JPH01321691A - Manufacture of thick-film ceramic multilayer substrate - Google Patents

Manufacture of thick-film ceramic multilayer substrate

Info

Publication number
JPH01321691A
JPH01321691A JP15393488A JP15393488A JPH01321691A JP H01321691 A JPH01321691 A JP H01321691A JP 15393488 A JP15393488 A JP 15393488A JP 15393488 A JP15393488 A JP 15393488A JP H01321691 A JPH01321691 A JP H01321691A
Authority
JP
Japan
Prior art keywords
insulating layer
temperature
paste
glass
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15393488A
Other languages
Japanese (ja)
Other versions
JPH0734504B2 (en
Inventor
Minehiro Itagaki
峰広 板垣
Norimitsu Chinomi
知野見 紀光
Koji Nishida
孝治 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63153934A priority Critical patent/JPH0734504B2/en
Publication of JPH01321691A publication Critical patent/JPH01321691A/en
Publication of JPH0734504B2 publication Critical patent/JPH0734504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the resistance value of a resistor approximately the same as that of the resistor on an alumina substrate even when the resistor is formed onto an insulating layer by using specific crystallized glass or crystallized glass- ceramics as the insulating layer of an uppermost section. CONSTITUTION:Paste 2 for a copper oxide conductor mainly comprising copper oxide and insulating paste 3 mainly containing glass or glass-ceramics are printed alternately onto a ceramic baked substrate 1, and the substrate 1 is thermally treated at a temperature or higher sufficient for decomposing organic components included in paste. The substrate is thermally treated at a temperature from a temperature, where copper oxide is reduced to metallic copper, to the sintering temperature of the insulating layer 3 in a reducing atmosphere. The insulating layer is sintered in an atmosphere brought to a non-oxidizing state to copper, and insulating paste composed of crystallized glass or crystallized glass-ceramics having a crystallization temperature within a temperature range of 800-900 deg.C and high crystallinity is employed for forming an insulating layer 4 as an uppermost section. Accordingly, even when a thick film resistor 5 is shaped onto the insulating layer 4, the resistance value of the resistor 5 is approximately equal to a resistance value on the alumina substrate 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、IC,LSI、チップ部品などを搭載し、か
つそれらを相互配線した回路の高密度実装基板として用
いることのできる厚膜セラミック多層基板の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thick-film ceramic multilayer substrate that can be used as a high-density mounting board for circuits on which ICs, LSIs, chip components, etc. are mounted and interconnected. This relates to a manufacturing method.

従来の技術 近年、導体材料に銅を使用した厚膜多層基板は、厚膜ペ
ーストが手軽に入手できることや、工法が簡単なため比
較的容易に作製できることから、現在多方面で実用化検
討されている。多層基板の絶縁層に要求される特性とし
ては、配線層間の絶縁性が良好なことである。このため
一般には、絶縁層を緻密化するために、非晶質系のガラ
スあるいは焼成温度より高い結晶化温度を持つ結晶化ガ
ラスが使用される。
Conventional technology In recent years, thick film multilayer boards using copper as the conductor material are being considered for practical use in many fields because thick film paste is readily available and the manufacturing method is simple, making it relatively easy to manufacture. There is. A characteristic required of the insulating layer of a multilayer board is good insulation between wiring layers. For this reason, in general, amorphous glass or crystallized glass having a crystallization temperature higher than the firing temperature is used to densify the insulating layer.

一方、表面実装の点から見ると、多層基板の表面をすべ
てチップ部品で構成するよりも、可能な箇所には厚膜抵
抗全形成するほうが有利である。
On the other hand, from the point of view of surface mounting, it is more advantageous to form all thick film resistors where possible than to construct the entire surface of a multilayer board with chip components.

発明が解決しようとする課題 しかしながら非晶質ガラスもしくはガラス−セラミック
絶縁層上に厚膜抵抗を形成すると、その抵抗値はアルミ
ナ基板上での値と比べて大幅て低下するので、絶縁層上
に厚膜抵抗を形成するのは困難である。
Problem to be Solved by the Invention However, when a thick film resistor is formed on an amorphous glass or glass-ceramic insulating layer, the resistance value is significantly lower than that on an alumina substrate. It is difficult to form thick film resistors.

