring board having a large number of laminated layers, it takes a long time of 100 to 300 hours to remove the binder, and a large amount of nitrogen gas is required. Therefore, it has disadvantages that productivity is low and production cost is high.

【0006】そこで本発明は、前記従来の問題点を解決
することを目的とする。
Therefore, the present invention aims to solve the above-mentioned conventional problems.

【0007】[0007]

【課題を解決するための手段】すなわち、前記目的を達
成するため、本発明において採用した手段の要旨は、金
属銅粉末を主成分とする導体ペーストを用いてガラスセ
ラミックグリーンシートおよび該グリーンシートの貫通
孔に印刷し、配線パターンを形成したものを積層して未
焼結の多層構造体にしたものを高濃度の水蒸気雰囲気中
で加熱して前記グリーンシートと導体ペーストに含まれ
るバインダを分解除去し、その後還元雰囲気中で焼成す
ることを特徴とするセラミック多層配線基板の製造方法
である。
Means for Solving the Problems That is, in order to achieve the above-mentioned object, the gist of the means adopted in the present invention is that a glass ceramic green sheet and a green ceramic sheet using a conductor paste containing metal copper powder as a main component are used. The green sheet and the binder contained in the conductor paste are decomposed and removed by heating in a high-concentration water vapor atmosphere by stacking the printed wiring patterns and wiring patterns to form an unsintered multilayer structure. And then firing in a reducing atmosphere.

【0008】[0008]

【作用】前記本発明によれば、導体材料の原料に金属銅
を主として用いているため、配線抵抗の低いセラミック
多層配線基板を得ることができる。しかも、高濃度の水
蒸気を含む窒素雰囲気中でバインダの除去を行なうた
め、バインダの熱分解過程で残った炭素質ポリマーが高
温で直接水蒸気と結びついて飛散し、中性雰囲気中と比
較して短時間(10〜30時間)でバインダが分解、除
去される。また、この雰囲気では平衡酸素分圧が100
ppm以下の低酸素分圧であるため、金属銅を主成分と
する導体材料の酸化を最小限にすることができる。そし
て、最後に還元雰囲気中で焼成を行なうことにより、わ
ずかに酸化していた配線パターンを形成する導体材料が
還元されて配線の低抵抗が維持される。
According to the present invention, since metallic copper is mainly used as the raw material of the conductor material, a ceramic multilayer wiring board having a low wiring resistance can be obtained. Moreover, since the binder is removed in a nitrogen atmosphere containing a high concentration of water vapor, the carbonaceous polymer remaining in the thermal decomposition process of the binder is directly combined with the water vapor at high temperature and scatters. The binder is decomposed and removed in a time (10 to 30 hours). In this atmosphere, the equilibrium oxygen partial pressure is 100.
Because of the low oxygen partial pressure of ppm or less, it is possible to minimize the oxidation of the conductive material containing metallic copper as the main component. Finally, by firing in a reducing atmosphere, the slightly oxidized conductor material forming the wiring pattern is reduced and the low resistance of the wiring is maintained.

【0009】なお、ここでいう高濃度の水蒸気を含む窒
素雰囲気とはバインダの除去に十分な水蒸気分圧であ
り、しかも金属銅の酸化を最小限とする水蒸気分圧であ
り、具体的には水蒸気分圧が0.1〜0.5気圧の範囲
が望ましい。水蒸気分圧が0.1気圧未満の場合は、バ
インダの分解除去を短時間でおこなうには不十分な場合
が多く、焼成後、基板内に炭素が残留したり、気孔が生
じる。また、0.5気圧を越える場合は、金属銅の酸化
を最小限にすることができず、金属銅の酸化による体積
増により、基板にクラック等の不良が発生しやすい。
The nitrogen atmosphere containing high-concentration water vapor is a water vapor partial pressure sufficient to remove the binder and also minimizes the oxidation of metallic copper. The steam partial pressure is preferably in the range of 0.1 to 0.5 atm. When the partial pressure of water vapor is less than 0.1 atm, it is often insufficient to decompose and remove the binder in a short time, and carbon remains in the substrate or pores are generated in the substrate after firing. On the other hand, when the pressure exceeds 0.5 atm, the oxidation of metallic copper cannot be minimized, and the volume increase due to the oxidation of metallic copper easily causes defects such as cracks in the substrate.

