JP2020111797A - Method for manufacturing composite body of ceramic and conductor - Google Patents

Method for manufacturing composite body of ceramic and conductor Download PDF

Info

Publication number
JP2020111797A
JP2020111797A JP2019003895A JP2019003895A JP2020111797A JP 2020111797 A JP2020111797 A JP 2020111797A JP 2019003895 A JP2019003895 A JP 2019003895A JP 2019003895 A JP2019003895 A JP 2019003895A JP 2020111797 A JP2020111797 A JP 2020111797A
Authority
JP
Japan
Prior art keywords
copper powder
ceramic
conductor
manufacturing
conductive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019003895A
Other languages
Japanese (ja)
Other versions
JP6588174B1 (en
Inventor
秀樹 古澤
Hideki Furusawa
秀樹 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019003895A priority Critical patent/JP6588174B1/en
Application granted granted Critical
Publication of JP6588174B1 publication Critical patent/JP6588174B1/en
Publication of JP2020111797A publication Critical patent/JP2020111797A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a method for manufacturing a composite body of a ceramic and a conductor having three following characteristics: (1) excellent in conductivity of a conductor; (2) contributing to productivity improvement of a composite body of a ceramic and a conductor; and (3) suitable for manufacturing a composite body excellent in adhesion between the ceramic and the conductor.SOLUTION: A method for manufacturing a composite body of a ceramic and a conductor includes: a step of coating a conductive composition containing first copper powder having a BET specific surface area of 1.0-10.0 m2/g and a compacted bulk density of 3.0 g/cm3 or less, second copper powder having a BET specific surface area smaller than that of the first copper powder, a binder resin and a dispersion medium onto a ceramic substrate; and a step of firing the ceramic substrate and the coated conductive composition in a non-oxidation atmosphere at a steam partial pressure of 0.02-0.15 atm and at a peak temperature of 400-700°C.SELECTED DRAWING: None

Description

本開示はセラミックと導体の複合体の製造方法に関する。 The present disclosure relates to a method of making a composite of ceramic and conductor.

従来、セラミック基板の表面に電極又は回路を形成する場合など、セラミックと導体の複合体を製造するための導電性材料として、Ag、Cu、Ni又はPtなどの金属粒子と低軟化点のガラス粉末とを有機ビヒクル中に混合した導電性組成物が一般的に知られている。セラミックと導体の複合体を製造する方法として、グリーンシートを焼成してセラミック基板を製造した後に、セラミック基板上に導電性組成物を塗布して焼成する方法(ポストファイア法)が知られている。 Conventionally, metal particles such as Ag, Cu, Ni or Pt and glass powder having a low softening point have been used as a conductive material for producing a composite of a ceramic and a conductor when forming an electrode or a circuit on the surface of a ceramic substrate. A conductive composition in which and are mixed in an organic vehicle is generally known. As a method for manufacturing a composite of a ceramic and a conductor, there is known a method in which a green sheet is baked to manufacture a ceramic substrate, and then a conductive composition is applied on the ceramic substrate and baked (post-fire method). ..

このような導電性組成物には焼成後においてセラミック基板との優れた密着性が要求される。そこで、例えば、特開2006−73836号公報(特許文献1)は、セラミック素体との密着力を向上させるために、松脂から取れるロジン又はテルペン油重合樹脂を含むセラミック電子部品用導電性組成物を開示している。 Such a conductive composition is required to have excellent adhesion to a ceramic substrate after firing. Therefore, for example, Japanese Patent Application Laid-Open No. 2006-73836 (Patent Document 1) discloses a conductive composition for a ceramic electronic component, which contains a rosin or terpene oil-polymerized resin taken from pine resin in order to improve adhesion with a ceramic body. Is disclosed.

また、特開2004−311605号公報(特許文献2)は、積層セラミックコンデンサの外部電極の緻密性向上と、外部電極と内部電極との電気的な接合性の向上を目的として、当該外部電極の焼成ピーク温度に達した後に雰囲気中に水蒸気を導入する技術を開示している。 Further, Japanese Patent Laid-Open No. 2004-311605 (Patent Document 2) discloses an external electrode of a multilayer ceramic capacitor for the purpose of improving the denseness of the external electrode and improving the electrical bondability between the external electrode and the internal electrode. A technique is disclosed in which steam is introduced into the atmosphere after the peak firing temperature is reached.

特開2006−73836号公報JP, 2006-73836, A 特開2004−311605号公報JP, 2004-311605, A

セラミックと導体の複合体を工業的に生産する場合、両者間の密着力が高いことはもちろん重要な特性であるが、それのみならず、導体の高い導電性、及び、高い生産性をも更に兼備することが望ましい。 When industrially producing a composite of a ceramic and a conductor, high adhesion between them is of course an important characteristic, but not only that, but also high electrical conductivity of the conductor and high productivity. It is desirable to combine them.

そこで、一側面における本開示の目的は、以下の三つの特性を兼備するセラミックと導体の複合体の製造方法を提供することである。
(1)導体の導電性に優れている。
(2)セラミックと導体の複合体の生産性向上に寄与する。
(3)セラミックと導体の間の密着性に優れている複合体の製造に好適である。
Therefore, an object of the present disclosure in one aspect is to provide a method of manufacturing a composite of a ceramic and a conductor, which has the following three characteristics.
(1) The conductor has excellent conductivity.
(2) Contributes to improvement in productivity of a composite of ceramic and conductor.
(3) It is suitable for producing a composite having excellent adhesion between the ceramic and the conductor.

本発明者は上記課題を解決するためにまず、セラミック基板上に銅粉を含有する導電性組成物を塗布して焼成するポストファイア法を用いてセラミックと導体の複合体を製造する場合の生産性向上について検討した。導電性組成物を高温で焼結すると、セラミック基板に過度な応力が働き、セラミック基板が変形してしまう。そのため、ポストファイア法では、導電性組成物を低温で焼結することが好ましい。これにより、セラミック基板の変形を抑制することができる。加えて、焼成ピーク温度が低ければ、焼成後の冷却過程で生じるセラミックの収縮量と、銅の収縮量との差を小さくすることができる。換言すれば、銅とセラミックとの剥離(デラミネーション)を抑制でき、これらの密着力を向上させることができる。一方で、焼成温度が低いと焼成が不十分となるため、セラミックと導体の間の密着性が低下しやすいという問題が生じる。 In order to solve the above problems, the present inventor first produced a composite of a ceramic and a conductor by using a post-fire method in which a conductive composition containing copper powder is applied onto a ceramic substrate and fired. We examined the improvement of sex. When the conductive composition is sintered at a high temperature, excessive stress acts on the ceramic substrate and the ceramic substrate is deformed. Therefore, in the post-fire method, it is preferable to sinter the conductive composition at a low temperature. Thereby, the deformation of the ceramic substrate can be suppressed. In addition, if the firing peak temperature is low, it is possible to reduce the difference between the shrinkage amount of ceramics and the shrinkage amount of copper that occur during the cooling process after firing. In other words, peeling (delamination) between copper and ceramic can be suppressed, and the adhesion between them can be improved. On the other hand, if the firing temperature is low, firing will be insufficient, and thus there will be a problem in that the adhesion between the ceramic and the conductor tends to deteriorate.

そこで、本発明者は、導電性組成物が低温でも十分に焼結するのに有効な手法を鋭意検討したところ、水蒸気を含有する非酸化性雰囲気で焼成を行うことによって、焼成ピーク温度を低下させることが出来ることを見出した。これは、加熱水蒸気の被焼成物への浸透作用が大きいことに起因するものと推定される。また、本発明者は、「BET比表面積が1.0〜10.0m2/gであって、固めかさ密度が3.0g/cm3以下である第1の銅粉と、前記第1の銅粉よりBET比表面積が小さい第2の銅粉とを含む導電性組成物」を用いることによって、低い焼成温度でも導体とセラミックの間の密着性に優れる複合体を製造できることを見出した。 Therefore, the present inventor diligently studied an effective method for sufficiently sintering the conductive composition even at a low temperature, and by performing the firing in a non-oxidizing atmosphere containing water vapor, the firing peak temperature was lowered. I found that I can do it. It is presumed that this is due to the large penetration effect of the heated steam into the material to be fired. Further, the present inventor has stated that “a first copper powder having a BET specific surface area of 1.0 to 10.0 m 2 /g and a compacted bulk density of 3.0 g/cm 3 or less; It was found that a composite having excellent adhesion between a conductor and a ceramic can be produced even at a low firing temperature by using a conductive composition containing a second copper powder having a BET specific surface area smaller than that of copper powder.