本発明は上記問題を解決するためになされたもので、絶
縁層上に厚膜抵抗を形成することのできる厚膜セラミッ
ク多層基板を提供するものである。
The present invention was made to solve the above problems, and provides a thick film ceramic multilayer substrate on which a thick film resistor can be formed on an insulating layer.

課題を解決するための手段 本発明は上記問題を解決するために、セラミ−yり焼成
基板上に酸化銅を主成分とする酸化銅導体用ペーストと
、ガラスもしくはガラス−セラミックを主成分とする絶
縁ペーストとを交互に印刷し多層配線を形成する工程と
、前記基板を大気もしくは酸化性雰囲気中でかつペース
トに含まれる有機成分を分解させるに充分な温度以上で
加熱処理を行う工程と、しかる後還元性雰囲気中で、前
記絶縁層が焼結する温度以下でかつ酸化銅が金属銅に還
元される温度以上で加熱処理を行う工程と、さらに銅に
対して非酸化性となる雰囲気中で前記絶縁層の焼結を行
う工程とを有し、表面に露出する最上部の絶縁層を形成
するのに、800〜900℃の温度範囲に結晶化温度全
持ちかつ結晶化度の高い結晶化ガラスもしくは結晶化ガ
ラス−セラミックからなる絶縁ペーストを使用するもの
である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a paste for a copper oxide conductor containing copper oxide as a main component and glass or glass-ceramic as a main component on a ceramic sintered substrate. a step of alternately printing an insulating paste to form a multilayer wiring; a step of heating the substrate in air or an oxidizing atmosphere at a temperature sufficient to decompose the organic components contained in the paste; A step of performing heat treatment in a post-reducing atmosphere at a temperature below the temperature at which the insulating layer is sintered and above a temperature at which the copper oxide is reduced to metallic copper, and further in an atmosphere that is non-oxidizing to copper. A step of sintering the insulating layer, and in order to form the uppermost insulating layer exposed on the surface, a crystallization process that maintains the entire crystallization temperature in the temperature range of 800 to 900°C and has a high degree of crystallinity. An insulating paste made of glass or crystallized glass-ceramic is used.

作用 本発明は、上述した様に、表面に露出する最上部の絶縁
層に800〜900℃の温度範囲に結晶化温度を持ち、
かつ結晶化度の高い結晶化ガラスもしくは結晶化ガラス
−セラミック全使用するので、絶縁層上に厚膜抵抗を形
成しても、アルミナ基板上での抵抗値とほとんど変わら
ない。
Function As described above, the present invention has a crystallization temperature in the temperature range of 800 to 900°C in the uppermost insulating layer exposed to the surface,
In addition, since crystallized glass or crystallized glass-ceramic with a high degree of crystallinity is used, even if a thick film resistor is formed on an insulating layer, the resistance value is almost the same as that on an alumina substrate.

実施例 以下本発明の実施例の厚膜セラミック多層基板の製造方
法について図面を参照しながら説明する。
EXAMPLES Hereinafter, a method for manufacturing a thick film ceramic multilayer substrate according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における厚膜セラミック多層
基板の製造工程図、第2図は厚膜セラミック多層基板の
一例の断面を示すものである。
FIG. 1 is a manufacturing process diagram of a thick-film ceramic multilayer substrate according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an example of the thick-film ceramic multilayer substrate.

まず、アルミナ焼成基板1上に酸化銅ペーストで配線層
2をスクリーン印刷し、乾燥する。この時に使用される
酸化銅(CuO)は平均粒径3μmのものを用いた。ペ
ースト作製のためのビヒクルは、ターピネオール、ベン
ジルアルコールそしてブチルカルピトールの混合液を溶
剤とし、有機バインダ(結合剤)のポリビニルブチラー
ルを溶解したものを用い、上記酸化銅粉末と混練してペ
ーストとした。
First, a wiring layer 2 is screen printed using a copper oxide paste on a fired alumina substrate 1 and dried. The copper oxide (CuO) used at this time had an average particle size of 3 μm. The vehicle for making the paste was a mixture of terpineol, benzyl alcohol, and butylcarpitol dissolved in polyvinyl butyral as an organic binder, and the mixture was kneaded with the copper oxide powder to form a paste. .

