JPS62145896A - Manufacture of ceramic copper multilayer wiring board - Google Patents

Manufacture of ceramic copper multilayer wiring board

Info

Publication number
JPS62145896A
JPS62145896A JP28849485A JP28849485A JPS62145896A JP S62145896 A JPS62145896 A JP S62145896A JP 28849485 A JP28849485 A JP 28849485A JP 28849485 A JP28849485 A JP 28849485A JP S62145896 A JPS62145896 A JP S62145896A
Authority
JP
Japan
Prior art keywords
paste
ceramic
wiring board
insulating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28849485A
Other languages
Japanese (ja)
Other versions
JPH0680897B2 (en
Inventor
勉 西村
誠一 中谷
徹 石田
聖 祐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28849485A priority Critical patent/JPH0680897B2/en
Publication of JPS62145896A publication Critical patent/JPS62145896A/en
Publication of JPH0680897B2 publication Critical patent/JPH0680897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、IC,LSI、チップ部品などを搭載し、か
つそれらを相互配線した回路の、高密度実装用基板とし
て用いることのできるセラミ・ツク配線基板の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to ceramic wiring that can be used as a high-density mounting board for circuits on which ICs, LSIs, chip components, etc. are mounted and interconnected. The present invention relates to a method of manufacturing a substrate.

従来の技術 従来より、セラミック配線基板の導体ペースト用金属と
しては、Au、Au−Pt’、Ag−Pt。
BACKGROUND OF THE INVENTION Conventionally, the metals for conductive paste of ceramic wiring boards include Au, Au-Pt', and Ag-Pt.

Ag−Pd等の貴金属、W 、 M O、M o −M
 n等の高融点卑金属が広く用いられていた。前者の、
Au、Au−Pt、Ag−Pt、Ag−Pd等の貴金属
ペーストは、空気中で焼付けができるという反面、コス
トが高いという問題を抱えている。
Noble metals such as Ag-Pd, W, MO, Mo-M
High melting point base metals such as n were widely used. The former,
Noble metal pastes such as Au, Au-Pt, Ag-Pt, Ag-Pd, etc. can be baked in air, but have the problem of high cost.

また、後者のW、Mo、Mo−Mn等の高融点卑金属は
導電性が低く、還元雰囲気中で焼成する必要があるため
危険である。また、ノ\ンダ付けのために導体表面にN
i等によるメッキ処理を施す必要があるなどの問題を有
している。そこで、安価で導電性が良く、ハンダ付は性
の良好なCuペーストが用いられる様になって来た。こ
こで、Cuペーストを用いたセラミック配線基板の製造
方法の一例を述べる。従来の方法は、アルミナ等の焼結
基板上にCuペーストをスクリーン印刷して配線パター
ンを形成し、乾燥後、Cuの融点以下の温度で、かつC
uが酸化されず、導体ペースト中の有機成分が充分に燃
焼する様に酸素分圧を制御した窒素雰囲気中で焼成する
というものである。
Furthermore, the latter high-melting point base metals such as W, Mo, and Mo-Mn are dangerous because they have low conductivity and need to be fired in a reducing atmosphere. Also, add N to the conductor surface for soldering.
This method has problems such as the need to perform plating treatment using, for example, i. Therefore, Cu paste, which is inexpensive, has good conductivity, and has good soldering properties, has come to be used. Here, an example of a method for manufacturing a ceramic wiring board using Cu paste will be described. The conventional method is to screen print Cu paste on a sintered substrate such as alumina to form a wiring pattern, and after drying, apply carbon at a temperature below the melting point of Cu.
Firing is performed in a nitrogen atmosphere in which the oxygen partial pressure is controlled so that u is not oxidized and the organic components in the conductor paste are sufficiently combusted.

また、Cuペーストを用いたセラミック多層配線基板の
場合は、さらに絶縁ペーストとCuペーストを印刷、乾
燥、中性雰囲気中での焼成をそれぞれ所望の回数繰り返
し、多層化するというものである。
Furthermore, in the case of a ceramic multilayer wiring board using Cu paste, printing, drying, and firing in a neutral atmosphere are repeated for each of the insulating paste and Cu paste a desired number of times to form a multilayer structure.