本発明は上記知見に基づいて完成したものであり、以下に例示される。
(1)
BET比表面積が1.0〜10.0m2/gであって、固めかさ密度が3.0g/cm3以下である第1の銅粉と、前記第1の銅粉よりBET比表面積が小さい第2の銅粉と、バインダー樹脂と、分散媒とを含む導電性組成物をセラミック基板に塗布するステップと、
前記セラミック基板と前記塗布された導電性組成物とを、水蒸気分圧0.02〜0.15atmの非酸化性雰囲気において、ピーク温度を400〜700℃として焼成するステップと、
を備えるセラミックと導体の複合体の製造方法。
(2)
前記導電性組成物はガラスフリットを含む(1)に記載の製造方法。
(3)
前記非酸化性雰囲気は不活性雰囲気である(1)又は(2)に記載の製造方法。
(4)
前記焼成するステップは、昇温時、100℃からピーク温度に到達するまでは少なくとも、前記セラミック基板と前記塗布された導電性組成物とを、水蒸気分圧0.02〜0.15atmの非酸化性雰囲気で行う(1)〜(3)の何れか一項に記載の製造方法。
(5)
前記焼成するステップは、
前記ピーク温度まで0.1〜10℃/minで昇温させるステップと、
前記ピーク温度で1〜180分間維持するステップと、
を含む(1)〜(4)の何れか一項に記載の製造方法。
(6)
第1の銅粉及び第2の銅粉の合計質量に対する第1の銅粉の質量比率が50%以上である(1)〜(5)の何れか一項に記載の製造方法。
(7)
第2の銅粉のBET比表面積は0.1m2/g以上である(1)〜(6)のいずれか1項に記載の製造方法。
(8)
(1)〜(7)の何れか一項に記載の製造方法を使用してセラミックと導体の複合体を得る工程を含む積層セラミックコンデンサーの製造方法。
(11)
(1)〜(7)の何れか一項に記載の製造方法を使用してセラミックと導体の複合体を得る工程を含むセラミック回路基板の製造方法。
The present invention has been completed based on the above findings and is exemplified below.
(1)
A first copper powder having a BET specific surface area of 1.0 to 10.0 m 2 /g and a compacted bulk density of 3.0 g/cm 3 or less, and a BET specific surface area smaller than that of the first copper powder. Applying a conductive composition containing a second copper powder, a binder resin, and a dispersion medium to the ceramic substrate,
Firing the ceramic substrate and the applied conductive composition in a non-oxidizing atmosphere having a water vapor partial pressure of 0.02 to 0.15 atm with a peak temperature of 400 to 700° C.;
A method of manufacturing a composite of a ceramic and a conductor.
(2)
The manufacturing method according to (1), wherein the conductive composition contains glass frit.
(3)
The manufacturing method according to (1) or (2), wherein the non-oxidizing atmosphere is an inert atmosphere.
(4)
In the firing step, at the time of temperature increase, at least the ceramic substrate and the applied conductive composition are non-oxidized at a steam partial pressure of 0.02 to 0.15 atm until the peak temperature is reached from 100°C. The manufacturing method according to any one of (1) to (3), which is performed in a volatile atmosphere.
(5)
The firing step includes
Raising the temperature to the peak temperature at 0.1 to 10° C./min,
Maintaining the peak temperature for 1 to 180 minutes,
The manufacturing method as described in any one of (1)-(4) containing.
(6)
The manufacturing method according to any one of (1) to (5), wherein the mass ratio of the first copper powder to the total mass of the first copper powder and the second copper powder is 50% or more.
(7)
The BET specific surface area of a 2nd copper powder is 0.1 m< 2 >/g or more, The manufacturing method as described in any one of (1)-(6).
(8)
A method for producing a monolithic ceramic capacitor, comprising the step of obtaining a composite of a ceramic and a conductor by using the production method according to any one of (1) to (7).
(11)
A method for manufacturing a ceramic circuit board, comprising the step of obtaining a composite of a ceramic and a conductor by using the method for manufacturing according to any one of (1) to (7).

本開示に係るセラミックと導体の複合体の製造方法の一実施形態によれば、導体の導電性に優れる複合体が得られる。また、本開示に係るセラミックと導体の複合体の製造方法の一実施形態によれば、低温焼成が可能となるため、生産性が向上する。また、本開示に係るセラミックと導体の複合体の製造方法一実施形態によれば、セラミックと導体の間の密着性に優れている複合体を製造可能である。 According to an embodiment of the method for producing a composite of a ceramic and a conductor according to the present disclosure, a composite having excellent conductor conductivity can be obtained. Further, according to the embodiment of the method for manufacturing the composite of the ceramic and the conductor according to the present disclosure, low-temperature firing is possible, so that the productivity is improved. Further, according to the embodiment of the method for producing the composite of the ceramic and the conductor according to the present disclosure, it is possible to produce the composite having excellent adhesion between the ceramic and the conductor.

以下に本開示を、実施形態を挙げて詳細に説明する。本開示は以下に挙げる具体的な実施形態に限定されるものではない。 Hereinafter, the present disclosure will be described in detail with reference to embodiments. The present disclosure is not limited to the specific embodiments described below.

[導電性組成物]
本開示に係る導電性組成物は一実施形態において、BET比表面積が1.0〜10.0m2/gであって、固めかさ密度が3.0g/cm3以下である第1の銅粉と、前記第1の銅粉よりBET比表面積が小さい第2の銅粉と、バインダー樹脂と、分散媒とを含む。導電性組成物は、これらの各種成分を混練することで作製可能である。混練は公知の手段を使用して行うことができる。導電性組成物は一実施形態において、ペーストとして提供される。本開示に係る導電性組成物を使用して、セラミックと導体の複合体を製造することができる。
[Conductive composition]
In one embodiment, the conductive composition according to the present disclosure has a BET specific surface area of 1.0 to 10.0 m 2 /g and a first copper powder having a compacted bulk density of 3.0 g/cm 3 or less. And a second copper powder having a BET specific surface area smaller than that of the first copper powder, a binder resin, and a dispersion medium. The conductive composition can be produced by kneading these various components. The kneading can be performed using a known means. The conductive composition is provided as a paste in one embodiment. The electrically conductive composition according to the present disclosure can be used to produce a composite of ceramic and conductor.

[複合体の製造]
本開示に係るセラミックと導体の複合体の製造方法は一実施形態において、導電性組成物をセラミック基板に塗布するステップと、前記セラミック基板と前記塗布された導電性組成物とを、水蒸気分圧0.02〜0.15atmの非酸化性雰囲気において、ピーク温度を400〜700℃として焼成するステップとを備える。
[Production of composite]
In one embodiment, a method of manufacturing a composite of a ceramic and a conductor according to the present disclosure includes a step of applying a conductive composition to a ceramic substrate, and the ceramic substrate and the applied conductive composition having a water vapor partial pressure. Firing at a peak temperature of 400 to 700° C. in a non-oxidizing atmosphere of 0.02 to 0.15 atm.

塗布方法としては、特に制限はないが、スクリーン印刷、グラビア印刷、インクジェット法、オフセット印刷、グラビアオフセット印刷及びフレキソ印刷等の印刷法の他、ディッピング及びスプレー等が挙げられる。 The coating method is not particularly limited, and examples thereof include screen printing, gravure printing, inkjet method, offset printing, gravure offset printing, flexo printing, and other printing methods, as well as dipping and spraying.

焼成は、水蒸気を含有する非酸化性雰囲気で行うことによって、焼成ピーク温度を低下させることが出来る。被焼成物への熱の浸透力を高めて低温での焼結を促進するという理由により、焼成は好ましくは0.02atm以上の水蒸気分圧で実施する。但し、水蒸気分圧が高くなり過ぎると焼結過程で水分が焼成体中に取り込まれ、界面近傍に取り込まれた水分が原因で、セラミックと導体が剥離し易くなることから、焼成は好ましくは0.15atm以下、より好ましくは0.1atm以下の水蒸気分圧で実施する。 The firing peak temperature can be lowered by performing the firing in a non-oxidizing atmosphere containing water vapor. The calcination is preferably carried out at a steam partial pressure of 0.02 atm or more for the purpose of enhancing the penetration of heat into the material to be calcined and promoting the sintering at a low temperature. However, if the water vapor partial pressure becomes too high, water is taken into the fired body during the sintering process, and the water taken into the vicinity of the interface easily separates the ceramic and the conductor. It is carried out at a water vapor partial pressure of 0.15 atm or less, more preferably 0.1 atm or less.