次に、結晶化温度が900℃以上である結晶化ガラス(
ホウケイ酸鉛系)粉末とアルミナ粉末を重量比で50対
6oに配合した無機組成物(平均粒径2μm)と、ポリ
ビニルブチラールを酪酸エステル系溶剤で溶解したビヒ
クルを混練して作製した第1の絶縁ペーストで酸化銅配
線上およびアルミナ焼成基板1上の所望領域にスクリー
ン印刷を施し、乾燥して未焼成の第1の絶縁層3を形成
した。引き続き、結晶化温度がaOO〜900℃の温度
範囲にある結晶化ガラス(ホウケイ酸鉛系)粉末とアル
ミナ粉末全重量比で60対6oに配合した無機組成物(
平均粒径2μm)と、ポリビニルブチラールを酪酸エス
テル系溶剤で溶解したビヒクルを混練して作製した第2
の絶縁ペーストを前記第1の絶縁層3上に重ねてスクリ
ーン印刷を施し、乾燥して未焼成の第2の絶縁層4を形
成した。なお、前記酸化銅ペーストと絶縁ペーストの作
製にターピネオール、ベンジルアルコール、ブチルカル
ピトール、酪酸エステル、ポリビニルブチラールを用い
たが、有機バインダとしてエチルセルロース、アクリル
系樹脂を用いても良く、さら知ソルビタンアルキルエス
テル、ポリオキシエチレンアルキエーテル等の界面活性
剤を用いることも有効な手段である。さらに、前記酸化
銅ペーストにより最上部配線層を形成した。印刷を完了
した基板を空気中、300〜700℃に加熱しペースト
中の有機成分を完全に除去し、脱バインダを行った。続
いて、水素ガスを5〜40%含有する窒素ガス雰囲気中
、300〜500’Cで酸化鋼を金属銅に還元した後、
窒素ガス雰囲気中900’Cで金属銅と未焼成の第1と
第2の絶縁層3.4を同時に焼成した。
Next, crystallized glass whose crystallization temperature is 900°C or higher (
The first product was prepared by kneading an inorganic composition (average particle size 2 μm) containing lead borosilicate (lead borosilicate) powder and alumina powder in a weight ratio of 50:6 and a vehicle in which polyvinyl butyral was dissolved in a butyrate solvent. Screen printing was applied to desired areas on the copper oxide wiring and the fired alumina substrate 1 with an insulating paste, and the resultant paste was dried to form an unfired first insulating layer 3. Subsequently, an inorganic composition was prepared in which the total weight ratio of crystallized glass (lead borosilicate) powder and alumina powder having a crystallization temperature in the temperature range of aOO to 900° C. was blended at 60:6.
A second particle prepared by kneading a vehicle with an average particle size of 2 μm) and a vehicle prepared by dissolving polyvinyl butyral in a butyric acid ester solvent.
The insulating paste was layered on the first insulating layer 3 and screen printed, and dried to form an unfired second insulating layer 4. Although terpineol, benzyl alcohol, butylcarpitol, butyric acid ester, and polyvinyl butyral were used to prepare the copper oxide paste and insulating paste, ethyl cellulose or acrylic resin may also be used as the organic binder, and sorbitan alkyl ester may also be used as the organic binder. It is also an effective means to use a surfactant such as polyoxyethylene alkyether. Furthermore, a top wiring layer was formed using the copper oxide paste. The printed substrate was heated in air to 300 to 700°C to completely remove the organic components in the paste and remove the binder. Subsequently, after reducing the oxidized steel to metallic copper at 300 to 500'C in a nitrogen gas atmosphere containing 5 to 40% hydrogen gas,
The metallic copper and the unfired first and second insulating layers 3.4 were fired simultaneously at 900'C in a nitrogen gas atmosphere.

なお、実施例で得られた基板の最上部の第2の絶縁層4
に抵抗体6を形成したところ、アルミナ焼成基板1上に
抵抗体を形成した場合の抵抗値とほとんど変わらなかっ
た。その結果を、最上部絶縁層に結晶化温度が900℃
以上の結晶化ガラス−アルミナを用いた場合の結果と合
わせて下表に示す。
Note that the second insulating layer 4 on the top of the substrate obtained in the example
When the resistor 6 was formed on the alumina fired substrate 1, the resistance value was almost the same as that when the resistor was formed on the alumina fired substrate 1. The result is that the crystallization temperature of the top insulating layer is 900℃.
The results are shown in the table below together with the results when using the above crystallized glass-alumina.

