JPS63181496A - Manufacture of thick film circuit board - Google Patents

Manufacture of thick film circuit board

Info

Publication number
JPS63181496A
JPS63181496A JP62014696A JP1469687A JPS63181496A JP S63181496 A JPS63181496 A JP S63181496A JP 62014696 A JP62014696 A JP 62014696A JP 1469687 A JP1469687 A JP 1469687A JP S63181496 A JPS63181496 A JP S63181496A
Authority
JP
Japan
Prior art keywords
film
circuit board
resistor
thick film
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62014696A
Other languages
Japanese (ja)
Other versions
JPH0740631B2 (en
Inventor
勉 西村
徹 石田
寛敏 渡辺
治 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62014696A priority Critical patent/JPH0740631B2/en
Publication of JPS63181496A publication Critical patent/JPS63181496A/en
Publication of JPH0740631B2 publication Critical patent/JPH0740631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、IC、チップ部品などの電子部品の実装を高
密度に低コストに行う厚膜回路基板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a thick film circuit board in which electronic components such as ICs and chip components can be mounted at high density and at low cost.

従来の技術 近年、各種電子機器の小型化や多機能化が年を追って進
んできているが、この中で回路部品の高密度実装技術は
重要な役割を演じてきている。特に、IC,LSIの発
達に伴う抵抗器、コンデンサ等のチップ化や厚膜化そし
て、配線基板の多層化などによる小型化、高密度化には
目を見張るものがある。さらに、ある回路ブロックを、
厚膜状の抵抗と配線導体を形成した厚膜回路基板上に他
のチップ状態の受動部品を搭載するいわゆる厚膜ハイブ
リッドICへと移行してきている。
BACKGROUND OF THE INVENTION In recent years, various electronic devices have become smaller and more multifunctional, and high-density mounting technology for circuit components has played an important role in this process. In particular, with the development of ICs and LSIs, resistors, capacitors, etc. have become more chip-based and thicker, and wiring boards have become more compact and denser due to multi-layered wiring boards. Furthermore, a certain circuit block is
There has been a shift to so-called thick film hybrid ICs in which other chip-like passive components are mounted on a thick film circuit board on which thick film resistors and wiring conductors are formed.

この厚膜ハイブリッドICは、抵抗体が厚膜状であるた
め、抵抗トリミングによる調整が容易な事と、セラミッ
ク材料を用いるため高信顛性である事などから、広く普
及してきている。
This thick-film hybrid IC has become widely popular because the resistor is in the form of a thick film, making it easy to adjust by trimming the resistor, and because it uses a ceramic material, it has high reliability.

以下図面を参照しながら、上述した従来の厚膜回路基板
の製造方法の一例について述べる。
An example of the conventional method for manufacturing the above-mentioned thick film circuit board will be described below with reference to the drawings.

第3図は従来の厚膜回路基板の断面図を示すものである
。同図において、10はセラミック基板、20は貴金属
導体膜、30はRub、系グレーズ抵抗膜を示す。従来
の厚膜回路基板は、焼結されたアルミナ基板10上に、
A u + A g +  P d 、  P tなど
の貴金属を主成分とするペーストをスクリーン印刷し、
乾燥後に850℃前後の温度の空気中で焼成して貴金属
系の導体膜20を得た後、RuO□−ガラスからなるペ
ーストを前記導体膜と接触するようにスクリーン印刷し
、乾燥後に空気中750〜900℃の温度で焼成してR
uO2系のグレーズ抵抗膜30を設けて得られるのが一
般的である。上記のようにして得られた厚膜回路基板は
、すべて空気中で焼成できるという手軽さと、抵抗体特
性も優れたものが得られておるため広く実用に供されて
いる。(例えば、「厚膜IC化技術」日本マイクロエレ
クトロニクス協会線、工業調査会発行)。
FIG. 3 shows a cross-sectional view of a conventional thick film circuit board. In the figure, 10 is a ceramic substrate, 20 is a noble metal conductor film, and 30 is a Rub-based glaze resistance film. A conventional thick film circuit board includes a sintered alumina substrate 10,
Screen printing a paste mainly composed of noble metals such as A u + A g + P d and P t,
After drying, the noble metal-based conductor film 20 was obtained by firing in air at a temperature of around 850°C, and then a paste made of RuO□-glass was screen printed so as to be in contact with the conductor film, and after drying, it was fired in air at 750°C. Baked at a temperature of ~900℃ and R
It is generally obtained by providing a uO2-based glaze resistance film 30. The thick film circuit boards obtained as described above are easily used in that they can be fired in air, and they have excellent resistor properties, so they are widely put to practical use. (For example, "Thick Film IC Technology" published by Japan Microelectronics Association, Industrial Research Association).