焼成時のピーク温度が低い方が昇温及び降温に要する時間が節約され、生産性が向上する。また、焼成時のピーク温度が低い方が、降温過程でのセラミックと導体の熱収縮差に起因するデラミネーションを抑制できるので、セラミックと導体の密着性の低下防止に有利である。また、低融点素材(例えば、ガラス)を含むようなセラミック基板の場合、焼成温度が高すぎるとセラミック基板が変形してしまい、複合体の平坦度が担保できない。従って、焼成時のピーク温度は、700℃以下であることが好ましく、550℃以下であることがより好ましい。但し、水蒸気雰囲気での焼成であっても、焼成時のピーク温度が低過ぎると、銅紛の焼結が不十分となり、セラミックと導体の密着性が不十分となりやすい。そこで、焼成時のピーク温度は、400℃以上であることが好ましく、450℃以上であることがより好ましい。 The lower the peak temperature during firing, the more the time required for raising and lowering the temperature is saved, and the productivity is improved. Further, a lower peak temperature during firing can suppress delamination due to a difference in thermal contraction between the ceramic and the conductor during the temperature lowering process, which is advantageous in preventing a decrease in adhesion between the ceramic and the conductor. Further, in the case of a ceramic substrate containing a low melting point material (for example, glass), if the firing temperature is too high, the ceramic substrate will be deformed and the flatness of the composite cannot be ensured. Therefore, the peak temperature during firing is preferably 700° C. or lower, and more preferably 550° C. or lower. However, even in the case of firing in a steam atmosphere, if the peak temperature during firing is too low, the sintering of the copper powder becomes insufficient and the adhesion between the ceramic and the conductor tends to become insufficient. Therefore, the peak temperature during firing is preferably 400° C. or higher, and more preferably 450° C. or higher.

好ましい実施の態様においては、前記焼成するステップは、
前記ピーク温度まで0.1〜10℃/min、より好ましくは0.3〜2.0℃/minで昇温させるステップと、
前記ピーク温度で1〜180分間、より好ましくは10〜120分間維持するステップと、
を含む。
ピーク温度までの昇温速度を上記範囲とすることによってバインダー樹脂をはじめとした導電性組成物中の有機物の燃焼、分解が銅粉の焼結前に確実に起こるので低抵抗な導体が得られること、また、有機物の燃焼、分解が徐々に進行するのでクラックが少ない導体が得られるという利点が得られる。ピーク温度で維持する時間を上記範囲とすることによって銅粉間の焼結が促進されて低抵抗な導体が得られるという利点が得られる。なお、ピーク温度で維持する時間は、実質的にピーク温度と等しい焼成温度が保持される時間を指し、ピーク温度と完全に一致する温度で維持することまでは要求されない。具体的には、本開示においてピーク温度で維持する時間とは、ピーク温度よりも20℃低い温度からピーク温度までの温度範囲が維持される時間を指す。
In a preferred embodiment, the step of calcining comprises:
Raising the temperature to the peak temperature at 0.1 to 10°C/min, more preferably 0.3 to 2.0°C/min,
Maintaining at the peak temperature for 1 to 180 minutes, more preferably 10 to 120 minutes;
including.
By setting the heating rate up to the peak temperature in the above range, combustion and decomposition of organic matter in the conductive composition including the binder resin will surely occur before sintering of the copper powder, and thus a low resistance conductor can be obtained. In addition, since the combustion and decomposition of the organic matter gradually progress, there is an advantage that a conductor with few cracks can be obtained. By setting the time for maintaining at the peak temperature within the above range, there is an advantage that the sintering between the copper powders is promoted and a conductor having a low resistance is obtained. The time of maintaining the peak temperature refers to the time of maintaining the firing temperature substantially equal to the peak temperature, and is not required to be maintained at the temperature that completely matches the peak temperature. Specifically, in the present disclosure, the time of maintaining at the peak temperature refers to the time of maintaining the temperature range from the temperature 20° C. lower than the peak temperature to the peak temperature.

ピーク温度における焼成を非酸化性雰囲気において実施することで、銅紛が酸化するのを防止することができる。また、非酸化性雰囲気として還元性雰囲気を採用することで、銅紛が酸化していたとしても還元することができる。従って、ピーク温度に達する前には酸化性雰囲気で焼成を行ってもよい。例えば、ポストファイア法において、従来は、酸化性雰囲気から還元性雰囲気への切り替えを含む2段階以上で焼成を行うことが通常であった。本開示においても、例えば、第1段階として、導電性組成物に含まれるバインダー樹脂を燃焼させるために大気雰囲気で200〜500℃程度で焼成した後に、第2段階として、第1段階で酸化された銅を還元性雰囲気で第1段階よりも高温側で焼成することで還元することができる。 By performing the firing at the peak temperature in a non-oxidizing atmosphere, it is possible to prevent the copper powder from oxidizing. Further, by adopting a reducing atmosphere as the non-oxidizing atmosphere, even if the copper powder is oxidized, it can be reduced. Therefore, firing may be performed in an oxidizing atmosphere before reaching the peak temperature. For example, in the post-fire method, conventionally, firing was usually performed in two or more steps including switching from an oxidizing atmosphere to a reducing atmosphere. Also in the present disclosure, for example, as the first step, after firing the binder resin contained in the conductive composition in an air atmosphere at about 200 to 500° C., the second step is oxidation at the first step. The copper can be reduced by firing the copper in a reducing atmosphere at a temperature higher than that in the first stage.

しかしながら、第2段階では還元性ガスとして水素を使うと、防爆対策が必要になるというデメリットがある。そこで、本開示に係るセラミックと導体の複合体の製造方法の一実施形態においては、ピーク温度における焼成を不活性雰囲気(例えば、窒素雰囲気、又はアルゴン等の希ガス雰囲気)で行う。本実施形態によれば、防爆対策が不必要となり、安全性、生産性、生産コストの面で有利になる。 However, when hydrogen is used as the reducing gas in the second stage, there is a demerit that explosion-proof measures are required. Therefore, in one embodiment of the method for producing a composite of a ceramic and a conductor according to the present disclosure, firing at a peak temperature is performed in an inert atmosphere (for example, a nitrogen atmosphere or a rare gas atmosphere such as argon). According to the present embodiment, explosion-proof measures are unnecessary, which is advantageous in terms of safety, productivity, and production cost.

また、本開示に係るセラミックと導体の複合体の製造方法の一実施形態においては、前記焼成するステップは、昇温時、100℃からピーク温度に到達するまでは少なくとも、前記セラミック基板と前記塗布された導電性組成物とを、水蒸気分圧0.02〜0.15atmの非酸化性雰囲気で行う。上述のように、ポストファイア法は従来、2段階で焼成を行うのが通常であったが、本実施形態によれば、バインダー樹脂の分解も水蒸気雰囲気で行うため、1段階の焼成でセラミックと導体の複合体を製造することができる。そのため、生産性、生産コストの面で有利になる。水蒸気分圧の好ましい範囲はピーク温度での焼成時と同様である。 Further, in one embodiment of the method for manufacturing a composite of a ceramic and a conductor according to the present disclosure, the firing step includes at least the ceramic substrate and the coating at the time of temperature increase until a peak temperature is reached from 100°C. The conductive composition thus obtained is subjected to a non-oxidizing atmosphere with a steam partial pressure of 0.02 to 0.15 atm. As described above, in the post-fire method, conventionally, firing is usually performed in two steps. However, according to the present embodiment, the binder resin is also decomposed in a steam atmosphere, so that firing in one step produces a ceramic. A composite of conductors can be manufactured. Therefore, it is advantageous in terms of productivity and production cost. The preferable range of the water vapor partial pressure is the same as that during the firing at the peak temperature.

本開示に係る導電性組成物を焼成して得られる焼結体は導体であることから、例えば、電極又は回路として使用され得る。例えば、積層セラミックコンデンサーは、スクリーン印刷法等によりセラミック基板上に電極層用の導電性組成物を塗布した後、焼成工程を経て製造可能である。この場合、導電性組成物の焼結体は、積層セラミックコンデンサーの内部電極として使用される。同様に、セラミック回路基板は、スクリーン印刷法等によりセラミック基板上に回路形成用の導電性組成物を塗布した後、焼成工程を経て製造可能である。 Since the sintered body obtained by firing the conductive composition according to the present disclosure is a conductor, it can be used, for example, as an electrode or a circuit. For example, a monolithic ceramic capacitor can be manufactured by applying a conductive composition for an electrode layer on a ceramic substrate by a screen printing method or the like and then performing a firing process. In this case, the sintered body of the conductive composition is used as the internal electrode of the laminated ceramic capacitor. Similarly, a ceramic circuit board can be manufactured by applying a conductive composition for forming a circuit on the ceramic board by a screen printing method or the like and then performing a firing process.