発明が解決しようとする問題点 しかしながら、上記の様なCuペーストを用いた場合、
セラミック配線基板の製造方法においていくつかの大き
な問題点がある。まず第1に、焼成工程において、Cu
を酸化させず、なおかつCuペースト中の有機成分を完
全に燃焼させるような酸素分圧に炉内を制御するのが非
常に困難であるという事である。酸素分圧が少しでも高
ければ、Cu表面が酸化されハンダ付は性が悪くなり、
逆に酸素分圧が低く過ぎればCuメタライズの良好な接
着が得られないばかりか、Cuペースト中に含まれる有
機成分が完全に燃焼除去されない。特にCuの融点以下
の温度では、有機バインダは分解しないといわれている
。(特開昭55−128899号公報) また、金属Cuを用いた場合、たとえ脱バインダの工程
と、Cu焼付けの工程を分けたとしても、金属Cuが脱
バインダの工程で酸化され、体積膨張を起こすため、基
板からの剥離等の問題を生ずる。第2に、多層にする場
合、印刷、乾燥後、その都度焼成を行うのでリードタイ
ムが長くなるという問題を有している。そこで、特願昭
59−147833号において、CuOペーストを用い
、絶縁ペーストと導体ペーストの印刷を繰り返し行い多
層化し、炭素に対して充分な酸化雰囲気で、かつ内部の
有機成分を熱分解させるに充分な温度で熱処理を行い、
しかる後、Cuに対して非酸化性となる雰囲気とし、印
刷されるCuOが金属Cuに還元され、焼結する事を特
徴とするセラミック多層配線基板の製造方法について、
すでに提案されている。この方法により焼成時の雰囲気
制御が容易になり、同時焼成が可能となった。しかしな
がら、以下に示すような問題点が新たに見い出された。
Problems to be Solved by the Invention However, when using the above-mentioned Cu paste,
There are several major problems in the method of manufacturing ceramic wiring boards. First of all, in the firing process, Cu
It is extremely difficult to control the oxygen partial pressure in the furnace to a level that does not oxidize the Cu paste and completely burns the organic components in the Cu paste. If the oxygen partial pressure is even slightly high, the Cu surface will be oxidized and soldering will be poor.
On the other hand, if the oxygen partial pressure is too low, not only will good adhesion of the Cu metallization not be obtained, but the organic components contained in the Cu paste will not be completely burned off. It is said that organic binders do not decompose especially at temperatures below the melting point of Cu. (Japanese Unexamined Patent Publication No. 55-128899) In addition, when metal Cu is used, even if the binder removal process and the Cu baking process are separated, the metal Cu will be oxidized in the binder removal process, causing volume expansion. This causes problems such as peeling off from the substrate. Secondly, in the case of multi-layer printing, baking is performed each time after printing and drying, resulting in a long lead time. Therefore, in Japanese Patent Application No. 59-147833, we created a multi-layered structure by repeatedly printing insulating paste and conductive paste using CuO paste, creating an oxidizing atmosphere sufficient for carbon and sufficient to thermally decompose the organic components inside. heat treatment at a temperature of
Thereafter, the method for producing a ceramic multilayer wiring board is characterized in that an atmosphere is created that is non-oxidizing to Cu, and the printed CuO is reduced to metal Cu and sintered.
Already proposed. This method makes it easier to control the atmosphere during firing and allows simultaneous firing. However, new problems as shown below were discovered.

第6図に示すように、絶縁層3を導体層2上に部分的に
印刷し、その上に、導体層を下の導体層と交差するよう
に印刷したような構造をとる場合や、第7図の様な断面
を有する場合、絶縁層部分が平滑でないために印刷がし
に(い、配線パターンの膜厚が一定しないという問題が
ある。なお(11は基板である。さらに、第2図の場合
焼成時のCuOからCuへの還元によって体積収縮が生
じた場合、同じ層の配線パターンが、絶縁層でおおわれ
ている部分と、露出している部分とのさかいで断線する
という問題がある。
As shown in FIG. 6, there are cases in which the insulating layer 3 is partially printed on the conductor layer 2, and a structure in which the conductor layer is printed on top of it so as to intersect with the conductor layer below. When the cross section is as shown in Fig. 7, there is a problem that the insulating layer is not smooth and the thickness of the wiring pattern is not constant. In the case shown in the figure, if volumetric contraction occurs due to the reduction of CuO to Cu during firing, there is a problem that the wiring pattern of the same layer will be disconnected between the part covered with the insulating layer and the exposed part. be.

本発明は上記欠点を除去し、高信頼性で内層導体を形成
を図ることのできる製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method that eliminates the above-mentioned drawbacks and can form an inner layer conductor with high reliability.