しかし、反面では、導体材料、抵抗材料共に高価で価格
変動の大きい貴金属材料を用いているため、いくら製造
の合理化をはかったとしても非常に高価な回路基板にな
るという問題点を有していた。そこで、両者とも貴金属
材料を用いないつまり低コストで価格変動も少ない卑金
属材料のみからなる導体材料と抵抗材料を用いた構成の
ものが提案されている。
However, on the other hand, since both the conductor material and the resistor material are expensive and use precious metal materials whose prices fluctuate widely, there was a problem that no matter how much rationalization of manufacturing was attempted, the result was a very expensive circuit board. . Therefore, a configuration has been proposed in which both conductive materials and resistive materials are made of base metal materials, which are low in cost and have little price fluctuation, without using noble metal materials.

〔例えば、プロシーデインダス オブ ザ フォース 
インターナショナル マイクロエレクトロニクス カン
ファレンス アイ エム シー1986  コーベ、ア
イ ニス エッチ エム ジャパン発行;  267〜
271P (Proceedings of the4
th International Microele
ctronics conferenceINC198
6Kobe、ISHM Japan発行;  267〜
271P) )これは、Cuなどの卑金属導体を予めセ
ラミック基板10にメタライズして導体膜20とし、そ
の後、珪化物−ガラス系グレーズ抵抗ペーストを前記の
メタライズ導体膜と接触する様に印刷し、乾燥後、85
0℃〜1000℃の非酸化性雰囲気中の高温で焼付けて
グレーズ抵抗体を得るものである。確かに、この構成で
は、■電極、抵抗材料共に卑金属を用いるため安価であ
り、■Cuなどの卑金属は半田付けが容易でしかもマイ
グレーシジンしにくいなどの優れた点を有しており、ま
た、抵抗体としての緒特性はRuO□系のそれと同等の
優れた特性を有している。
[For example, Proceedings of the Force
International Microelectronics Conference IMC 1986 Published by Kobe, I.M. Japan; 267-
271P (Proceedings of the4
th International Microele
ctronics conferenceINC198
6Kobe, published by ISHM Japan; 267~
271P)) This is done by metallizing a base metal conductor such as Cu on the ceramic substrate 10 in advance to form the conductor film 20, then printing a silicide-glass based glaze resistor paste so that it is in contact with the metallized conductor film, and drying it. After, 85
A glazed resistor is obtained by baking at a high temperature in a non-oxidizing atmosphere of 0°C to 1000°C. Indeed, this configuration has the following advantages: (1) It is inexpensive because base metals are used for both the electrode and the resistor material; (2) Base metals such as Cu are easy to solder and are difficult to migrate; Its properties as a resistor are as excellent as those of the RuO□ system.

発明が解決しようとする問題点 しかしながら、上記の構成においては、抵抗は基本特性
面では満足できるものの、抵抗値の初期バラツキが大き
いため実用上大きな不安を残している。特に、同じ面積
抵抗(Rs)の抵抗膜でありながら抵抗膜のたて・よこ
比(アスペクト比)によってRsが異なり、抵抗値を設
計する上で大きな障害となっている。これは、抵抗膜を
X線などで解析したところ、焼成時に電極と抵抗体の界
面で不要な反応が生じ、この反応層の抵抗変化によって
バラツキが発生するものと推測される。
Problems to be Solved by the Invention However, in the above configuration, although the resistor is satisfactory in terms of basic characteristics, the initial dispersion of the resistance value is large, which leaves a great deal of anxiety in practical use. In particular, although resistive films have the same sheet resistance (Rs), Rs differs depending on the aspect ratio of the resistive film, which is a major obstacle in designing the resistance value. Analysis of the resistive film using X-rays or the like suggests that this is because an unnecessary reaction occurs at the interface between the electrode and the resistor during firing, and variations in resistance occur due to changes in the resistance of this reaction layer.