[銅粉]
銅粉には、銅粉には純銅粉及び銅合金粉(特にCu含有量が80質量%以上の銅合金粉)が含まれる。
[Copper powder]
The copper powder includes pure copper powder and copper alloy powder (in particular, copper alloy powder having a Cu content of 80 mass% or more).

銅粉としては、BET比表面積の大きな(サイズの小さな)第1の銅粉と、それよりもBET比表面積の小さな(サイズの大きな)第2の銅紛が使用される。これにより、第1の銅粉が第2の銅紛の間に入り込むことで空隙が少なくなり、焼結後に緻密な導体が得られる。これにより、セラミック基板との密着性が向上すると共に、導体の導電性も向上する。第1の銅粉の比表面積をA1、第2の銅紛の比表面積をA2とすると、A2/A1は小さい方が第1銅粉が第2の銅紛の間に入り込みやすくなることから、A2/A1≦0.15であることが好ましく、A2/A1≦0.1であることがより好ましく、A2/A1≦0.08であることが更により好ましい。但し、A2/A1が過度に小さくなると第2の銅粉の実質的なサイズが大きくなることに起因して、導電性組成物をセラミック基板へ塗布した時に塗膜が粗くなってしまい、セラミックと導体の界面に空隙ができる結果、両者間の密着性が低下しやすくなることから、0.02≦A2/A1であることが好ましく、0.03≦A2/A1であることがより好ましく、0.04≦A2/A1であることが更により好ましい。BET比表面積は、銅粉を真空中で200℃、5時間脱気した後にJIS Z 8830:2013に準拠して測定される。 As the copper powder, a first copper powder having a large BET specific surface area (small size) and a second copper powder having a small BET specific surface area (large size) are used. As a result, the first copper powder enters between the second copper powder to reduce the voids, and a dense conductor can be obtained after sintering. This improves the adhesion to the ceramic substrate and also improves the conductivity of the conductor. Assuming that the specific surface area of the first copper powder is A 1 and the specific surface area of the second copper powder is A 2 , the smaller A 2 /A 1 is, the easier the first copper powder is to enter between the second copper powder. Therefore, A 2 /A 1 ≦0.15 is preferable, A 2 /A 1 ≦0.1 is more preferable, and A 2 /A 1 ≦0.08 is further more preferable. preferable. However, when A 2 /A 1 becomes excessively small, the substantial size of the second copper powder becomes large, so that the coating film becomes rough when the conductive composition is applied to the ceramic substrate, As a result of the formation of voids at the interface between the ceramic and the conductor, the adhesiveness between the two tends to deteriorate, so 0.02≦A 2 /A 1 is preferable, and 0.03≦A 2 /A 1 is satisfied. Is more preferable, and 0.04≦A 2 /A 1 is even more preferable. The BET specific surface area is measured in accordance with JIS Z 8830:2013 after degassing copper powder in vacuum at 200° C. for 5 hours.

第1の銅紛のBET比表面積は、好ましくは1.0〜10.0m2/gであり、より好ましくは1.5〜5m2/gであり、更により好ましくは2〜4m2/gである。第1の銅紛のBET比表面積が1.0m2/g以上であることによって、400〜700℃という低温での焼結が促進される。サイズが小さい、すなわち表面積が大きく焼結開始温度が低い第1の銅粉を起点として焼結させることができれば、第2の銅粉の焼結はある程度不十分でも構わない。第1の銅粉が十分に焼結すれば、銅−セラミック間の空隙は抑制され、銅−セラミック間の密着力が向上すると共に、比抵抗も低くできる。第1の銅紛のBET比表面積は、特段の上限は設定されないが、過度にBET比表面積が大きな銅紛は製造の難易度が高くなり、コスト高となることから、10.0m2/g以下とすることが好ましい。 BET specific surface area of the first copper powder is preferably 1.0~10.0m 2 / g, more preferably 1.5~5m 2 / g, even more preferably 2 to 4 m 2 / g Is. When the BET specific surface area of the first copper powder is 1.0 m 2 /g or more, sintering at a low temperature of 400 to 700° C. is promoted. If the first copper powder having a small size, that is, a large surface area and a low sintering start temperature can be used as the starting point for sintering, the sintering of the second copper powder may be insufficient to some extent. If the first copper powder is sufficiently sintered, the void between the copper and the ceramic is suppressed, the adhesion between the copper and the ceramic is improved, and the specific resistance can be lowered. No particular upper limit is set on the BET specific surface area of the first copper powder. However, since copper powder having an excessively large BET specific surface area is difficult to manufacture and the cost is high, 10.0 m 2 /g The following is preferable.

第2の銅紛のBET比表面積が過度に小さくなると、導電性組成物をセラミック基板へ塗布した時に塗膜が粗くなってしまい、セラミックと導体の界面に空隙ができる結果、両者間の密着性が低下しやすくなることから、好ましくは0.1m2/g以上であり、より好ましくは0.2m2/g以上である。 If the BET specific surface area of the second copper powder is too small, the coating film becomes rough when the conductive composition is applied to the ceramic substrate, and voids are formed at the interface between the ceramic and the conductor, resulting in adhesion between the two. Is preferably 0.1 m 2 /g or more, and more preferably 0.2 m 2 /g or more.

第1の銅粉の分散性は高い方が、第1の銅紛が第2の銅紛の隙間に入り込みやすい。このため、第1の銅粉の分散性の指標である固めかさ密度は低い方が好ましい。具体的には、第1の銅粉の固めかさ密度は、3.0g/cm3以下であることが好ましく、2.5g/cm3以下であることがより好ましい。但し、銅粉の固めかさ密度は、低すぎると銅粉のかさが大きくなり導電性組成物調整時の取扱いが困難であることから、1.0g/cm3以上であることが好ましく、1.5g/cm3以上であることがより好ましい。固めかさ密度は、例えば、銅粉をpH8〜14のアルカリ水溶液と接触させるpH処理工程を行うことで解砕性が向上し、低くすることができる。 The higher the dispersibility of the first copper powder, the easier the first copper powder enters the gap between the second copper powders. Therefore, it is preferable that the compacted bulk density, which is an index of the dispersibility of the first copper powder, is low. Specifically, the compacted bulk density of the first copper powder is preferably 3.0 g/cm 3 or less, and more preferably 2.5 g/cm 3 or less. However, the compacted bulk density of the copper powder is preferably 1.0 g/cm 3 or more, because if the copper powder is too low, the bulk of the copper powder becomes large and it is difficult to handle when adjusting the conductive composition. It is more preferably 5 g/cm 3 or more. The compacted bulk density can be lowered, for example, by improving the disintegration property by performing a pH treatment step in which copper powder is brought into contact with an alkaline aqueous solution having a pH of 8 to 14.

固めかさ密度は以下の手順で測定される。直径2cmの10ccのカップにガイドを取り付けて10ccを超える粉を入れ、タッピングを1000回行う。次いで、ガイドを残して、10ccの容積を上回っている部分を摺り切り、この状態でカップに入っている粉の重量及びカップの容積(10cc)に基づいて求めた密度が固めかさ密度である。固めかさ密度は、例えば、パウダテスタPT−X(ホソカワミクロン社)を用いて測定可能である。 The compacted bulk density is measured by the following procedure. A guide is attached to a 10 cc cup having a diameter of 2 cm, powder exceeding 10 cc is put therein, and tapping is performed 1000 times. Next, leaving the guide, the portion exceeding the volume of 10 cc was cut off, and in this state, the density determined based on the weight of the powder contained in the cup and the volume (10 cc) of the cup is the compacted bulk density. The compacted bulk density can be measured using, for example, Powder Tester PT-X (Hosokawa Micron Co., Ltd.).