問題点を解決するための手段 上記問題点を解決するために、本発明のセラミック銅多
層配線基板の製造方法においては、アルミナ焼結基板ま
たは、グリーンシート上に、CuOを主成分とする無機
成分に有機ビヒクルを加えた導体層用ペーストと、ガラ
スもしくはガラス−セラミックに有機ビヒクルを加えた
絶縁層用ペーストにより、絶縁層が下部導体層をバイア
部分を除き基板全面にわたっておおうようにして、導体
層と絶縁層の印刷・乾燥を所望の層数繰り返した後、脱
バインダ、CuOのCuへの還元、焼結を、所定の温度
、雰囲気で行い内層の配線バクーンを形成し、その後、
最上層としてCuペーストを用い印刷・乾燥の後、窒素
雰囲気中で焼成するというものである。
Means for Solving the Problems In order to solve the above problems, in the method for manufacturing a ceramic copper multilayer wiring board of the present invention, an inorganic component containing CuO as a main component is added to an alumina sintered substrate or a green sheet. The conductor layer paste is made by adding an organic vehicle to the conductor layer and the insulating layer paste is made by adding an organic vehicle to glass or glass-ceramic. After repeating the printing and drying of the insulating layer for the desired number of layers, removal of the binder, reduction of CuO to Cu, and sintering are performed at a predetermined temperature and atmosphere to form the inner layer wiring bag, and then,
A Cu paste is used as the top layer, and after printing and drying, it is fired in a nitrogen atmosphere.

作用 本発明は上記した様に、絶縁層が下部導体層を、バイア
部分を除き基板全面にわたっておおうように印刷される
ため、次に絶縁層上に導体層を形成する際に基板の印刷
される面が平滑なため、印刷が非常にしやすく、又形成
される配線パターンの膜厚が安定する。さらに、下部層
の配線パターンが部分的におおわれないため、絶縁層で
おおわれた部分と、おおわれていない部分での配線パタ
ーンの切断が生じない。
As described above, in the present invention, since the insulating layer is printed so as to cover the entire surface of the substrate except for the via portion, when the conductive layer is next formed on the insulating layer, the printing of the substrate is Since the surface is smooth, it is very easy to print, and the thickness of the formed wiring pattern is stable. Furthermore, since the wiring pattern in the lower layer is not partially covered, the wiring pattern is not cut between the portion covered with the insulating layer and the portion not covered.

さらに、本発明においては、脱パインダニ程を酸化雰囲
気で行うため、絶縁層中に含まれる有機バインダの分解
除去を完全に行う事ができ、極めて緻密で絶縁特性のす
ぐれたセラミック銅多層配線基板を作製することができ
る。
Furthermore, in the present invention, since the depinemization step is carried out in an oxidizing atmosphere, the organic binder contained in the insulating layer can be completely decomposed and removed, making it possible to produce ceramic copper multilayer wiring boards that are extremely dense and have excellent insulating properties. It can be made.

実施例 以下に本発明の実施例について説明する。Example Examples of the present invention will be described below.

実施例1:まず内層用CuOペーストは、市販の特級C
uO(平均粒径約3μm)にコーニング社製# 705
9ガラス(平均粒径約2μm)を5wt%加えたものに
、有機バインダであるエチルセルロースをテレピン油に
溶かした有機ビヒクルを加えたものを三段ロールにより
適度な粘度に混練して作製した。一方絶縁ペーストは、
ホウケイ酸ガラスにアルミナを、重量比で1対1に混合
した無機成分に、CuOペーストと同様の有機ビしクル
を加えた三段ロールで適度な粘度に混練して作製した。
Example 1: First, the CuO paste for the inner layer was commercially available special grade C.
#705 manufactured by Corning Co., Ltd. for uO (average particle size approximately 3 μm)
The material was prepared by adding 5 wt% of 9 glass (average particle size approximately 2 μm) and an organic vehicle in which ethyl cellulose, which is an organic binder, is dissolved in turpentine oil, and kneading the mixture to an appropriate viscosity using a three-stage roll. On the other hand, insulation paste
It was prepared by adding an organic vehicle similar to the CuO paste to an inorganic component consisting of a 1:1 weight ratio of borosilicate glass and alumina, and kneading the mixture to an appropriate viscosity using a three-stage roll.

