JPH06223621A - Conductor paste composition - Google Patents

Conductor paste composition

Info

Publication number
JPH06223621A
JPH06223621A JP1392893A JP1392893A JPH06223621A JP H06223621 A JPH06223621 A JP H06223621A JP 1392893 A JP1392893 A JP 1392893A JP 1392893 A JP1392893 A JP 1392893A JP H06223621 A JPH06223621 A JP H06223621A
Authority
JP
Japan
Prior art keywords
conductor
powder
ceramic
glass
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1392893A
Other languages
Japanese (ja)
Inventor
Yasuhiko Hakotani
靖彦 箱谷
Minehiro Itagaki
峰広 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1392893A priority Critical patent/JPH06223621A/en
Publication of JPH06223621A publication Critical patent/JPH06223621A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a low conductive resistance via electrode, which has no possibility of cavities inside via and ensures its adhesion to a via hole, for a ceramic multilayer wiring board which has an inside electrode made of copper and zero firing shrinkage in a plane direction. CONSTITUTION:Conductor for via has CuO powder as conductor material, inorganic components containing Cu powder of average size 5.0-20.0mum and composed of 30.0-70.0wt.% conductor material and 30.0-70.0wt.% crystallized glass ceramic powder with the glass transition temperature higher than the glass transition temperature of insulating material, and organic vehicle composed of at least organic binder and solvent. Conductor paste composition in which the Cu powder represents 10.0-60.0wt.% of the conductor material is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回路基板の導体ペース
ト組成物に関するものであり、特に低温焼成セラミック
多層配線基板(以下、MLCと略す)のビア電極材料とし
て使用される導体ペースト組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductor paste composition for a circuit board, and more particularly to a conductor paste composition used as a via electrode material for a low temperature fired ceramic multilayer wiring board (hereinafter abbreviated as MLC). .

【0002】[0002]

【従来の技術】セラミック誘電体基質に適用する導体組
成物には、Au,Ag/Pd等の貴金属を用いるものと、
W,Mo,Ni,Cu等の卑金属を用いる場合がある。特
にセラミック多層配線基板は、この金属材料に有機バイ
ンダ,溶剤を加えてペースト状にしたものをアルミナな
どの絶縁基板上にスクリーン印刷し、焼き付けて導体パ
ターンを形成するものである。
2. Description of the Related Art A conductor composition applied to a ceramic dielectric substrate uses a noble metal such as Au or Ag / Pd.
Base metals such as W, Mo, Ni and Cu may be used. In particular, a ceramic multilayer wiring board is one in which an organic binder and a solvent are added to this metal material to form a paste, which is screen-printed on an insulating substrate such as alumina and baked to form a conductor pattern.

【0003】また、セラミック多層配線基板では、これ
らの導体ペーストの他、絶縁材料としてセラミックやガ
ラス粉末を有機バインダを溶かした溶剤中に分散させた
ものを用いて多層化する方法と、前記の絶縁粉末,有機
バインダ等からなるグリーンシート上に、前記導体ペー
ストでパターン形成したものを積層して多層化する方法
がある。
Further, in the ceramic multi-layer wiring board, in addition to these conductor pastes, a method in which ceramics or glass powder is dispersed as an insulating material in a solvent in which an organic binder is melted to form a multi-layer, and the above-mentioned insulation is used. There is a method in which a pattern formed of the conductor paste is laminated on a green sheet made of powder, an organic binder or the like to form a multilayer.

【0004】これらに使用される金属導体材料に注目す
ると、Au,Ag/Pdは空気中で焼成できる反面、貴金
属であるためコストが高い。一方、W,Mo,Ni,Cu
は、卑金属で安価であるが、焼成雰囲気を還元雰囲気
か、中性の雰囲気で行なう必要がある。またW,Moで
は、1500℃以上の高温焼成となる。さらに信頼性の面か
らAuでは、半田食われが問題となり、Ag/Pdでは、
マイグレーションおよび導体抵抗が高いという問題があ
る。
When attention is paid to the metal conductor materials used for these, Au and Ag / Pd can be fired in air, but they are expensive because they are precious metals. On the other hand, W, Mo, Ni, Cu
Is a base metal and is inexpensive, but it is necessary to perform the firing atmosphere in a reducing atmosphere or a neutral atmosphere. In addition, in W and Mo, high temperature firing of 1500 ° C or higher is performed. Further, in terms of reliability, solder erosion becomes a problem with Au, and with Ag / Pd,
There is the problem of high migration and high conductor resistance.

【0005】そこで、安価で電気抵抗が低く、半田付け
性の良好なCuを用いるようになってきた。
Therefore, Cu, which is inexpensive, has a low electric resistance, and has a good solderability, has come to be used.