このように、従来の珪化物−ガラス系グレーズ抵抗は初
期抵抗の不安定さからなかなか実用に供されないのが実
状であった。
As described above, the actual situation is that conventional silicide-glass based glaze resistors have been difficult to put into practical use due to the instability of their initial resistance.

本発明は、上記問題点に鑑み、使用する材料は卑金属材
料であるため安価で、安定な抵抗特性を有したグレーズ
抵抗と優れた導体膜とを有する高信頼性の厚膜回路基板
の製造方法を提供するものである。
In view of the above-mentioned problems, the present invention provides a method for manufacturing a highly reliable thick film circuit board that is inexpensive because the material used is a base metal material, and has a glaze resistor with stable resistance characteristics and an excellent conductor film. It provides:

問題点を解決するための手段 上記問題点を解決するために本発明の厚膜回路基板の製
造方法は、絶縁性磁器基板上に、珪化物−ガラス系グレ
ーズ抵抗膜を非酸化性雰囲気中の高温で焼成した後、前
記抵抗膜に接触する卑金属材料からなる導体膜を抵抗膜
の焼成温度より低い温度の非酸化性雰囲気中で焼成する
という構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a thick film circuit board of the present invention includes forming a silicide-glass based glaze resistive film on an insulating ceramic substrate in a non-oxidizing atmosphere. After firing at a high temperature, a conductive film made of a base metal material that contacts the resistive film is fired in a non-oxidizing atmosphere at a temperature lower than the firing temperature of the resistive film.

作用 本発明の方法によれば、抵抗膜を予め形成しであるため
に、抵抗体中の導体成分である珪化物をガラスがおおっ
た状態となり、さらに、抵抗膜中のガラスが結晶化して
いるため、電極焼成段階において、卑金属とガラスある
いは、卑金属と珪化物の化学反応を抑えることができる
。このため、電極焼成後の抵抗膜と電極膜との界面に反
応層が生成されず、膜形状依存性のない抵抗膜を有する
厚膜回路基板を提供できるものである。
According to the method of the present invention, since the resistive film is formed in advance, the silicide, which is a conductive component in the resistor, is covered with glass, and furthermore, the glass in the resistive film is crystallized. Therefore, the chemical reaction between the base metal and glass or the base metal and silicide can be suppressed during the electrode firing step. Therefore, a reaction layer is not generated at the interface between the resistive film and the electrode film after electrode firing, and a thick film circuit board having a resistive film that is independent of film shape can be provided.

実施例 以下本発明の一実施例の厚膜回路基板の製造方法につい
て、図面を参照しながら説明する。第1図は本発明の実
施例における厚膜回路基板の断面図を示すものである。
EXAMPLE Hereinafter, a method of manufacturing a thick film circuit board according to an example of the present invention will be described with reference to the drawings. FIG. 1 shows a sectional view of a thick film circuit board in an embodiment of the present invention.

第1図において、10はセラミック基板、40は卑金属
導体、50は珪化物−ガラス系グレーズ抵抗膜を示す。
In FIG. 1, 10 is a ceramic substrate, 40 is a base metal conductor, and 50 is a silicide-glass glazed resistive film.

3種類の珪化物組成ををする珪化物粉体を特開昭56−
153702号公報に示す手順で得た。この珪化物粉体
に、Bad、Bz Ox 、MgO,Cab。
A silicide powder having three types of silicide compositions was developed in Japanese Patent Application Laid-Open No. 1986-
It was obtained by the procedure shown in Japanese Patent No. 153702. This silicide powder contains Bad, BzOx, MgO, and Cab.