次に、96%アルミナ焼結基板上に、250メツシユの
スクリーンでCuOペーストを印刷し、乾燥(120℃
で10分間)させ、導体層を形成した。
Next, CuO paste was printed on a 96% alumina sintered substrate with a 250 mesh screen and dried (120°C).
(for 10 minutes) to form a conductor layer.

その後、絶縁ペーストを200メツシユのスクリーンを
用い、さきに印刷・乾燥させた導体層を、バイア部分を
除き基板全面にわたっておおうように印刷し、乾燥(1
20℃で10分間)させ、絶縁を形成した。そして、さ
らにCuOペーストと絶縁ペーストの印刷・乾燥を繰り
返し、第1図に示す様な断面を有する未焼結セラミック
配線基板を作製した。図中(1)は基板、(2)は導体
層、(3)は絶縁層である。この様にして作製した未焼
結セラミック配線基板を第3図に示す温度プロファイル
で、空気中で脱バインダし、その後、第4図に示す温度
プロファイルで、Nz +l(、中(Hz/Nz =2
0/80:流量2 j! /mjn)で還元し、最後に
第5図に示す温度プロファイルで、N2中で焼成した。
Then, using a screen with 200 meshes of insulating paste, print the previously printed and dried conductor layer so as to cover the entire surface of the board except for the via area, and dry (1
(at 20° C. for 10 minutes) to form insulation. Then, printing and drying of the CuO paste and the insulating paste were repeated to produce an unsintered ceramic wiring board having a cross section as shown in FIG. In the figure, (1) is a substrate, (2) is a conductor layer, and (3) is an insulating layer. The unsintered ceramic wiring board thus produced was debindered in air with the temperature profile shown in FIG. 2
0/80: Flow rate 2 j! /mjn) and finally calcined in N2 with the temperature profile shown in FIG.

この様にして作製したセラミック銅多層基板の上に、D
u Pont社製#9153Cuペーストを325メソ
シユのスクリーンで印刷し、配線パターンを形成し、乾
燥(110℃で10分)後、N2中で900℃(ビーク
温度で10分間キープ)で焼成した。焼成後の断面図を
第2図に示す。この様にして作製したセラミック銅多層
配線基板は、導通テストの結果、内層部での断線がまっ
たく無く、また、最上層の膜厚測定によっても、非常に
均一な膜厚を有していた。
On the ceramic copper multilayer substrate produced in this way, D
U Pont #9153 Cu paste was printed with a 325 mesh screen to form a wiring pattern, dried (110° C. for 10 minutes), and then baked at 900° C. (kept at peak temperature for 10 minutes) in N2. A cross-sectional view after firing is shown in FIG. As a result of a continuity test, the ceramic copper multilayer wiring board thus produced had no disconnection in the inner layer, and the thickness of the top layer was also measured and found to have a very uniform thickness.

実施例2:実施例1に示したと同様の実験を96%アル
ミナ焼結基板のかわりにグリーンシートを用いて行った
。グリーンシートは、ホウケイ酸ガラスとアルミナを重
量比で1対1になるように混合した無機成分に、有機バ
インダであるポリビニルブチラールをトルエンに溶かし
た有機溶剤に、可塑剤であるデーブチルフタレートを加
え、ボールミルで混合し、これを脱泡後ドクターブレー
ド法で造膜、乾燥し、約1■厚となるようにした、そし
てその後所定のサイズに切断し加工したものである。
Example 2: An experiment similar to that shown in Example 1 was conducted using a green sheet instead of the 96% alumina sintered substrate. Green sheets are made by adding debutyl phthalate, a plasticizer, to an organic solvent made by dissolving polyvinyl butyral, an organic binder, in toluene, to an inorganic component that is a mixture of borosilicate glass and alumina at a weight ratio of 1:1. The mixture was mixed in a ball mill, degassed, and then formed into a film using a doctor blade method, dried to a thickness of about 1 inch, and then cut into a predetermined size for processing.

なお、グリーンシートは、内層焼成段階で体積収縮をお
こすため、最上層印刷のスクリーンは、焼成による体積
収縮をあらかじめみこして作製されているのは言うまで
もない。この様にして作製したセラミック鋼多層基板も
、実施例1と同様、導通テストの結果、内層部での断線
がまったく無く、また、最上層の配線パターンの膜厚測
定においても、非常に均一な膜厚を有していた。
Incidentally, since the green sheet undergoes volumetric shrinkage during the firing stage of the inner layer, it goes without saying that the screen for printing the top layer is prepared with the volumetric shrinkage due to firing taken into account in advance. As in Example 1, the ceramic steel multilayer board produced in this way also showed no disconnections in the inner layer at all as a result of the continuity test, and it was also found that the film thickness of the top layer wiring pattern was extremely uniform. It had a film thickness.