第1の銅粉及び第2の銅粉の合計質量に対する第1の銅粉の質量比率が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更により好ましい。サイズの小さな第1の銅粉の配合割合を大きくすることで、導電性組成物をセラミック基板へ塗布した時に塗膜が粗くなるのを防止することができる。但し、第1の銅粉及び第2の銅粉の合計質量に対する第1の銅粉の質量比率は、大きくし過ぎると導体中の空隙が増加して導体の導電性が低下しやすいことから、95%以下であることが好ましく、90%以下であることがより好ましく、85%以下であることが更により好ましい。 The mass ratio of the first copper powder to the total mass of the first copper powder and the second copper powder is preferably 50% or more, more preferably 60% or more, and more preferably 70% or more. Even more preferable. By increasing the mixing ratio of the first copper powder having a small size, it is possible to prevent the coating film from becoming rough when the conductive composition is applied to the ceramic substrate. However, if the mass ratio of the first copper powder to the total mass of the first copper powder and the second copper powder is too large, the voids in the conductor increase and the conductivity of the conductor tends to decrease, It is preferably 95% or less, more preferably 90% or less, and even more preferably 85% or less.

導電性組成物中の銅粉濃度(すなわち、第1の銅粉及び第2の銅粉の合計濃度)は、セラミック基板へ導電性組成物を塗布したときに流動性が高くなり過ぎて塗布パターンに滲みが生じないようにするため、30質量%以上であることが好ましく、35質量%以上であることがより好ましい。また、導電性組成物中の銅粉の濃度は、セラミック基板へ導電性組成物を塗布したときに金属粉が凝集して塗膜粗さが大きくなるのを防止するという観点からは、90質量%以下であることが好ましく、85質量%以下であることがより好ましい。 The copper powder concentration (that is, the total concentration of the first copper powder and the second copper powder) in the conductive composition becomes too high in fluidity when the conductive composition is applied to the ceramic substrate, and the application pattern In order to prevent bleeding, it is preferably 30% by mass or more, and more preferably 35% by mass or more. Further, the concentration of the copper powder in the conductive composition is 90 mass from the viewpoint of preventing the metal powder from aggregating and increasing the coating roughness when the conductive composition is applied to the ceramic substrate. % Or less, and more preferably 85% by mass or less.

銅粉は、乾式法によって製造された銅粉、湿式法によって製造された銅粉のいずれも使用することができる。湿式法による銅粉の好適な製造方法を例示的に説明する。当該製造方法は、亜酸化銅粉スラリーに分散剤(例えば、アラビアゴム、ゼラチン、コラーゲンペプチド、界面活性剤等)を添加する工程と、その後にスラリーに希硫酸を5秒以内に一度に添加して不均化反応を行う工程とを含む。好適な実施の態様において、上記スラリーは、室温(20〜25℃)以下に保持するとともに、同様に室温以下に保持した希硫酸を添加して、不均化反応を行うことができる。分散剤の添加量及び希硫酸の添加速度等によって銅粉のBET比表面積(サイズ、固めかさ密度)を制御可能である。一例として、アラビアゴム等の有機物の量が多いとBET比表面積は大きくなり、希硫酸の添加速度が速いとBET比表面積は大きくなる傾向にある。好適な実施の態様において、希硫酸の添加は、スラリーがpH2.5以下、好ましくはpH2.0以下、更に好ましくはpH1.5以下となるように、添加することができる。好適な実施の態様において、スラリーへの希硫酸の添加は、5分以内、好ましくは1分以内、更に好ましくは30秒以内、更に好ましくは10秒以内、更に好ましくは5秒以内となるように、添加することができる。好適な実施の態様において、上記不均化反応は10分以内、例えば、スラリーへの希硫酸の添加が瞬間的に行われる場合は、5秒以内で終了するものとすることができる。好適な実施の態様において、希硫酸添加前の上記スラリー中のアラビアゴム等の分散剤の濃度は、0.2〜1.2g/Lとすることができる。この不均化反応の原理は次のようなものである:
Cu2O+H2SO4 → Cu↓+CuSO4+H2
この不均化によって得られた銅粉は、所望により、洗浄、防錆、ろ過、乾燥、解砕、分級を行うことができる。
As the copper powder, both copper powder manufactured by a dry method and copper powder manufactured by a wet method can be used. A suitable method for producing copper powder by the wet method will be described as an example. The manufacturing method is a step of adding a dispersant (eg, gum arabic, gelatin, collagen peptide, a surfactant, etc.) to the cuprous oxide powder slurry, and then adding dilute sulfuric acid to the slurry at once within 5 seconds. And a step of carrying out a disproportionation reaction. In a preferred embodiment, the slurry can be maintained at room temperature (20 to 25° C.) or lower and dilute sulfuric acid similarly maintained at room temperature or lower to add the disproportionation reaction. The BET specific surface area (size, compacted bulk density) of the copper powder can be controlled by the addition amount of the dispersant, the addition rate of dilute sulfuric acid, and the like. As an example, when the amount of organic substances such as gum arabic is large, the BET specific surface area becomes large, and when the addition rate of dilute sulfuric acid is fast, the BET specific surface area tends to become large. In a preferred embodiment, the dilute sulfuric acid can be added so that the slurry has a pH of 2.5 or less, preferably pH 2.0 or less, more preferably pH 1.5 or less. In a preferred embodiment, the addition of dilute sulfuric acid to the slurry is performed within 5 minutes, preferably within 1 minute, more preferably within 30 seconds, further preferably within 10 seconds, and further preferably within 5 seconds. , Can be added. In a preferred embodiment, the disproportionation reaction can be completed within 10 minutes, for example within 5 seconds when the addition of dilute sulfuric acid to the slurry is carried out instantaneously. In a preferred embodiment, the concentration of the dispersant such as gum arabic in the slurry before the addition of dilute sulfuric acid can be 0.2 to 1.2 g/L. The principle of this disproportionation reaction is as follows:
Cu 2 O+H 2 SO 4 → Cu↓+CuSO 4 +H 2 O
The copper powder obtained by this disproportionation can be washed, rust-proofed, filtered, dried, crushed, and classified, if desired.

導電性組成物中には、銅紛以外の金属粉、例えば、Pt粉、Pd粉、Ag粉及びNi粉よりなる群から選択される一種又は二種以上の金属粉を配合することができる。Pt粉には純Pt粉及びPt合金粉(特にPt含有量が80質量%以上のPt合金粉)が含まれ、Pd粉には純Pd粉及びPd合金粉(特にPd含有量が80質量%以上のPd合金粉)が含まれ、Ag粉には純Ag粉及びAg合金粉(特にAg含有量が80質量%以上のAg合金粉)が含まれ、Ni粉には純Ni粉及びNi合金粉(特にNi含有量が80質量%以上のNi合金粉)が含まれる。しかしながら、通常は、金属粉中の銅紛の質量割合は90%以上であり、典型的には95%以上であり、より典型的には99%以上である。 Metal powder other than copper powder, for example, one or more metal powders selected from the group consisting of Pt powder, Pd powder, Ag powder and Ni powder can be blended in the conductive composition. Pt powder includes pure Pt powder and Pt alloy powder (particularly Pt alloy powder having a Pt content of 80 mass% or more), and Pd powder includes pure Pd powder and Pd alloy powder (particularly Pd content of 80 mass%). The above Pd alloy powder) is included, the Ag powder includes pure Ag powder and Ag alloy powder (in particular, Ag alloy powder with an Ag content of 80% by mass or more), and the Ni powder includes pure Ni powder and Ni alloy. Powder (particularly Ni alloy powder having a Ni content of 80% by mass or more) is included. However, usually, the mass ratio of copper powder in the metal powder is 90% or more, typically 95% or more, and more typically 99% or more.

ある実施の態様において、銅粉に表面処理を行ってもよい。このような表面処理として、例えば、ベンゾトリアゾール、イミダゾール等の有機防錆剤による防錆処理を挙げることができる。したがって、本発明の目的を失わない限度内で、当業者はそのような公知の表面処理を、所望により行うことができる。すなわち、本開示に係る表面処理された金属粉の表面に、本発明の目的を失わない限度内で、更に表面処理を行って得られた金属粉もまた、本開示の範囲内である。 In one embodiment, the copper powder may be surface-treated. As such a surface treatment, for example, an anticorrosion treatment with an organic anticorrosion agent such as benzotriazole or imidazole can be mentioned. Therefore, the person skilled in the art can carry out such known surface treatments as desired without departing from the purpose of the present invention. That is, the metal powder obtained by further performing the surface treatment on the surface of the surface-treated metal powder according to the present disclosure is also within the scope of the present disclosure, as long as the object of the present invention is not lost.