SiO□からなるガラスフリフトと、アクリル系バイン
ダをテレピン油に10%溶解したビヒクルとを加え、よ
く混練して珪化物−ガラス系グレーズ抵抗ペーストとし
た。この時、珪化物粉体とガラスフリフトとの合計量に
対する珪化物粉体を5〜50重量%になるようにした。
A glass lift made of SiO□ and a vehicle in which 10% of an acrylic binder was dissolved in turpentine oil were added and thoroughly kneaded to obtain a silicide-glass glaze resistance paste. At this time, the amount of silicide powder was adjusted to 5 to 50% by weight based on the total amount of silicide powder and glass lift.

また、ペースト作製時に用いる有機バインダーとしては
、非酸化性雰囲気で焼き付けするため、熱分解性のアク
リル系バインダーが望ましい。以上の様にして作製した
抵抗ペーストを、アルミナ純度が96%の焼結体である
セラミック基板10上にスクリーン印刷し、120℃で
10分間乾燥した後、最高温度が850〜1000℃で
、N2のみか、またはN2とN2の混合ガスの非酸化性
雰囲気に保たれた連続ベルト炉に通して焼成し、珪化物
−ガラス系グレーズ抵抗体50を形成した。この時、焼
付温度は、ガラス組成と導体材料の組合せによって異な
る。
Further, as the organic binder used when preparing the paste, a thermally decomposable acrylic binder is preferable since baking is performed in a non-oxidizing atmosphere. The resistor paste produced as described above was screen printed on a ceramic substrate 10 which is a sintered body with an alumina purity of 96%, and after drying at 120°C for 10 minutes, N2 A silicide-glass based glaze resistor 50 was formed by firing in a continuous belt furnace maintained in a non-oxidizing atmosphere of a mixed gas of N2 and N2. At this time, the baking temperature varies depending on the combination of glass composition and conductor material.

次に、導体材料としてCuを主成分としたペーストを抵
抗膜50に接触するようにスクリーン印刷し、120℃
で10分間乾燥した後、最高温度が850〜950℃ 
(ただし、抵抗焼成よりも低い温度)で、N2のみか、
またはN2とN2混合ガスの非酸化性雰囲気に保たれた
連続ベルト炉に通して焼成しCuの導体膜40を形成し
た。この時の電極間距離(L)は0.5〜101mで0
,5n+おきに異なっており、また抵抗体幅はlllで
一定とした。
Next, a paste mainly composed of Cu as a conductive material was screen printed so as to be in contact with the resistive film 50, and the paste was heated to 120°C.
After drying for 10 minutes, the maximum temperature is 850-950℃
(However, at a lower temperature than resistance firing), only N2 or
Alternatively, the conductive film 40 of Cu was formed by passing it through a continuous belt furnace maintained in a non-oxidizing atmosphere of N2 and N2 mixed gas and firing it. The distance between the electrodes (L) at this time is 0.5 to 101 m.
, 5n+, and the resistor width was constant at lll.

このようにして得られた厚膜回路基板のグレーズ抵抗の
面積抵抗Rs  (Ω/口)R5=RO/L、25℃と
125℃における抵抗の温度変化率TCR(ppm/”
C) 、電流ノイズ(dB)、150mW/mu2の負
荷を5秒間印加した時の抵抗変化率ΔR(%)について
それぞれ調べた。また、電極界面のRsへの影響を明ら
かにするために、L=101mのときの面積抵抗RIG
とL=0.5mmの時の面積抵抗R0,5の比(AR)
をとって調べた。
The sheet resistance Rs (Ω/hole) of the glaze resistor of the thick film circuit board thus obtained, R5=RO/L, the temperature change rate of resistance at 25°C and 125°C TCR (ppm/”
C), current noise (dB), and resistance change rate ΔR (%) when a load of 150 mW/mu2 was applied for 5 seconds were investigated. In addition, in order to clarify the influence of the electrode interface on Rs, the areal resistance RIG when L = 101 m
and the ratio of area resistance R0,5 when L=0.5mm (AR)
I took it and looked it up.