【0006】例えば、米国特許第4,072,771号には、Cu
ペーストの組成、同じく特開昭56−93396号公報に開示
されている。前者はCu粉にガラスフリットを含有する
組成物、後者はガラスフリットを含まない組成物での構
成が記載されている。
For example, US Pat. No. 4,072,771 describes Cu
The composition of the paste is also disclosed in JP-A-56-93396. The former describes a composition containing a glass frit in Cu powder and the latter a composition containing no glass frit.

【0007】しかし、Cuを使う上でも課題がある。そ
れは、Cu電極による誘電体基質への焼成は還元もしく
は中性雰囲気となり、ペースト中の有機バインダの分解
除去が困難となるからである。これは、窒素中の酸素濃
度が低いためバインダの分解が起こらず、カーボンの形
で残りメタライズ性能に悪影響を及ぼす。逆に、酸素濃
度が高いと、Cu電極が酸化され誘電体中に拡散して電
極として機能しなくなる。そのため焼成は、窒素雰囲気
中に若干の酸素をコントロールしながら供給することで
行なわれる。そして、残存したカーボンが酸化銅と反応
して電極層にブリスタを発生させたり、電極−誘電体間
のマッチングを悪くさせる要因となる。このようにCu
ペーストは、有機バインダの使用に多くの課題を有して
いる。
However, there are problems in using Cu. This is because the firing of the dielectric substrate by the Cu electrode reduces or becomes a neutral atmosphere, and it becomes difficult to decompose and remove the organic binder in the paste. This is because the oxygen concentration in nitrogen is low, so that the binder does not decompose and remains in the form of carbon, which adversely affects the metallization performance. On the other hand, when the oxygen concentration is high, the Cu electrode is oxidized and diffuses into the dielectric, so that it does not function as an electrode. Therefore, firing is performed by supplying a small amount of oxygen while controlling it in a nitrogen atmosphere. Then, the remaining carbon reacts with the copper oxide to generate blisters in the electrode layer or cause deterioration of the matching between the electrode and the dielectric. Like this
Pastes have many challenges in using organic binders.

【0008】そこで近年、導体材料の出発原料に酸化第
二銅(CuO)を用いる新しいCu電極セラミック多層配線
基板の製造方法が開発された。つまりセラミックグリー
ンシート上にCuO導体組成物によって配線パターンを
形成し、積層の後、酸化性雰囲気中の熱処理で前記Cu
O導体組成物、およびセラミックグリーンシート中の有
機残基を熱分解する工程と、還元雰囲気中の熱処理でC
u金属に還元する工程と、窒素雰囲気でのセラミック基
質の焼成を行なう工程より作成されるという構成を備え
たものである。
Therefore, in recent years, a new method of manufacturing a Cu electrode ceramic multilayer wiring board using cupric oxide (CuO) as a starting material of a conductor material has been developed. That is, a wiring pattern is formed of a CuO conductor composition on a ceramic green sheet, and after stacking, the Cu is subjected to a heat treatment in an oxidizing atmosphere.
C in the step of thermally decomposing the organic residue in the O conductor composition and the ceramic green sheet and the heat treatment in the reducing atmosphere.
It is composed of a step of reducing to a metal and a step of firing a ceramic substrate in a nitrogen atmosphere.

【0009】例えば、米国特許第4,795,512号公報、同
じく米国特許第4,863,683号公報に開示されている。こ
のセラミック積層体の製造方法によれば、絶縁基板およ
びペースト中の有機バインダの分解除去が容易となり、
かつ良好なCuのメタライズが得られる。
For example, it is disclosed in US Pat. No. 4,795,512 and US Pat. No. 4,863,683. According to this method for manufacturing a ceramic laminate, it is easy to decompose and remove the organic binder in the insulating substrate and the paste,
And good Cu metallization can be obtained.

【0010】また、このセラミック積層体の製造方法で
用いるビア用の導体組成物としては、基板とビアとの焼
成収縮を一致させるために、CuO粉末の他にガラスフ
リットと、MgO粉末、さらにAl23,SnO2,Ti
2,MnO2のうち少なくとも1種以上を含有した無機
成分と、有機ビヒクル成分を含む導体ペーストが用いら
れることが提案されている。
As the conductor composition for vias used in the method for manufacturing the ceramic laminate, in order to match the firing shrinkage of the substrate and the vias, in addition to CuO powder, glass frit, MgO powder, and Al. 2 O 3 , SnO 2 , Ti
It has been proposed that a conductor paste containing an organic vehicle component and an inorganic component containing at least one of O 2 and MnO 2 be used.