[バインダー樹脂]
導電性組成物に使用されるバインダー樹脂としては、例えばセルロース系樹脂、アクリル樹脂、アルキッド樹脂、ポリビニルアルコール系樹脂、ポリビニルアセタール、ケトン樹脂、尿素樹脂、メラミン樹脂、ポリエステル、ポリアミド、ポリウレタンを挙げることができる。バインダー樹脂は一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。導電性組成物中のバインダー樹脂は、銅粉の質量に対して例えば0.1〜10%の比率、好ましくは1〜8%の比率となるように含有させることができる。バインダー樹脂の配合割合を当該範囲とすることで、導電性組成物の構造安定性、均一塗布性を高めることができる。
[Binder resin]
Examples of the binder resin used in the conductive composition include cellulose resins, acrylic resins, alkyd resins, polyvinyl alcohol resins, polyvinyl acetals, ketone resins, urea resins, melamine resins, polyesters, polyamides and polyurethanes. it can. The binder resins may be used alone or in combination of two or more. The binder resin in the conductive composition can be contained in a proportion of, for example, 0.1 to 10%, preferably 1 to 8% with respect to the mass of the copper powder. By setting the blending ratio of the binder resin within the above range, it is possible to enhance the structural stability and uniform coating property of the conductive composition.

[分散媒]
導電性組成物に使用される分散媒としては、例えばアルコール溶剤(例えばテルピネオール、ジヒドロテルピネオール、イソプロピルアルコール、ブチルカルビトール、テルピネルオキシエタノール、ジヒドロテルピネルオキシエタノールからなる群から選択された1種以上)、グリコールエーテル溶剤(例えばブチルカルビトール)、アセテート溶剤(例えばブチルカルビトールアセテート、ジヒドロターピネオールアセテート、ジヒドロカルビトールアセテート、カルビトールアセテート、リナリールアセテート、ターピニルアセテートからなる群から選択された1種以上)、ケトン溶剤(例えばメチルエチルケトン)、炭化水素溶剤(例えばトルエン、シクロヘキサンからなる群から選択された1種以上)、セロソルブ類(例えばエチルセロソルブ、ブチルセロソルブからなる群から選択された1種以上)、ジエチルフタレート、またはプロピネオート系溶剤(例えばジヒドロターピニルプロピネオート、ジヒドロカルビルプロピネオート、イソボニルプロピネオートからなる群から選択された1種以上)を挙げることができる。分散媒は一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。導電性組成物中には、銅粉の質量に対して例えば10〜400%の比率となるように分散媒を含有させることができる。
[Dispersion medium]
The dispersion medium used in the conductive composition is, for example, one or more selected from the group consisting of alcohol solvents (for example, terpineol, dihydroterpineol, isopropyl alcohol, butylcarbitol, terpineloxyethanol, dihydroterpineloxyethanol). ), a glycol ether solvent (eg butyl carbitol), an acetate solvent (eg butyl carbitol acetate, dihydroterpineol acetate, dihydrocarbitol acetate, carbitol acetate, linalyl acetate, terpinyl acetate) 1 Or more), a ketone solvent (for example, methyl ethyl ketone), a hydrocarbon solvent (for example, one or more selected from the group consisting of toluene and cyclohexane), and a cellosolve (for example, one or more selected from the group consisting of ethyl cellosolve and butyl cellosolve). , Diethyl phthalate, or a propyneate-based solvent (for example, one or more selected from the group consisting of dihydroterpinyl propyneate, dihydrocarbyl propineate, and isobonyl propineate). As the dispersion medium, one kind may be used alone, or two or more kinds may be used in combination. The conductive composition may contain a dispersion medium in a ratio of, for example, 10 to 400% with respect to the mass of the copper powder.

[その他の添加剤]
本開示に係る導電性組成物には、ガラスフリット、分散剤、増粘剤及び消泡剤等の公知の添加剤を適宜含有することができる。
[Other additives]
The conductive composition according to the present disclosure may appropriately contain known additives such as glass frit, a dispersant, a thickener, and a defoaming agent.

ガラスフリットは、セラミックと導体の密着性を向上させるのに有用である。水蒸気雰囲気で低温焼成を行うと、サイズが小さい第1の銅粉同士、又は、第1の銅粉と第2の銅粉とが焼結し、第2の銅粉同士の焼結が不十分なまま焼結を終える可能性がある。斯かる場合、焼結体に微小な空隙が発生し得る。そこで、導電性組成物中にガラスフリットを添加することにより、この空隙(特に、焼結体−セラミックの界面に存在する空隙)を埋めることができ、セラミックと導体の密着性を向上することができる。また、水蒸気雰囲気で焼成することにより、ガラスフリットのぬれ性が向上するため、第1の銅紛及び第2の銅粉の双方の焼結性を向上し、より低温側で銅の焼結を起こすことができる。 The glass frit is useful for improving the adhesion between the ceramic and the conductor. When low-temperature firing is performed in a steam atmosphere, the first copper powders having a small size are sintered together, or the first copper powders and the second copper powders are sintered together, and the sintering between the second copper powders is insufficient. There is a possibility of finishing the sintering as it is. In such a case, minute voids may occur in the sintered body. Therefore, by adding glass frit to the conductive composition, this void (particularly, the void existing at the interface between the sintered body and the ceramic) can be filled, and the adhesion between the ceramic and the conductor can be improved. it can. In addition, since the wettability of the glass frit is improved by firing in a steam atmosphere, the sinterability of both the first copper powder and the second copper powder is improved, and copper is sintered at a lower temperature side. You can wake it up.

ガラスフリットとしては、例えばBET比表面積が1〜10m2-1、好ましくは2〜10m2-1、より好ましくは2〜8m2-1のガラスフリットを使用することができる。導電性組成物中には、銅粉の質量に対して例えば0〜5%の比率となるようにガラスフリットを含有させることができる。 As the glass frit, for example, a BET specific surface area of 1 to 10 m 2 g -1, preferably 2 to 10 m 2 g -1, more preferably may use a glass frit 2 to 8 m 2 g -1. The conductive composition may contain glass frit in a proportion of, for example, 0 to 5% with respect to the mass of the copper powder.

分散剤としては、例えばオレイン酸、ステアリン酸及びオレイルアミンを挙げることができる。導電性組成物中には、銅粉の質量に対して例えば0〜5%の比率となるように分散剤を含有させることができる。 Examples of the dispersant include oleic acid, stearic acid and oleylamine. The conductive composition may contain a dispersant in a proportion of, for example, 0 to 5% with respect to the mass of the copper powder.

消泡剤としては、例えば有機変性ポリシロキサン、ポリアクリレートを挙げることができる。導電性組成物中には、銅粉の質量に対して例えば0〜5%の比率となるように消泡剤を含有させることができる。 Examples of the defoaming agent include organic modified polysiloxane and polyacrylate. The conductive composition may contain an antifoaming agent in a proportion of, for example, 0 to 5% with respect to the mass of the copper powder.

なお、導電性組成物における銅粉、フィラー、バインダー樹脂、分散媒の比率は、当該導電性組成物の用途に応じた塗布性を損なわない範囲で、適宜決定すればよい。 In addition, the ratio of the copper powder, the filler, the binder resin, and the dispersion medium in the conductive composition may be appropriately determined within a range that does not impair the coating property according to the application of the conductive composition.

以下に実施例をあげて、本開示を更に詳細に説明する。本開示は、以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail with reference to Examples. The present disclosure is not limited to the following examples.

(手順1:実施例1〜6、9〜13、比較例1〜4の第1の銅粉)
50L容器に純水6Lを添加し、液温が70℃となるように加温した。ここに硫酸銅五水和物3.49kgを添加し、350rpmで撹拌しながら、硫酸銅の結晶がすべて溶解したことを目視で確認した。ここにD−グルコース1.39kgを添加した。ここに送液ポンプで5wt%のアンモニア水溶液を300mL/分の速度でpH5に達するまで添加した。pHが5に達したら、スポイトでアンモニア水溶液を滴下し、pH8.4に上昇させた。ここから液温70±2℃、pH8.5±0.1に3時間保持した。pHの調整はアンモニア水溶液で行った。反応終了後、デカンテーション、上澄み排出、純水での洗浄を、上澄み液のpHが8.0を下回るまで繰り返し、亜酸化銅粉スラリーを得た。固形分を一部取り出して、窒素中で70℃で乾燥し、XRDでこの固形分が亜酸化銅であることを確認した。
(Procedure 1: Examples 1-6, 9-13, 1st copper powder of Comparative Examples 1-4)
6 L of pure water was added to a 50 L container and heated so that the liquid temperature became 70°C. 3.49 kg of copper sulfate pentahydrate was added thereto, and it was visually confirmed that all the crystals of copper sulfate were dissolved while stirring at 350 rpm. D-glucose 1.39kg was added here. A 5 wt% aqueous ammonia solution was added thereto at a rate of 300 mL/min until a pH of 5 was reached with a liquid feed pump. When the pH reached 5, an aqueous ammonia solution was added dropwise with a dropper to raise the pH to 8.4. From here, the liquid temperature was maintained at 70±2° C. and pH 8.5±0.1 for 3 hours. The pH was adjusted with an aqueous ammonia solution. After the completion of the reaction, decantation, discharge of the supernatant, and washing with pure water were repeated until the pH of the supernatant fell below 8.0 to obtain a cuprous oxide powder slurry. A part of the solid content was taken out and dried at 70° C. in nitrogen, and it was confirmed by XRD that the solid content was cuprous oxide.