【0010】[0010]

【実施例】次に本発明の具体的な実施例1について詳細
に説明する。
EXAMPLE Next, a specific example 1 of the present invention will be described in detail.

【0011】ガラスの組成がSiO2:76.6wt
%,B23:20.3wt%,K2O:2.9wt%,
Al23:0.2%から成る組成物とアルミナ粉末を重
量比で75/25で混合させたセラミック粉末にブチル
メタクリレート系樹脂をトリクロルエチレンとテトラク
ロルエチレンとn−ブタノールの60:17:23の溶
媒に溶解した有機バインダとフタル酸ジワブチルからな
る可塑剤とを加え、これをボールミルで混合してセラミ
ックスラリーを作った。次にこのスラリーを真空脱泡機
で脱泡した後、ドクターブレード法により、前記セラミ
ックスラリーから厚さ200〜250μmのグリーンシ
ートを製造した。つぎにこのグリーンシートを所定の大
きさに切断した後、必要な箇所に直径が100〜150
μmのビアホールを形成した。
The composition of the glass is SiO 2 : 76.6 wt.
%, B 2 O 3 : 20.3 wt%, K 2 O: 2.9 wt%,
A butyl methacrylate resin was mixed with a ceramic powder in which a composition consisting of Al 2 O 3 : 0.2% and alumina powder were mixed at a weight ratio of 75/25 and trichloroethylene, tetrachloroethylene and n-butanol 60:17: An organic binder dissolved in a solvent of No. 23 and a plasticizer made of diwabutyl phthalate were added and mixed with a ball mill to prepare a ceramic slurry. Next, after defoaming this slurry with a vacuum defoaming machine, a green sheet having a thickness of 200 to 250 μm was produced from the ceramic slurry by the doctor blade method. Next, after cutting this green sheet into a predetermined size, a diameter of 100 to 150 is obtained at a necessary position.
A μm via hole was formed.

【0012】次に銅粉末にガラス粉末を添加して混合
し、この混合粉末にエチルセルロースをテレピネオール
とn−ブチルカルビトールアセテートの混合溶剤で溶解
した有機ビヒクルを加えて銅ペーストを作り、これをス
クリーン印刷法によって前記グリーンシートに印刷し
た。また、この印刷工程において前記ビアホールの内部
にも銅ペーストを充填した。
Next, glass powder is added to copper powder and mixed, and an organic vehicle in which ethyl cellulose is dissolved in a mixed solvent of terpineol and n-butyl carbitol acetate is added to this mixed powder to prepare a copper paste, which is screened. The green sheet was printed by a printing method. Further, in this printing step, copper paste was also filled inside the via holes.

【0013】その後、上記のように配線パターンを印刷
したグリーンシートを所望の枚数積層し、100℃,1
50kg/cm2の圧力で熱圧着した。
After that, a desired number of green sheets printed with the wiring patterns as described above are laminated, and the green sheets are dried at 100 ° C.
Thermocompression bonding was performed at a pressure of 50 kg / cm 2 .

【0014】次に水蒸気分圧を0.3気圧になるよう調
節した窒素雰囲気中で、1.5℃/minの温度勾配で
室温から600℃まで昇温し、このまま600℃の温度
で20時間保持した後、室温まで戻して脱バインダ処理
を行なった。次に窒素ガス90%と水素ガス10%を混
合した還元雰囲気中において10℃/minの温度勾配
で室温から400℃まで昇温し、このまま400℃で1
時間保持した後、窒素雰囲気に置換した。その後、1.
5℃/minの温度勾配で950℃まで昇温し、このま
ま950℃の温度で2時間保持した後、10℃/min
の温度勾配で950℃から室温まで冷却し、焼成した。
Next, in a nitrogen atmosphere in which the partial pressure of water vapor is adjusted to 0.3 atm, the temperature is raised from room temperature to 600 ° C. at a temperature gradient of 1.5 ° C./min, and the temperature is kept at 600 ° C. for 20 hours. After the holding, the temperature was returned to room temperature for binder removal treatment. Next, the temperature was raised from room temperature to 400 ° C. at a temperature gradient of 10 ° C./min in a reducing atmosphere in which 90% of nitrogen gas and 10% of hydrogen gas were mixed, and the temperature was maintained at 400 ° C.
After holding for a time, the atmosphere was replaced with a nitrogen atmosphere. Then 1.
The temperature was raised to 950 ° C. with a temperature gradient of 5 ° C./min, and the temperature was kept at 950 ° C. for 2 hours, then 10 ° C./min
The mixture was cooled from 950 ° C. to room temperature with a temperature gradient of and baked.