【0011】セラミック多層配線基板は、焼成時に焼結
に伴う収縮が生じる。この焼結に伴う収縮は、使用する
基板材料およびグリーンシート組成の管理はもちろん、
粉体ロットの違いや積層条件(プレス圧力,温度)を十分
管理しても、一般に±0.5%程度の収縮誤差が存在する
といわれている。この課題を解決し、内部導体に銅を用
い、平面方向の収縮がゼロのセラミック多層配線基板の
製造方法が提案されている。
The ceramic multi-layer wiring board shrinks due to sintering during firing. The shrinkage due to this sintering is not only the management of the substrate material and the green sheet composition used,
Even if the powder lots are different and the lamination conditions (press pressure, temperature) are well controlled, it is said that shrinkage error of about ± 0.5% still exists. A method of manufacturing a ceramic multilayer wiring board which solves this problem and uses copper for the inner conductor and has zero shrinkage in the planar direction has been proposed.

【0012】また、CuOを主成分とする導体ペースト
組成物で電極パターンを形成した少なくとも有機バイン
ダ,可塑剤を含むガラス・セラミックよりなるグリーン
シートを所望枚数積層した後、前記ガラス・セラミック
の焼成温度では焼結しない無機組成物よりなるグリーン
シートを前記ガラス・セラミック積層体の両面、もしく
は片面に積層した後、これらを空気中で多層体内部の有
機バインダが分解,飛散する温度で熱処理し、しかる
後、水素もしくは水素と窒素の混合ガス雰囲気中で還元
熱処理を行ない、さらに前記還元熱処理済み多層体を窒
素雰囲気中で焼結させ、しかる後、焼結しない無機組成
物を取り除くことを特徴とするセラミック多層配線基板
の製造方法が提案されている。
Further, after laminating a desired number of green sheets made of glass / ceramic containing at least an organic binder and a plasticizer having an electrode pattern formed of a conductor paste composition containing CuO as a main component, the firing temperature of the glass / ceramic is set. Then, green sheets made of an inorganic composition that does not sinter are laminated on both sides or one side of the glass-ceramic laminate, and these are heat-treated in air at a temperature at which the organic binder inside the multilayer decomposes and scatters. After that, reduction heat treatment is performed in an atmosphere of hydrogen or a mixed gas of hydrogen and nitrogen, and further, the reduction heat treated multilayer body is sintered in a nitrogen atmosphere, and thereafter, the inorganic composition that is not sintered is removed. A method for manufacturing a ceramic multilayer wiring board has been proposed.

【0013】また、上記の平面方向の収縮がゼロのセラ
ミック多層配線基板においては、ビアの焼成収縮は縦方
向(基板厚み方向)にのみ起こるため、ビア孔に確実に密
着した緻密な構造の信頼性の高いビア導体としては、C
uOなどの導体材料とガラス転移温度が絶縁材料のガラ
ス転移温度よりも高い結晶化ガラスセラミック粉末から
なる無機成分と、有機ビヒクル成分を備えた導体ペース
ト組成物を用いるのが適当であることが提案されてい
る。
Further, in the above-mentioned ceramic multilayer wiring substrate having no shrinkage in the plane direction, since the firing shrinkage of the via occurs only in the vertical direction (the thickness direction of the substrate), the reliability of the dense structure which is surely adhered to the via hole is reliable. As a highly conductive via conductor, C
Proposal that it is appropriate to use a conductor paste composition including an inorganic component composed of a conductor material such as uO and a crystallized glass ceramic powder having a glass transition temperature higher than that of an insulating material, and an organic vehicle component Has been done.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記の
ようなCuOを銅内部電極の出発材料にして、平面方向
に収縮を起こさないセラミック多層配線基板の製造にお
いて、前記ビア用導体ペーストを用いた場合、ビア孔に
確実に密着した緻密な構造の信頼性の高いビアが形成さ
れるが、ビアの導体抵抗が高くなるという問題が生じ
た。
However, when the above-mentioned conductor paste for vias is used in the production of a ceramic multilayer wiring substrate which does not cause shrinkage in the planar direction, using CuO as a starting material for the copper internal electrodes as described above. , A highly reliable via having a dense structure which is surely adhered to the via hole is formed, but there arises a problem that the conductor resistance of the via becomes high.

【0015】本発明は上記課題に鑑み、導体抵抗が低
く、ビア孔に確実に密着した緻密な構造の信頼性の高い
ビアを形成するビア用の導体ペースト組成物を提供する
ことを目的とする。
In view of the above problems, it is an object of the present invention to provide a conductor paste composition for vias, which forms a highly reliable via having a low conductor resistance and being surely adhered to a via hole and having a dense structure. .