さらに、グリーンシートの場合、有機成分を多量に含ん
でいるが、本発明のように、空気中で脱バインダする事
により、グリーンシート中の有機成分が完全に分解除去
され、非常に緻密で強い基板が得られた。
Furthermore, green sheets contain a large amount of organic components, but by removing the binder in the air as in the present invention, the organic components in the green sheets are completely decomposed and removed, making them extremely dense and strong. A substrate was obtained.

なお、今回の実施例では、導体層が3層の場合を示した
が、他の層数の場合においても同様に、良好な結果が得
られた。
In this example, the case where there were three conductor layers was shown, but similarly good results were obtained with other numbers of layers.

発明の効果 以上述べた様に、本発明の製造方法によって、各導体層
の゛印刷がしやすくなり、また膜厚も均一なものが得ら
れ、さらに、内層導体の切断の心配がないセラミック銅
多層配線基板の作製が可能となった。さらに、銅多層基
板という事で、Cuの持っている導体抵抗の低さ、ハン
ダ付は性の良さ、耐マイグレーション性の良さ、低コス
トを充分に生かせるものであり、工業上極めて効果的で
ある。
Effects of the Invention As described above, the manufacturing method of the present invention makes it easier to print each conductor layer, provides a uniform film thickness, and is also a ceramic copper material that eliminates the risk of cutting the inner layer conductor. It has become possible to create multilayer wiring boards. Furthermore, since it is a copper multilayer board, it can take full advantage of Cu's low conductor resistance, good solderability, good migration resistance, and low cost, making it extremely effective industrially. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のセラミック綿調多層配線基板の製造
方法によって作製した未焼結セラミック配線基板の断面
図、第2図は本発明の製造方法によって作製したセラミ
ック銅多層配線基板の断面図、第3図は、脱パインダニ
程の温度プロファイルの一例を示す特性図、第4図は還
元工程の温度プロファイルの一例を示す特性図、第5図
は焼成工程の温度プロファイルの一例を示す特性図、第
6図は従来例に示した方法で作製したセラミ・7り銅多
層基板の一部分を示す斜視図、第7図も同じく、従来例
に示したセラミック銅多層基板の断面図である。 1・・・・・・基板、2・・・・・・導体層、3・・・
・・・絶縁層。
FIG. 1 is a cross-sectional view of an unsintered ceramic wiring board manufactured by the method of manufacturing a ceramic cotton-like multilayer wiring board of the present invention, and FIG. 2 is a cross-sectional view of a ceramic copper multilayer wiring board manufactured by the manufacturing method of the present invention. , Fig. 3 is a characteristic diagram showing an example of the temperature profile during depine mite removal, Fig. 4 is a characteristic diagram showing an example of the temperature profile during the reduction process, and Fig. 5 is a characteristic diagram showing an example of the temperature profile during the baking process. , FIG. 6 is a perspective view showing a part of a ceramic/copper multilayer board manufactured by the method shown in the conventional example, and FIG. 7 is a sectional view of the ceramic copper multilayer board also shown in the conventional example. 1...Substrate, 2...Conductor layer, 3...
...Insulating layer.

Claims (2)