*アルミナ基板上での抵抗値を基準とした。*Based on resistance value on alumina substrate.

発明の効果 本発明によれば、次のような効果が得られる。Effect of the invention According to the present invention, the following effects can be obtained.

(1)最上部絶縁層に、結晶化温度の範囲がSOO〜9
00℃でかつ結晶化度の高い結晶化ガラスもしくは結晶
化ガラス−セラミックを使用するので、絶縁層上に抵抗
体を形成してもアルミナ基板上での値とほとんど変わら
ない。
(1) The top insulating layer has a crystallization temperature range of SOO~9.
Since crystallized glass or crystallized glass-ceramic, which is heated to 00° C. and has a high degree of crystallinity, is used, even if a resistor is formed on an insulating layer, the value is almost the same as that on an alumina substrate.

(2)最上部絶縁層(第2の絶縁層)に結晶化温度の範
囲が800〜900℃で、かつ結晶化度の高い結晶化ガ
ラスもしくは結晶化ガラス−セラミックを使用し、第1
の絶縁層には非晶質系のガラスもしくは結晶化温度が9
00℃以上のガラスを使用するので、配線層間の絶縁性
は良好である。
(2) Use crystallized glass or crystallized glass-ceramic with a crystallization temperature range of 800 to 900°C and a high degree of crystallinity for the uppermost insulating layer (second insulating layer);
The insulating layer is made of amorphous glass or has a crystallization temperature of 9
Since glass having a temperature of 00° C. or higher is used, the insulation between wiring layers is good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における厚膜セラミック多層
基板の製造工程図、第2図は厚膜セラミック多層基板の
断面図である。 1・・・・・・アルミナ焼成、基板、2・・・・・・配
線層、3・・・・・・第1の絶縁層、4・・・・・・第
2の絶縁層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a manufacturing process diagram of a thick film ceramic multilayer substrate according to an embodiment of the present invention, and FIG. 2 is a sectional view of the thick film ceramic multilayer substrate. 1... Alumina firing, substrate, 2... Wiring layer, 3... First insulating layer, 4... Second insulating layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2

Claims (1)

【特許請求の範囲】[Claims] セラミック焼成基板上に酸化銅を主成分とする酸化銅導
体用ペーストと、ガラスもしくはガラス−セラミックを
主成分とする絶縁ペーストとを交互に印刷し多層配線を
形成する工程と、前記基板を大気もしくは酸化性雰囲気
中でかつペーストに含まれる有機成分を分解させるに充
分な温度以上で加熱処理を行う工程と、しかる後還元性
雰囲気中で前記絶縁層が焼結する温度以下でかつ酸化銅
が金属銅に還元される温度以上で加熱処理を行う工程と
、さらに銅に対して非酸化性となる雰囲気中で前記絶縁
層の焼結を行う工程とを有し、表面に露出する最上部の
絶縁層を形成するのに、800〜900℃の温度範囲に
結晶化温度を持ちかつ結晶化度の高い結晶化ガラスもし
くは結晶化ガラス−セラミックからなる絶縁ペーストを
使用することを特徴とする厚膜セラミック多層基板の製
造方法。
A step of alternately printing a copper oxide conductor paste containing copper oxide as a main component and an insulating paste containing glass or glass-ceramic as a main component on a fired ceramic substrate to form a multilayer wiring; A step of heat treatment in an oxidizing atmosphere at a temperature higher than sufficient to decompose the organic components contained in the paste, and then a step of heat treatment in a reducing atmosphere at a temperature lower than the temperature at which the insulating layer is sintered and the copper oxide becomes a metal. A step of heat-treating the insulating layer at a temperature higher than that at which it is reduced to copper, and a step of sintering the insulating layer in an atmosphere that is non-oxidizing to copper. A thick film ceramic characterized in that an insulating paste made of crystallized glass or crystallized glass-ceramic having a crystallization temperature in the temperature range of 800 to 900°C and having a high degree of crystallinity is used to form the layer. A method for manufacturing a multilayer board.
JP63153934A 1988-06-22 1988-06-22 Method for manufacturing thick film ceramic multilayer substrate Expired - Lifetime JPH0734504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63153934A JPH0734504B2 (en) 1988-06-22 1988-06-22 Method for manufacturing thick film ceramic multilayer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63153934A JPH0734504B2 (en) 1988-06-22 1988-06-22 Method for manufacturing thick film ceramic multilayer substrate