【0016】[0016]

【課題を解決するための手段】本発明のビア用の導体ペ
ースト組成物は、導体物質として酸化第二銅(CuO)粉
末と、平均粒径5.0〜20.0μmの銅(Cu)粉末を含み、前
記導体物質30.0〜70.0重量%と、ガラス転移温度が絶縁
材料のガラス転移温度よりも高い温度の結晶化ガラスセ
ラミック粉末30.0〜70.0重量%からなる無機成分と、少
なくとも有機バインダと溶剤よりなる有機ビヒクル成分
を備え、前記銅(Cu)粉末が前記導体物質の10.0〜60.0
重量%を占めることを特徴とする。
A conductor paste composition for vias according to the present invention contains cupric oxide (CuO) powder as a conductor substance and copper (Cu) powder having an average particle size of 5.0 to 20.0 μm. An organic vehicle comprising at least an organic binder and a solvent, an inorganic component comprising 30.0 to 70.0% by weight of the conductor substance, 30.0 to 70.0% by weight of a crystallized glass ceramic powder having a glass transition temperature higher than the glass transition temperature of the insulating material. And a copper (Cu) powder of 10.0 to 60.0% of the conductive material.
It is characterized by occupying weight%.

【0017】[0017]

【作用】本発明によれば、ビア孔を形成する絶縁材料が
焼結しビア孔が形成された後に、ビア孔内部のビア導体
材料中のガラス成分が軟化し、ビア導体が焼結するた
め、ビア導体部分での断線やビア孔内部に空隙が発生せ
ず、ビア孔に確実に密着した緻密な構造のビア導体が形
成でき、また導体物質にCu粉末を含むため、導体物質
がCuOのみの場合に比べ、導体抵抗のより低いビア電
極が形成できる。
According to the present invention, after the insulating material forming the via hole is sintered and the via hole is formed, the glass component in the via conductor material inside the via hole is softened and the via conductor is sintered. , A via conductor with a fine structure can be formed, which is surely adhered to the via hole without disconnection at the via conductor portion or voids inside the via hole. Also, since the conductor material contains Cu powder, only the conductor material is CuO. As compared with the above case, a via electrode having a lower conductor resistance can be formed.

【0018】[0018]

【実施例】以下、本発明の一実施例のセラミック多層配
線基板について図面を参照しながら説明する。図1は本
発明の一実施例のグリーンシート積層体の断面図を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A ceramic multilayer wiring board according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of a green sheet laminate of one embodiment of the present invention.

【0019】まず、セラミック多層配線基板の作成方法
を説明する。
First, a method for producing a ceramic multilayer wiring board will be described.

【0020】基板材料のガラス・セラミックには、ガラ
ス粉末にセラミック材料としてのアルミナ粉末を重量比
で50対50とした組成物(日本電気硝子社製,MLS−2
7,ガラス転移温度520℃)を用いた。このガラス・セラ
ミック粉を無機成分とし、有機バインダとしてポリビニ
ルブチラール、可塑剤としてヂ−n−ブチルフタレー
ト、溶剤としてトルエンとイソプロピルアルコールの混
合液(30対70重量比)を混合し、スラリーした。
The glass / ceramic substrate material is a composition in which glass powder is mixed with alumina powder as a ceramic material in a weight ratio of 50:50 (manufactured by Nippon Electric Glass Co., Ltd., MLS-2
7, glass transition temperature 520 ℃) was used. This glass-ceramic powder was used as an inorganic component, polyvinyl butyral as an organic binder, di-n-butyl phthalate as a plasticizer, and a mixed solution of toluene and isopropyl alcohol (30:70 weight ratio) as a solvent was mixed and slurried.

【0021】このスラリーをドクターブレード法で有機
フィルム上に厚み約200μmのシート成形した。このと
き、造膜から乾燥,打ち抜き、さらには必要に応じてビ
アホール加工を行なう各工程を連続的に行なうシステム
を使用した。ビアホール径は、0.15mmφであった。
This slurry was formed into a sheet having a thickness of about 200 μm on an organic film by a doctor blade method. At this time, a system was used in which each step of continuously drying, punching, and optionally processing a via hole was performed. The via hole diameter was 0.15 mmφ.