【特許請求の範囲】[Claims] (1)CuOを主成分とする無機成分に有機ビヒクルを
加えた導体層用ペーストと、ガラスもしくはガラス−セ
ラミックに有機ビヒクルを加えた絶縁層用ペーストによ
り、アルミナ焼結基板上に、絶縁層が下部導体層を、バ
イア部分を除き基板全面にわたっておおうようにして、
導体層と絶縁層の印刷・乾燥を所望の回数繰り返し、配
線を形成する工程と、該未焼結体を、炭素に対して充分
な酸化性雰囲気で、かつ内部の有機成分を熱分解させる
に充分な温度で脱バインダする工程と、さらにこれを還
元雰囲気中で熱処理する工程と、その後、窒素雰囲気中
で焼成し、焼結させる工程と、この様にして得たセラミ
ック銅配線基板上に、Cuペーストを用い、配線パター
ンを形成する工程と、その後、窒素雰囲気中で焼成する
工程からなる事を特徴とするセラミック銅多層配線基板
の製造方法。
(1) An insulating layer can be formed on an alumina sintered substrate using a conductor layer paste made of an inorganic component containing CuO as the main component plus an organic vehicle, and an insulating layer paste made of glass or glass-ceramic with an organic vehicle added. The lower conductor layer is made to cover the entire surface of the board except for the via area.
The process of repeating printing and drying of the conductive layer and the insulating layer a desired number of times to form wiring, and the process of forming the unsintered body in an atmosphere sufficiently oxidizing for carbon and thermally decomposing the organic components inside. On the ceramic copper wiring board obtained in this way, A method for manufacturing a ceramic copper multilayer wiring board, comprising a step of forming a wiring pattern using Cu paste, and then a step of firing in a nitrogen atmosphere.
(2)グリーンシート印刷法により未焼結体を形成する
、特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the unsintered body is formed by a green sheet printing method.
JP28849485A 1985-12-20 1985-12-20 Method for manufacturing ceramic copper multilayer wiring board Expired - Lifetime JPH0680897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28849485A JPH0680897B2 (en) 1985-12-20 1985-12-20 Method for manufacturing ceramic copper multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28849485A JPH0680897B2 (en) 1985-12-20 1985-12-20 Method for manufacturing ceramic copper multilayer wiring board

Publications (2)

Publication Number Publication Date
JPS62145896A true JPS62145896A (en) 1987-06-29
JPH0680897B2 JPH0680897B2 (en) 1994-10-12

Family

ID=17730939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28849485A Expired - Lifetime JPH0680897B2 (en) 1985-12-20 1985-12-20 Method for manufacturing ceramic copper multilayer wiring board

Country Status (1)

Country Link
JP (1) JPH0680897B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231398A (en) * 1988-03-11 1989-09-14 Matsushita Electric Ind Co Ltd Ceramic multilayer interconnection board and preparation thereof
JPH01321691A (en) * 1988-06-22 1989-12-27 Matsushita Electric Ind Co Ltd Manufacture of thick-film ceramic multilayer substrate
JPH02156596A (en) * 1988-12-08 1990-06-15 Matsushita Electric Ind Co Ltd Manufacture of thick multilayered substrate
JPH03208831A (en) * 1990-01-08 1991-09-12 Murata Mfg Co Ltd Electrically conductive paste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231398A (en) * 1988-03-11 1989-09-14 Matsushita Electric Ind Co Ltd Ceramic multilayer interconnection board and preparation thereof
JPH01321691A (en) * 1988-06-22 1989-12-27 Matsushita Electric Ind Co Ltd Manufacture of thick-film ceramic multilayer substrate
JPH02156596A (en) * 1988-12-08 1990-06-15 Matsushita Electric Ind Co Ltd Manufacture of thick multilayered substrate
JPH03208831A (en) * 1990-01-08 1991-09-12 Murata Mfg Co Ltd Electrically conductive paste

Also Published As

Publication number Publication date
JPH0680897B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US5370759A (en) Method for producing multilayered ceramic substrate
JP2785544B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05139810A (en) Method for baking glass-ceramic structure
JPH06237081A (en) Manufacture of multilayer ceramic substrate
JPH06100377A (en) Production of multilayer ceramic board
JPS62145896A (en) Manufacture of ceramic copper multilayer wiring board
JPH0730253A (en) Method of manufacturing multilayer ceramic board
JPH06223621A (en) Conductor paste composition
JPS63257107A (en) Metallizing composition
JPS61289691A (en) Metalized composition
JPH05167253A (en) Manufacture of multilayer ceramic board
JPH0321107B2 (en)
JPH0588557B2 (en)
JPH0632379B2 (en) Method for manufacturing ceramic wiring board
JPH0680898B2 (en) Method for manufacturing ceramic copper multilayer substrate
JPH0554718B2 (en)
JPS6126293A (en) Ceramic multilayer circuit board and method of producing same
JPS6126292A (en) Ceramic multilayer circuit board and method of producing same
JPS63257109A (en) Metallizing composition
JPS60167489A (en) Method of producing ceramic circuit board
JPH088505A (en) Low temperature fired ceramic circuit board and manufacture thereof
JPS62198198A (en) Manufacture of ceramic multilayer interconnecting board
JPS63257108A (en) Metallizing composition
JPS61292394A (en) Metalized composition for ceramic wiring board
JPH05308193A (en) Manufacture of multilayer ceramic board