Publications (2)

Publication Number Publication Date
JPH01321691A true JPH01321691A (en) 1989-12-27
JPH0734504B2 JPH0734504B2 (en) 1995-04-12

Family

ID=15573273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63153934A Expired - Lifetime JPH0734504B2 (en) 1988-06-22 1988-06-22 Method for manufacturing thick film ceramic multilayer substrate

Country Status (1)

Country Link
JP (1) JPH0734504B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261950A (en) * 1991-06-26 1993-11-16 Ngk Spark Plug Co., Ltd. Composition for metalizing ceramics
KR20030050396A (en) * 2001-12-18 2003-06-25 오리온전기 주식회사 Method of Manufacturing LTCC Module
JP2012154316A (en) * 2011-01-06 2012-08-16 Ibiden Co Ltd Exhaust emission treatment device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131993A (en) * 1980-03-19 1981-10-15 Tokyo Shibaura Electric Co Glazed board
JPS62145896A (en) * 1985-12-20 1987-06-29 松下電器産業株式会社 Manufacture of ceramic copper multilayer wiring board
JPS62252901A (en) * 1985-11-30 1987-11-04 株式会社住友金属セラミックス Electronic circuit board with resistance unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131993A (en) * 1980-03-19 1981-10-15 Tokyo Shibaura Electric Co Glazed board
JPS62252901A (en) * 1985-11-30 1987-11-04 株式会社住友金属セラミックス Electronic circuit board with resistance unit
JPS62145896A (en) * 1985-12-20 1987-06-29 松下電器産業株式会社 Manufacture of ceramic copper multilayer wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261950A (en) * 1991-06-26 1993-11-16 Ngk Spark Plug Co., Ltd. Composition for metalizing ceramics
KR20030050396A (en) * 2001-12-18 2003-06-25 오리온전기 주식회사 Method of Manufacturing LTCC Module
JP2012154316A (en) * 2011-01-06 2012-08-16 Ibiden Co Ltd Exhaust emission treatment device
JP2016014395A (en) * 2011-01-06 2016-01-28 イビデン株式会社 Exhaust gas treatment device

Also Published As

Publication number Publication date
JPH0734504B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
JPH01321691A (en) Manufacture of thick-film ceramic multilayer substrate
JPH029473B2 (en)
JPH02277279A (en) Simultaneously baked ceramic circuit board
JPS61292392A (en) Manufacture of ceramic wiring board
JPH02156596A (en) Manufacture of thick multilayered substrate
JPS62145896A (en) Manufacture of ceramic copper multilayer wiring board
JPH0258396A (en) Manufacture of thick film multilayer substrate
JPH01321692A (en) Manufacture of ceramic multilayer substrate
JP2589570B2 (en) Conductive paste for multilayer circuit board and method for manufacturing multilayer circuit board
JP2967013B2 (en) Insulation material
JPH0321109B2 (en)
JPH0320914B2 (en)
JPH0286194A (en) Ceramic multilayer wiring board and manufacture of the same
JPS63213302A (en) Electric resistor and manufacture of the same
JPH0554718B2 (en)
JPS62232191A (en) Manufacture of ceramic multilayer interconnection board
JPS62198198A (en) Manufacture of ceramic multilayer interconnecting board
JPS63155696A (en) Manufacture of thick film wiring board with built-in cr
JPS63291304A (en) Metallized constituent
JPS625694A (en) Manufacture of multilayer interconnection substrate
JPH01321680A (en) Ceramic wiring substrate and manufacture thereof
JPS63181496A (en) Manufacture of thick film circuit board
JPS62108749A (en) Electrically conductive paste
JPS63230552A (en) Manufacture of metal-dispersed ceramic substrate
JPS6126292A (en) Ceramic multilayer circuit board and method of producing same