【0022】次に、内部電極用ペーストとしては、Cu
O粉(京都エレックス社製,平均粒径3μm)に、接着強
度を得るためのガラスフリット(日本電気硝子社製,L
S−0803ガラス粉末,平均粒径2.5μm)を3wt%加えた
ものを無機成分とし、有機バインダであるエチルセルロ
ースをターピネオールに溶かした有機ビヒクルとを加え
て、3段ロールにより適度な粘度になるまで混練し作成
した。
Next, as the internal electrode paste, Cu was used.
O powder (Kyoto Ellex Co., average particle size 3 μm), glass frit (Nippon Electric Glass Co., L
S-0803 glass powder, average particle size 2.5 μm) 3 wt% was added as an inorganic component, and an organic vehicle in which ethyl cellulose, which is an organic binder, was dissolved in terpineol was added, and a suitable viscosity was obtained with a three-stage roll. It was made by kneading.

【0023】また、ビアホール電極用ペーストとして
は、無機組成としてCuO粉(京都エレックス社製,平均
粒径3μm),結晶化ガラスセラミック粉末(日本電気硝
子社製,MLS05,ガラス転移温度670℃),Cu粉末
(福田金属箔粉社製,SRC,平均粒径15μm)を、表1
に示したように、Cu粉末量を種々変化させた組成で配
合し、さらに有機バインダであるエチルセルロースをタ
ーピネオールに溶かした有機ビヒクルとを加えて、3段
ロールにより適度な粘度になるまで混練し作成した。上
記の導体ペーストを用いて導体パターンの形成およびビ
アホールの埋め印刷をスクリーン印刷法によって行なっ
た。
As the via-hole electrode paste, CuO powder (manufactured by Kyoto Elex Co., average particle size: 3 μm), crystallized glass ceramic powder (manufactured by Nippon Electric Glass Co., Ltd., MLS05, glass transition temperature 670 ° C.), as an inorganic composition, Cu powder
(Fukuda Metal Foil & Powder Co., SRC, average particle size 15 μm)
As shown in, prepared by blending the Cu powder in various compositions, further adding an organic vehicle in which ethyl cellulose as an organic binder is dissolved in terpineol, and kneading with a three-stage roll until an appropriate viscosity is obtained. did. The conductor pattern was formed by using the above-mentioned conductor paste and the via-holes were filled and printed by the screen printing method.

【0024】[0024]

【表1】 [Table 1]

【0025】次に、焼結の起こらないグリーンシートの
作成は、無機成分としてアルミナ (住友化学工業社製,
ALM−41,平均粒径1.9μm)粉末のみを用い、前記ガ
ラス・セラミック基板用グリーンシートと同様のグリー
ンシート組成で、同様の方法でグリーンシート(厚み300
μm)を作成した。
Next, a green sheet that does not sinter is produced by using alumina (produced by Sumitomo Chemical Co., Ltd.) as an inorganic component.
ALM-41, average particle size 1.9 μm) powder only, with the same green sheet composition as the glass / ceramic substrate green sheet, and in the same manner as the green sheet (thickness 300
μm) was created.

【0026】前記導体形成済みガラス・セラミックグリ
ーンシートを所定の枚数積み重ね、さらにその両面に前
記アルミナグリーンシートを重ね合わせる。この状態で
熱圧着して積層体を形成した。熱圧着条件は温度が80
℃、圧力は200kg/cm2であった。図1にそのグリーンシ
ート積層体の断面図を示し、1は前記基板材料のガラス
セラミックによるグリーンシート層、2は内部電極層、
3はビア電極、4はアルミナによるグリーンシート層で
ある。
A predetermined number of the glass-ceramic green sheets on which the conductor has been formed are stacked, and the alumina green sheets are further stacked on both sides thereof. In this state, thermocompression bonding was performed to form a laminate. The temperature for thermocompression bonding is 80
The temperature was 200 ° C. and the pressure was 200 kg / cm 2 . FIG. 1 shows a cross-sectional view of the green sheet laminated body, 1 is a green sheet layer made of glass ceramic of the substrate material, 2 is an internal electrode layer,
Reference numeral 3 is a via electrode, and 4 is a green sheet layer made of alumina.

【0027】次に、前記積層体をアルミナ96%基板上に
載せ、以下に説明する工程で焼成した。まず最初は、脱
バインダ工程である。本実施例に使用したグリーンシー
ト,CuOペーストの有機バインダは、ポリビニルブチ
ラールおよびエチルセルロースである。したがって空気
中での分解温度は500℃以上あればよいので、600℃の温
度で前記積層体の脱脂処理を行なった。その後、前記積
層体を水素ガス100%雰囲気中で、200℃−5時間で還元
した。このときのCu層をX線回折により分析したとこ
ろ、100%Cuであることを確認した。
Next, the laminate was placed on a 96% alumina substrate and fired in the steps described below. The first is a binder removal step. The organic binders of the green sheet and CuO paste used in this example are polyvinyl butyral and ethyl cellulose. Therefore, the decomposition temperature in air should be 500 ° C. or higher, so the degreasing treatment of the laminate was performed at a temperature of 600 ° C. Then, the laminate was reduced at 200 ° C. for 5 hours in a 100% hydrogen gas atmosphere. When the Cu layer at this time was analyzed by X-ray diffraction, it was confirmed to be 100% Cu.