【0015】以上のような工程により製造したセラミッ
ク多層基板の内部の配線の抵抗値を測定したところ、
0.2Ω/cmであった。また、目視観察の結果、クラッ
ク等の発生を認められず、さらに脱バインダが不十分な
場合に多く起こる残留ボイドの発生も少なく、残留カー
ボンも200ppm以下であった。この結果を表1に示
す。実施例1を同様な方法で脱バインダ時の水蒸気分圧
や除去時間を表1のようにかえ、セラミック多層配線基
板を製造した。その結果表1に示すような内部の配線抵
抗が得られた。また、クラックの発生や残留カーボンに
ついても表1に示すような結果が得られた。
When the resistance value of the wiring inside the ceramic multi-layer substrate manufactured by the above steps was measured,
It was 0.2 Ω / cm. In addition, as a result of visual observation, generation of cracks and the like was not recognized, generation of residual voids often occurred when the binder was insufficiently removed, and residual carbon was 200 ppm or less. The results are shown in Table 1. A ceramic multilayer wiring board was manufactured in the same manner as in Example 1, except that the water vapor partial pressure and the removal time at the time of removing the binder were changed as shown in Table 1. As a result, the internal wiring resistance as shown in Table 1 was obtained. Further, the results shown in Table 1 were obtained for the occurrence of cracks and residual carbon.

【0016】水蒸気分圧が0.1気圧以下では残留カー
ボンが300ppmを越え、また、0.5気圧以上では
銅の酸化が進み、体積が膨張してクラックを生じた。
When the partial pressure of water vapor was 0.1 atm or less, the residual carbon exceeded 300 ppm, and at 0.5 atm or more, the oxidation of copper proceeded, and the volume expanded and cracks occurred.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】以上述べたように、本発明のセラミック
多層配線基板の製造方法によれば、高濃度の水蒸気を含
む窒素雰囲気中で脱バインダを行うことにより、脱バイ
ンダ工程が短くてすむため生産性が高く、かつ、脱バイ
ンダが不十分なため生じる機械的強度の低下や電気的特
性の低下がない。また、導体の酸化により生じるクラッ
ク等の発生もない。また、導体として金属銅を用いてい
るため、導体の配線抵抗が低く、信号伝播速度の高速化
が達成できる。
As described above, according to the method for manufacturing a ceramic multilayer wiring board of the present invention, the binder removal process is performed in a nitrogen atmosphere containing a high concentration of water vapor, so that the binder removal process can be shortened. High productivity and no reduction in mechanical strength or electrical characteristics caused by insufficient binder removal. In addition, there is no occurrence of cracks or the like caused by the oxidation of the conductor. Further, since metal copper is used as the conductor, the wiring resistance of the conductor is low, and the signal propagation speed can be increased.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガラスセラミック配線基板用グリーンシー
トに貫通孔を形成し、該貫通孔中及び上記シート上に銅
ペーストを印刷して導体配線パターンを付着させる工程
と、該配線パターンを形成したガラスセラミックグリー
ンシートを積層する工程と、該多層化した未焼結の多層
構造体を高い水蒸気圧の窒素雰囲気中で加熱して前記グ
リーンシートと銅ペーストに含まれるバインダを分解、
除去し、その後還元性雰囲気中で焼成する工程とを有す
ることを特徴とするセラミック多層配線基板の製造方
法。
1. A step of forming a through hole in a green sheet for a glass-ceramic wiring board, printing a copper paste in the through hole and on the sheet to attach a conductor wiring pattern, and a glass on which the wiring pattern is formed. A step of laminating the ceramic green sheets, and heating the multilayered unsintered multilayer structure in a nitrogen atmosphere having a high water vapor pressure to decompose the binder contained in the green sheets and the copper paste,
A step of removing and then firing in a reducing atmosphere.
【請求項2】請求項1におけるバインダを分解、除去す
る熱処理工程を行う雰囲気が、0.1〜0.5気圧の水
蒸気分圧を有する窒素雰囲気であることを特徴とするセ
ラミック多層配線基板の製造方法。
2. A ceramic multilayer wiring board according to claim 1, wherein the atmosphere for the heat treatment step of decomposing and removing the binder is a nitrogen atmosphere having a water vapor partial pressure of 0.1 to 0.5 atm. Production method.
【請求項3】請求項1におけるバインダの分解、除去す
る熱処理工程を行う温度がガラスセラミックの焼結点よ
り低いことを特徴とするセラミック多層配線基板の製造
方法。
3. A method for manufacturing a ceramic multi-layer wiring board according to claim 1, wherein the temperature of the heat treatment step of decomposing and removing the binder is lower than the sintering point of the glass ceramic.
JP1590992A 1992-01-31 1992-01-31 Manufacture of ceramic multilayer wiring board Pending JPH05218652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1590992A JPH05218652A (en) 1992-01-31 1992-01-31 Manufacture of ceramic multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1590992A JPH05218652A (en) 1992-01-31 1992-01-31 Manufacture of ceramic multilayer wiring board