上記で得られた亜酸化銅粉スラリーの含水率を20質量%に調整し、この亜酸化銅粉スラリー(25℃)に、固形分1kgに対して水分が7Lとなるように純水(25℃)を添加し、更にニカワを4g添加し、500rpmで撹拌した。ここに25vol%の希硫酸2L(25℃)を瞬間的に添加し、pHを0.7とした。デカンテーションで粉体を沈降させ、上澄み液を抜き、純水(25℃)を7L添加し、500rpmで10分間撹拌した。上澄み液中のCu2+由来のCu濃度が1g/Lを下回るまでデカンテーションと水洗の操作を繰り返した。その後、pH13へ調整したアンモニア水3L中に投入して、攪拌した。攪拌は、25℃で1時間行った。その後、吸引ろ過によって固液分離して、pH処理された銅粉のケークを得た。得られたケークを、ろ過後の純水のpHが8を下回ることを目安として純水によって洗浄した。この洗浄ケークを窒素雰囲気下で100℃で2時間乾燥した。得られた乾燥粉を乳棒乳鉢で、0.7mmの孔の篩を通るまで解砕し、ジェットミルでさらに解砕した。得られた粉はXRDで銅であることを確認した。 The water content of the cuprous oxide powder slurry obtained above was adjusted to 20% by mass, and the cuprous oxide powder slurry (25° C.) was added with pure water (25 (° C.) was added, 4 g of glue was further added, and the mixture was stirred at 500 rpm. 2 L of 25 vol% dilute sulfuric acid (25° C.) was instantaneously added thereto to adjust the pH to 0.7. The powder was settled by decantation, the supernatant was removed, 7 L of pure water (25° C.) was added, and the mixture was stirred at 500 rpm for 10 minutes. The decantation and water washing operations were repeated until the Cu concentration derived from Cu 2+ in the supernatant liquid fell below 1 g/L. Then, the mixture was poured into 3 L of ammonia water adjusted to pH 13 and stirred. Stirring was performed at 25° C. for 1 hour. Then, solid-liquid separation was performed by suction filtration to obtain a cake of pH-treated copper powder. The cake thus obtained was washed with pure water by using the pH of pure water after filtration as a guide. The washed cake was dried under a nitrogen atmosphere at 100° C. for 2 hours. The obtained dry powder was crushed with a pestle mortar until it passed through a sieve having 0.7 mm holes, and further crushed with a jet mill. It was confirmed by XRD that the obtained powder was copper.

(手順2:固めかさ密度の測定)
手順1で得られた銅粉の固めかさ密度をホソカワミクロン(株)のパウダテスタPT−Xを使って先述した方法により測定した。結果を表1に示す。
(Procedure 2: Determination of compacted bulk density)
The compacted bulk density of the copper powder obtained in Procedure 1 was measured by the above-described method using a powder tester PT-X manufactured by Hosokawa Micron Corporation. The results are shown in Table 1.

(手順3:BET比表面積)
手順1で得られた銅粉について、マイクロトラック・ベル社のBELSORP−miniIIを使い、真空中で200℃、5時間加熱する前処理後にBET比表面積を測定した。結果を表1に示す。
(Procedure 3: BET specific surface area)
The BET specific surface area of the copper powder obtained in Procedure 1 was measured after pretreatment by heating at 200° C. for 5 hours in vacuum using BELSORP-miniII manufactured by Microtrac Bell. The results are shown in Table 1.

(手順4:実施例7の第1の銅粉)
手順1において、500rpmで撹拌している亜酸化銅粉スラリー(25℃)に25vol%の希硫酸2Lを瞬間的に添加するのではなく、50mL/分で添加した。上澄み液中のCu2+由来のCu濃度が1g/Lを下回るまでデカンテーションと水洗の操作を繰り返した。その後、吸引ろ過によって固液分離して得られたケーキをさらにpHが8.0を下回るまで純水によって洗浄した。この洗浄ケークを窒素雰囲気下で100℃で2時間乾燥した。得られた乾燥粉を乳棒乳鉢で、0.7mmの孔の篩を通るまで解砕し、ジェットミルでさらに解砕した。その後、手順2、手順3と同様の手順に従って固めかさ密度、BET比表面積を求めた。希硫酸の添加速度を実施例1よりも遅くしたことに起因して、銅粉のサイズが大きくなった(BET比表面積が小さくなる)。固めかさ密度は、基本的にはサイズが大きくなるほど大きくなるため、銅粉のサイズに対応して大きくなった。
(Procedure 4: First copper powder of Example 7)
In Procedure 1, 2 L of 25 vol% dilute sulfuric acid was not instantaneously added to the cuprous oxide powder slurry (25° C.) stirred at 500 rpm, but was added at 50 mL/min. The decantation and water washing operations were repeated until the Cu concentration derived from Cu 2+ in the supernatant liquid fell below 1 g/L. Then, the cake obtained by solid-liquid separation by suction filtration was further washed with pure water until the pH fell below 8.0. The washed cake was dried under a nitrogen atmosphere at 100° C. for 2 hours. The obtained dry powder was crushed with a pestle mortar until it passed through a sieve having 0.7 mm holes, and further crushed with a jet mill. Then, the solidified bulk density and the BET specific surface area were determined according to the same procedure as Procedures 2 and 3. The size of the copper powder was large (the BET specific surface area was small) due to the fact that the addition rate of dilute sulfuric acid was slower than in Example 1. Since the compacted bulk density basically becomes larger as the size becomes larger, it becomes larger in accordance with the size of the copper powder.

(手順5:実施例8の第1の銅粉)
手順1において、アンモニア水3LのpHを13から8へ変更とした以外は手順1に従い銅粉を作製した。その後、手順2、手順3と同様の手順に従って固めかさ密度、BET比表面積を求めた。アンモニア水のpHが小さくなったことに起因して、銅粉に吸着する水酸化物イオンが減る結果、銅粉のゼータ電位の絶対値が小さくなって銅粉同士の反発度合が小さくなるので、固めかさ密度の大きな銅粉が得られた。
(Procedure 5: First copper powder of Example 8)
In Procedure 1, copper powder was produced according to Procedure 1 except that the pH of 3 L of ammonia water was changed from 13 to 8. Then, the solidified bulk density and the BET specific surface area were determined according to the same procedure as the procedure 2 and the procedure 3. Due to the decrease in the pH of the ammonia water, the hydroxide ions adsorbed on the copper powder are reduced. As a result, the absolute value of the zeta potential of the copper powder is reduced and the repulsion degree between the copper powders is reduced. A copper powder having a high compacted bulk density was obtained.

(手順6:比較例5の第1の銅粉)
手順1において、500rpmで撹拌している亜酸化銅粉スラリー(25℃)への25vol%の希硫酸2Lの添加速度を10mL/分の速度とした以外は手順1に従い銅粉を作製した。その後、手順2、手順3と同様の手順に従って固めかさ密度、BET比表面積を求めた。
(Procedure 6: First Copper Powder of Comparative Example 5)
A copper powder was prepared according to the procedure 1 except that the addition rate of 2 L of 25 vol% dilute sulfuric acid to the cuprous oxide powder slurry (25° C.) stirred at 500 rpm was changed to 10 mL/min. Then, the solidified bulk density and the BET specific surface area were determined according to the same procedure as Procedures 2 and 3.