【0028】次に焼成工程は、メッシュベルト炉で純窒
素中900℃で1時間焼成した(900℃の保持時間は約12分
である)。このとき、基板の反りと厚み方向の焼結収縮
を助けるため、アルミナ焼結基板を載せて加圧するよう
にして焼成を行なった。焼成後の積層体の表面には、未
焼結のアルミナ層が存在するため、酢酸ブチル溶剤中で
超音波洗浄を行なったところ、アルミナ層をきれいに取
り除くことができた。
Next, in the firing step, firing was performed at 900 ° C. for 1 hour in pure nitrogen in a mesh belt furnace (holding time at 900 ° C. is about 12 minutes). At this time, in order to assist the warp of the substrate and the sinter contraction in the thickness direction, the alumina sintered substrate was placed and pressed so as to be fired. Since an unsintered alumina layer exists on the surface of the laminated body after firing, the alumina layer could be removed cleanly by ultrasonic cleaning in a butyl acetate solvent.

【0029】この焼成後の基板は反りもなく、基板の収
縮率は0.1%以下で、また反りもなかた。基板の両面に
市販のCuペースト(デュポン社製,QP153)にて最上層
パターンをスクリーン印刷により形成、乾燥後、前記焼
成と同様に900℃で1時間焼成で行なった。
The substrate after firing did not warp, the shrinkage ratio of the substrate was 0.1% or less, and there was no warpage. The uppermost layer pattern was formed by screen printing on both surfaces of the substrate with a commercially available Cu paste (QP153, manufactured by DuPont), dried, and baked at 900 ° C. for 1 hour in the same manner as the above baking.

【0030】こうして得られたセラミック多層配線基板
はビア電極の抵抗を測定し、また基板断面のSEM観察
により、ビアと内部電極パターンとの接合性,ビア構造
を確認した。それらの結果を表1に示し、この表1から
明らかなように、導体物質中のCu配合量が増えるに従
ってビア電極の抵抗は低下した。
In the ceramic multilayer wiring board thus obtained, the resistance of the via electrode was measured, and the bondability between the via and the internal electrode pattern and the via structure were confirmed by SEM observation of the substrate cross section. The results are shown in Table 1, and as is clear from Table 1, the resistance of the via electrode decreased as the Cu content in the conductor material increased.

【0031】また、配合組成No.1,2,3,4につい
ては、ビア導体と配線導体の接触部分での断線やビア孔
内部の空隙が発生せず、ビア孔内壁に確実に密着した緻
密な構造のビア導体が形成できた。しかし、導体物質中
のCu粉末の割合が60重量%を超えると、焼成後の基板
のビアホール体積よりビアに充填された導体組成物の焼
成体積が大きくなり、内部配線導体とビア電極の断線が
生じた。配合組成No.4において、ビアの抵抗値が配合
組成No.3のビアより若干高くなったのは、ビアホール
とビア導体との体積のミスマッチが生じかけているため
と思われる。
In addition, regarding the compounding compositions Nos. 1, 2, 3, and 4, there is no disconnection at the contact portion between the via conductor and the wiring conductor or a void inside the via hole, and the dense composition is surely adhered to the inner wall of the via hole. A via conductor having a different structure could be formed. However, if the proportion of Cu powder in the conductor material exceeds 60% by weight, the firing volume of the conductor composition filled in the via becomes larger than the via hole volume of the substrate after firing, and the disconnection between the internal wiring conductor and the via electrode occurs. occured. The reason why the resistance value of the via in the composition No. 4 was slightly higher than that of the via of the composition No. 3 is considered to be due to the volume mismatch between the via hole and the via conductor.

【0032】なお、ビア導体ペースト中の導体物質とガ
ラスセラミックの比率を変化させたものを作成して、同
様にセラミック多層配線基板を製造した。このとき、導
体物質の比率が30重量%以上含有されていないビア導体
ペースト(ガラスセラミック成分が多い)を用いたもので
は、ビア孔内部の空隙が発生せず、ビア孔内壁に確実に
密着した緻密な構造のビア導体が形成されたが、ガラス
セラミック成分が多すぎるために導通が得られなかっ
た。
A ceramic multilayer wiring board was manufactured in the same manner by preparing the via conductor paste in which the ratio of the conductor substance to the glass ceramic was changed. At this time, in the case of using the via conductor paste (there is a large amount of glass-ceramic component) in which the ratio of the conductor material is not more than 30% by weight, voids inside the via hole do not occur, and the via hole inner wall is firmly adhered. A via conductor having a dense structure was formed, but conduction could not be obtained because the glass ceramic component was too much.