(AR)”RIG/RO,S 第1表に実施例で得られた抵抗体の材料組成と代表的抵
抗体特性であるRs、TCR,N、  ΔR1ARを示
す。同表から、珪化物組成の違いによらず、抵抗値の形
状依存性が極めて少ないことがわかる。
(AR)”RIG/RO,S Table 1 shows the material composition of the resistor obtained in the example and the typical resistor characteristics Rs, TCR, N, and ΔR1AR. It can be seen that the shape dependence of the resistance value is extremely small regardless of the difference.

第1表 比較例 本発明の効果を明らかにするために、従来の方法、すな
わち卑金属電極形成後に、珪化物−ガラス系グレーズ抵
抗体を形成する方法で得られた厚膜回路基板の抵抗の代
表的特性を実施例の代表的特性と共に第2表に示し両者
を比較する。
Table 1 Comparative Examples In order to clarify the effects of the present invention, representative resistances of thick film circuit boards obtained by a conventional method, that is, a method of forming a silicide-glass based glazed resistor after forming a base metal electrode. The typical characteristics are shown in Table 2 together with the typical characteristics of the examples, and the two are compared.

第2表 第2表の比較例との比較から、本発明の製造方法によっ
て、優れた抵抗体特性を有する厚膜回路基板が得られる
事がわかる。とりわけ、電極との反応が少な(、膜形状
依存性の小さい(ARが1に近い)抵抗の形成が可能と
なる。さらに、第2図には、電極間距離(L)と面積抵
抗Rsとの関係を、実施例(a)と比較例(b)の代表
的なものについて示した。第2図から、本発明の製造方
法により形成した抵抗は膜形状依存性が全くない事がわ
かる。さらに、第1表から、本発明の製造方法のなかで
、抵抗体としては、珪化物−ガラス系のグレーズ抵抗体
であればよく珪化物の種類によって、その効果が著しく
変わらない事がわかる。
A comparison with the comparative example shown in Table 2 shows that the manufacturing method of the present invention provides a thick film circuit board with excellent resistor properties. In particular, it is possible to form a resistor that has little reaction with the electrode (and has little film shape dependence (AR is close to 1). Furthermore, in Figure 2, the distance between the electrodes (L) and the sheet resistance Rs The relationship is shown for typical examples of Example (a) and Comparative Example (b).It can be seen from FIG. 2 that the resistor formed by the manufacturing method of the present invention has no dependence on film shape. Furthermore, Table 1 shows that in the manufacturing method of the present invention, the resistor may be a silicide-glass glazed resistor, and the effect does not change significantly depending on the type of silicide.

なお、本実施例ではグレーズ抵抗体のガラス成分として
硼珪酸バリウム系のものを用いたが、非酸化性雰囲気の
高温で安定な抵抗膜を形成できるものであればこれに限
らない。
In this embodiment, a barium borosilicate glass component was used as the glass component of the glaze resistor, but the glass component is not limited to this as long as it can form a stable resistive film at high temperatures in a non-oxidizing atmosphere.

発明の効果 以上のように本発明の製造方法は、絶縁性磁器基板上に
、珪化物−ガラス系グレーズ抵抗膜を非酸化性雰囲気中
の高温で焼成した後、前記抵抗膜に接触する卑金属材料
からなる導体膜を抵抗膜の焼成温度より低い温度の非酸
化性雰囲気中で焼成することにより、高信頼性で膜形状
依存性の小さい抵抗体と、優れた導体膜を有する厚膜回
路基板を提供することができる。
Effects of the Invention As described above, in the manufacturing method of the present invention, after firing a silicide-glass based glazed resistive film on an insulating ceramic substrate at a high temperature in a non-oxidizing atmosphere, a base metal material in contact with the resistive film is heated. By firing a conductor film consisting of the above in a non-oxidizing atmosphere at a temperature lower than the firing temperature of the resistive film, we can produce a highly reliable resistor with little dependence on film shape and a thick film circuit board with an excellent conductor film. can be provided.