Publications (1)

Publication Number Publication Date
JPH05218652A true JPH05218652A (en) 1993-08-27

Family

ID=11901901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1590992A Pending JPH05218652A (en) 1992-01-31 1992-01-31 Manufacture of ceramic multilayer wiring board

Country Status (1)

Country Link
JP (1) JPH05218652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186126A (en) * 2004-12-28 2006-07-13 Ngk Spark Plug Co Ltd Manufacturing method of wiring board
JP2020111797A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Method for manufacturing composite body of ceramic and conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186126A (en) * 2004-12-28 2006-07-13 Ngk Spark Plug Co Ltd Manufacturing method of wiring board
JP4533129B2 (en) * 2004-12-28 2010-09-01 日本特殊陶業株式会社 Wiring board manufacturing method
JP2020111797A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Method for manufacturing composite body of ceramic and conductor

Similar Documents

Publication Publication Date Title
EP0332457B1 (en) Multilayered ceramic substrates and method for manufacturing of the same
US4795512A (en) Method of manufacturing a multilayer ceramic body
JPH039636B2 (en)
JP3351043B2 (en) Method for manufacturing multilayer ceramic substrate
EP0591733A1 (en) Method for producing multilayered ceramic substrate
JPH06237081A (en) Manufacture of multilayer ceramic substrate
US7879169B2 (en) Method for producing ceramic compact
JPH05218652A (en) Manufacture of ceramic multilayer wiring board
JPH0730253A (en) Method of manufacturing multilayer ceramic board
JP3082475B2 (en) Method for manufacturing multilayer ceramic substrate
JP4599783B2 (en) Low temperature fired ceramic circuit board manufacturing method
JPH06223621A (en) Conductor paste composition
JP3216260B2 (en) Low temperature fired ceramic multilayer substrate and method of manufacturing the same
JPS6357393B2 (en)
JPH02141458A (en) Low-temperature calcined ceramic multilayered base plate and production thereof
JPH0225094A (en) Manufacture of ceramic multilayer wiring board
JPH05167253A (en) Manufacture of multilayer ceramic board
JPH05218654A (en) Manufacture of ceramic composite structure using microwave
JPH05327220A (en) Manufacture of multilayer ceramic base
JP6597268B2 (en) Method for producing ceramic fired body
JP3173213B2 (en) Manufacturing method of ceramic multilayer wiring board
JPH066038A (en) Manufacturing method of low temperature baking multilayer ceramic board
JPS61292392A (en) Manufacture of ceramic wiring board
JPH0632379B2 (en) Method for manufacturing ceramic wiring board
JPH0613756A (en) Conductive paste composition