【0033】一方、導体物質の比率が70重量%を超える
ビア導体ペースト(ガラスセラミック成分が少ない)を用
いたものでは、導体の焼結収縮によりビア孔内部やビア
−内部電極パターン接合部に空隙が発生し、断線も見ら
れた。
On the other hand, in the case of using a via conductor paste (having a small glass-ceramic component) in which the ratio of the conductor substance exceeds 70% by weight, voids are formed inside the via hole or in the via-internal electrode pattern joint portion due to sintering shrinkage of the conductor. Occurred and a disconnection was also seen.

【0034】また、ビア導体ペースト中のCu粉末の粒
径を変化させたものを作成して、同様にセラミック多層
配線基板を製造し、評価した。粒径3.0μmのCu粉を用
いた場合、基板焼成の脱バインダ工程でCuがCuOに酸
化される際の体積膨張が大きく、層間のデラミネーショ
ンやビア電極破壊等が生じた。一方、粒径30μmのCu粉
を用いた場合、ペースト中へのCu粉の分散が難しく、
またビアホールへのペースト充填も十分に行なえなかっ
た。
Also, a ceramic multilayer wiring board was manufactured and evaluated in the same manner by preparing the via powder containing Cu powder having different particle diameters. When Cu powder with a particle size of 3.0 μm was used, the volume expansion was large when Cu was oxidized to CuO in the binder removal step of firing the substrate, resulting in delamination between layers and via electrode destruction. On the other hand, when Cu powder having a particle size of 30 μm is used, it is difficult to disperse the Cu powder in the paste,
In addition, the filling of the via holes with paste could not be sufficiently performed.

【0035】[0035]

【発明の効果】以上説明したように本発明の導体ペース
ト組成物は、ビア孔を形成する絶縁材料が軟化し焼結し
てビア孔が形成された後に、ビア孔内部のビア導体材料
中のガラス成分が軟化しビア導体が焼結するので、ビア
導体部分での断線やビア孔内部に空隙が発生せず、ビア
孔に確実に密着した緻密な構造の信頼性の高いビア導体
が形成できる。また導体物質にCu粉末を含むため、導
体物質がCuOのみの場合に比べ、導体抵抗のより低い
ビア電極が形成できる。
As described above, in the conductor paste composition of the present invention, after the insulating material forming the via hole is softened and sintered to form the via hole, the conductive material in the via conductor inside the via hole is formed. Since the glass component softens and the via conductor sinters, disconnection at the via conductor portion and voids inside the via hole do not occur, and it is possible to form a highly reliable via conductor with a dense structure that firmly adheres to the via hole. . Further, since the conductor material contains Cu powder, a via electrode having a lower conductor resistance can be formed as compared with the case where the conductor material is only CuO.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のグリーンシート積層体の断
面図である。
FIG. 1 is a cross-sectional view of a green sheet laminate according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ガラス・セラミックのグリーンシート層、 2…内
部電極層、 3…ビア電極、 4…アルミナのグリーン
シート層。
1 ... Glass / ceramic green sheet layer, 2 ... Internal electrode layer, 3 ... Via electrode, 4 ... Alumina green sheet layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/46 S 6921−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H05K 3/46 S 6921-4E

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導体物質として酸化第二銅粉末と、平均
粒径5.0〜20.0μmの銅粉末を含み、前記導体物質30.0〜
70.0重量%と、ガラス転移温度が絶縁材料のガラス転移
温度よりも高い温度の結晶化ガラスセラミック粉末30.0
〜70.0重量%からなる無機成分と、少なくとも有機バイ
ンダと溶剤よりなる有機ビヒクル成分を備え、前記銅粉
末が前記導体物質の10.0〜60.0重量%を占めることを特
徴とする導体ペースト組成物。
1. A conductor material comprising cupric oxide powder and copper powder having an average particle diameter of 5.0 to 20.0 μm, wherein the conductor material is 30.0 to
70.0% by weight, a glass-ceramic powder having a glass transition temperature higher than the glass transition temperature of the insulating material 30.0
A conductor paste composition comprising an inorganic component consisting of ˜70.0 wt% and an organic vehicle component consisting of at least an organic binder and a solvent, wherein the copper powder constitutes 10.0 to 60.0 wt% of the conductor substance.
JP1392893A 1993-01-29 1993-01-29 Conductor paste composition Pending JPH06223621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1392893A JPH06223621A (en) 1993-01-29 1993-01-29 Conductor paste composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1392893A JPH06223621A (en) 1993-01-29 1993-01-29 Conductor paste composition