さらに、導体膜としてCuの持っている導体抵抗の低さ
、半田付は性の良さ、耐マイグレーション性の良さ、低
コストを充分に生かせるものであり、工業上極めて効果
的な発明である。
Furthermore, as a conductive film, Cu's low conductor resistance, good soldering properties, good migration resistance, and low cost can be fully utilized, making it an extremely effective invention industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における厚膜回路基板の断面図
、第2図は電極間距離りと面積抵抗Rsとの関係を示す
特性図、第3図は従来の厚膜回路基板の断面図である。 10・・・・・・セラミック基板、20・・・・・・導
体膜、30・・・・・・グレーズ抵抗膜、40・・・・
・・卑金属導体膜、50・・・・・・珪化物−ガラス系
グレーズ抵抗膜。 代理人の氏名 弁理士 中尾敏男 ほか1名L (xq
Fig. 1 is a cross-sectional view of a thick film circuit board according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between the distance between electrodes and the sheet resistance Rs, and Fig. 3 is a cross-sectional view of a conventional thick film circuit board. It is a diagram. 10...Ceramic substrate, 20...Conductor film, 30...Glaze resistance film, 40...
...Base metal conductor film, 50... Silicide-glass-based glaze resistance film. Name of agent: Patent attorney Toshio Nakao and 1 other person L (xq
vinegar

Claims (1)

【特許請求の範囲】[Claims]  絶縁性磁器基板上に、珪化物−ガラス系グレーズ抵抗
膜を非酸化性雰囲気中の高温で焼成した後、前記抵抗膜
に接触する卑金属材料からなる導体膜を抵抗膜の焼成温
度より低い温度の非酸化性雰囲気中で焼成することを特
徴とする厚膜回路基板の製造方法。
After firing a silicide-glass-based glazed resistive film on an insulating ceramic substrate at high temperature in a non-oxidizing atmosphere, a conductive film made of a base metal material in contact with the resistive film is heated at a temperature lower than the firing temperature of the resistive film. A method for producing a thick film circuit board, characterized by firing in a non-oxidizing atmosphere.
JP62014696A 1987-01-23 1987-01-23 Thick film circuit board manufacturing method Expired - Lifetime JPH0740631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62014696A JPH0740631B2 (en) 1987-01-23 1987-01-23 Thick film circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62014696A JPH0740631B2 (en) 1987-01-23 1987-01-23 Thick film circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JPS63181496A true JPS63181496A (en) 1988-07-26
JPH0740631B2 JPH0740631B2 (en) 1995-05-01

Family

ID=11868350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62014696A Expired - Lifetime JPH0740631B2 (en) 1987-01-23 1987-01-23 Thick film circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JPH0740631B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352202A (en) * 1989-07-20 1991-03-06 Sumitomo Metal Mining Co Ltd Manufacture of thick-film resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352202A (en) * 1989-07-20 1991-03-06 Sumitomo Metal Mining Co Ltd Manufacture of thick-film resistor

Also Published As

Publication number Publication date
JPH0740631B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
JPS60500837A (en) thick film resistor circuit
JPH0213803B2 (en)
JPS6166303A (en) Conductive paste for thick film
JPS63181496A (en) Manufacture of thick film circuit board
JPH0797447B2 (en) Metallized composition
JPS63181497A (en) Manufacture of thick film circuit board
JPS61289691A (en) Metalized composition
JPH08298359A (en) Thick copper film circuit board
JPH1098244A (en) Thick-film circuit board and its manufacture
JPS62145896A (en) Manufacture of ceramic copper multilayer wiring board
JPS6281702A (en) Silicide resistance material
JPH0554718B2 (en)
JPS6318356B2 (en)
JPS63301405A (en) Manufacture of low temperature baking type conductive paste and circuit board
JPS61294847A (en) Manufacture of thick film circuit substrate
JPS63213312A (en) Glaze resistance material
JPS61292394A (en) Metalized composition for ceramic wiring board
JPS6085598A (en) Multilayer circuit board
JPS5915481B2 (en) Manufacturing method of glaze resistor
JPS63213311A (en) Silicide resistance material
JPS63257108A (en) Metallizing composition
JPH0797449B2 (en) Metallized composition
JPS62250691A (en) Manufacture of ceramic circuit board with built-in resistance
JPS61112398A (en) Manufacture ceramic circuit board
JPS63173301A (en) Silicide resistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term