Publications (1)

Publication Number Publication Date
JPH06223621A true JPH06223621A (en) 1994-08-12

Family

ID=11846848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1392893A Pending JPH06223621A (en) 1993-01-29 1993-01-29 Conductor paste composition

Country Status (1)

Country Link
JP (1) JPH06223621A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843621A1 (en) * 1995-01-27 1998-05-27 Sarnoff Corporation Conductive via fill inks for ceramic multilayer circuit boards on support substrates
JP2000030586A (en) * 1998-07-15 2000-01-28 Uchihashi Estec Co Ltd Manufacture of substrate type thermal fuse
JP2001307671A (en) * 2000-04-21 2001-11-02 Fujitsu Ltd Material for electrode, electrode for charged particle beam apparatus and manufacturing method therefor
JP2002198460A (en) * 2000-12-27 2002-07-12 Kyocera Corp Batch-process wiring substrate
JP2003068937A (en) * 2001-08-28 2003-03-07 Kyocera Corp Ceramic wiring board and its manufacturing method
US7083745B2 (en) * 2000-12-28 2006-08-01 Denso Corporation Production method for laminate type dielectric device and electrode paste material
CN114615798A (en) * 2022-04-01 2022-06-10 广州三则电子材料有限公司 Zero-shrinkage hole-filling conductive slurry and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843621A1 (en) * 1995-01-27 1998-05-27 Sarnoff Corporation Conductive via fill inks for ceramic multilayer circuit boards on support substrates
EP0843621A4 (en) * 1995-01-27 1998-12-23 Sarnoff Corp Conductive via fill inks for ceramic multilayer circuit boards on support substrates
JP2000030586A (en) * 1998-07-15 2000-01-28 Uchihashi Estec Co Ltd Manufacture of substrate type thermal fuse
JP2001307671A (en) * 2000-04-21 2001-11-02 Fujitsu Ltd Material for electrode, electrode for charged particle beam apparatus and manufacturing method therefor
JP2002198460A (en) * 2000-12-27 2002-07-12 Kyocera Corp Batch-process wiring substrate
US7083745B2 (en) * 2000-12-28 2006-08-01 Denso Corporation Production method for laminate type dielectric device and electrode paste material
JP2003068937A (en) * 2001-08-28 2003-03-07 Kyocera Corp Ceramic wiring board and its manufacturing method
JP4587617B2 (en) * 2001-08-28 2010-11-24 京セラ株式会社 Ceramic wiring board
CN114615798A (en) * 2022-04-01 2022-06-10 广州三则电子材料有限公司 Zero-shrinkage hole-filling conductive slurry and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2785544B2 (en) Method for manufacturing multilayer ceramic substrate
JPH04169002A (en) Conductive paste and manufacture of multilayer ceramic wiring substrate using it
JP3422233B2 (en) Conductive paste for via hole and method for manufacturing multilayer ceramic substrate using the same
JP3351043B2 (en) Method for manufacturing multilayer ceramic substrate
JPH06223621A (en) Conductor paste composition
JP3003413B2 (en) Method for manufacturing multilayer ceramic substrate
JPH06237081A (en) Manufacture of multilayer ceramic substrate
JPH05327218A (en) Manufacture of multilayer ceramic base
JP3082475B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0730253A (en) Method of manufacturing multilayer ceramic board
JP2803421B2 (en) Method for manufacturing multilayer ceramic substrate
JP2803414B2 (en) Method for manufacturing multilayer ceramic substrate
JPH11330705A (en) Substrate containing capacitor and manufacture thereof
JP3100796B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0650703B2 (en) Paste composition and method for manufacturing laminated ceramic capacitor
JP2812605B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05327220A (en) Manufacture of multilayer ceramic base
JP2855959B2 (en) Method for manufacturing multilayer ceramic substrate
JPH11157945A (en) Production of ceramic electronic part and green sheet for dummy used therefor
JPS62145896A (en) Manufacture of ceramic copper multilayer wiring board
JPH08134388A (en) Electrically conductive ink
JPH0697659A (en) Low temperature baked ceramics multi-layer substrate and its manufacture
JPH0632379B2 (en) Method for manufacturing ceramic wiring board
JPH0588557B2 (en)
JPH05343851A (en) Manufacture of multilayer ceramic substrate