(手順7:比較例6の第1の銅粉)
50L容器に純水6Lを添加し、液温が70℃となるように加温した。ここに硫酸銅五水和物3.49kgを添加し、350rpmで撹拌しながら、硫酸銅の結晶がすべて溶解したことを目視で確認した。ここにD−グルコース1.39kgを添加した。ここに送液ポンプで5wt%のアンモニア水溶液を300mL/分の速度でpH5に達するまで添加した。pHが5に達したら、スポイトでアンモニア水溶液を滴下し、pH8.4に上昇させた。ここから液温70±2℃、pH8.5±0.1に3時間保持した。pHの調整はアンモニア水溶液で行った。反応終了後、デカンテーション、上澄み排出、純水での洗浄を、上澄み液のpHが8.0を下回るまで繰り返し、亜酸化銅粉スラリーを得た。固形分を一部取り出して、窒素中で70℃で乾燥し、XRDでこの固形分が亜酸化銅であることを確認した。
(Procedure 7: First Copper Powder of Comparative Example 6)
6 L of pure water was added to a 50 L container and heated so that the liquid temperature became 70°C. 3.49 kg of copper sulfate pentahydrate was added thereto, and it was visually confirmed that all the crystals of copper sulfate were dissolved while stirring at 350 rpm. D-glucose 1.39kg was added here. A 5 wt% aqueous ammonia solution was added thereto at a rate of 300 mL/min until a pH of 5 was reached with a liquid feed pump. When the pH reached 5, an aqueous ammonia solution was added dropwise with a dropper to raise the pH to 8.4. From here, the liquid temperature was maintained at 70±2° C. and pH 8.5±0.1 for 3 hours. The pH was adjusted with an aqueous ammonia solution. After the completion of the reaction, decantation, discharge of the supernatant, and washing with pure water were repeated until the pH of the supernatant fell below 8.0 to obtain a cuprous oxide powder slurry. A part of the solid content was taken out and dried at 70° C. in nitrogen, and it was confirmed by XRD that the solid content was cuprous oxide.

上記で得られた亜酸化銅粉スラリーの含水率を20質量%に調整し、この亜酸化銅粉スラリー(25℃)に、固形分1kgに対して水分が7Lとなるように純水(25℃)を添加し、更にニカワを4g添加し、500rpmで撹拌した。ここに25vol%の希硫酸2L(25℃)を瞬間的に添加し、pHを0.7とした。デカンテーションで粉体を沈降させ、上澄み液を抜き、純水を7L添加し、500rpmで10分間撹拌した。上澄み液中のCu2+由来のCu濃度が1g/Lを下回るまでデカンテーションと水洗の操作を繰り返した。その後、吸引ろ過によって固液分離して、銅粉のケークを得た。このケークを窒素雰囲気下で100℃で2時間乾燥した。得られた乾燥粉を乳棒乳鉢で、0.7mmの孔の篩を通るまで解砕し、ジェットミルでさらに解砕した。得られた粉はXRDで銅であることを確認した。 The water content of the cuprous oxide powder slurry obtained above was adjusted to 20% by mass, and the cuprous oxide powder slurry (25° C.) was added with pure water (25 (° C.) was added, 4 g of glue was further added, and the mixture was stirred at 500 rpm. 2 L of 25 vol% dilute sulfuric acid (25° C.) was instantaneously added thereto to adjust the pH to 0.7. The powder was settled by decantation, the supernatant was removed, 7 L of pure water was added, and the mixture was stirred at 500 rpm for 10 minutes. The decantation and water washing operations were repeated until the Cu concentration derived from Cu 2+ in the supernatant liquid fell below 1 g/L. Then, solid-liquid separation was performed by suction filtration to obtain a cake of copper powder. The cake was dried under a nitrogen atmosphere at 100° C. for 2 hours. The obtained dry powder was crushed with a pestle mortar until it passed through a sieve having 0.7 mm holes, and further crushed with a jet mill. It was confirmed by XRD that the obtained powder was copper.

(手順8:実施例、比較例の第2の銅粉)
BET比表面積が0.24m2-1、0.15m2-1、0.08m2-1の銅粉をそれぞれアトマイズ法で作製した。
(Procedure 8: Second Copper Powder of Examples and Comparative Examples)
Copper powders having BET specific surface areas of 0.24 m 2 g -1 , 0.15 m 2 g -1 , and 0.08 m 2 g -1 were produced by the atomization method.

(手順9:実施例1〜12、比較例のペースト作製)
あらかじめテルピネオールとエチルセルロースを自転公転ミキサーAR−100、および3本ロールに通して十分に混練してビヒクルを調製した。次いで、2種の銅粉を試験番号に応じた表1中の質量比率により混合した。この混合後の粉末を銅粉と称する。銅粉:エチルセルロース:テルピネオール=80:2.3:17.7(重量比)となるようにビヒクル及び銅粉を混合し、自転公転ミキサーで予備混練した後、3本ロールに通し(仕上げロールギャップ5μm)、自転公転ミキサーを使って脱泡し、実施例1〜12及び比較例のペーストを作製した。
(Procedure 9: Preparation of pastes of Examples 1 to 12 and Comparative Example)
A vehicle was prepared in advance by passing terpineol and ethyl cellulose through an orbiting/revolving mixer AR-100 and three rolls to sufficiently knead them. Then, two kinds of copper powder were mixed according to the mass ratio in Table 1 according to the test number. The powder after this mixing is called copper powder. Vehicle powder and copper powder are mixed so that copper powder: ethyl cellulose: terpineol = 80: 2.3: 17.7 (weight ratio), pre-kneaded in a rotation-revolution mixer, and then passed through three rolls (finish roll gap 5 μm), and defoamed by using a rotation/revolution mixer to prepare pastes of Examples 1 to 12 and Comparative Example.

(手順10:実施例13のペースト作製)
ビーズミルでシリカ粒子を解砕してガラスフリットを得た。このガラスフリットについて、手順3により測定したBET比表面積は6m2-1であった。このガラスフリットと、手順9により調製したビヒクルと、表1に記載の質量比率で混合した2種の銅粉と、テルピネオールを、銅粉:エチルセルロース:ガラスフリット:テルピネオール=80:2.3:1.6:16.1(重量比)となるように混合し、自転公転ミキサーで予備混練した後、3本ロールに通し(仕上げロールギャップ5μm)、自転公転ミキサーを使って脱泡し、実施例13のペーストを作製した。
(Procedure 10: Preparation of paste of Example 13)
The silica particles were crushed with a bead mill to obtain a glass frit. For this glass frit, the BET specific surface area measured by Procedure 3 was 6 m 2 g -1 . This glass frit, the vehicle prepared by the procedure 9, two kinds of copper powder mixed in the mass ratios shown in Table 1, and terpineol were used as copper powder:ethyl cellulose:glass frit:terpineol=80:2.3:1. The mixture was mixed so as to have a weight ratio of 6:16.1, preliminarily kneaded by a rotation revolution mixer, passed through three rolls (finishing roll gap 5 μm), and defoamed using a rotation revolution mixer. 13 pastes were made.

(手順11:焼結体(導体)の比抵抗)
上記手順で得られた実施例及び比較例の各ペースト及びスクリーン版(ステンレスメッシュ、線径18μm、紗厚38μm、オープニング33μm、開口率42%)を使って、表面粗さRaが0.04μmのアルミナ基板(純度99.5%)に、幅5mm、長さ20mmのラインを3本印刷した。全圧1atm、水蒸気分圧0.03atmの残部窒素ガスを2L/分で供給しながら、試験番号に応じた表1に記載の所定のピーク温度まで0.75℃/分の速度で供給し、所定のピーク温度で20分保持した。その後、水蒸気を含まない純窒素雰囲気で5℃/分の速度で室温まで冷却した。このようにして、ペーストの焼成体をセラミック基板上に形成して、焼成体・セラミック積層体を得た。室温まで冷却して得られた幅5mm、長さ20mmの回路の表面抵抗、及び厚みを計測し、比抵抗を3点平均で求めた。結果を表1に示す。
(Procedure 11: Specific resistance of sintered body (conductor))
Using each paste and screen plate (stainless steel mesh, wire diameter 18 μm, gauze thickness 38 μm, opening 33 μm, opening ratio 42%) of the examples and comparative examples obtained by the above procedure, the surface roughness Ra was 0.04 μm. Three lines with a width of 5 mm and a length of 20 mm were printed on an alumina substrate (purity 99.5%). While supplying the remaining nitrogen gas having a total pressure of 1 atm and a steam partial pressure of 0.03 atm at 2 L/min, the nitrogen gas was supplied at a rate of 0.75° C./min up to a predetermined peak temperature shown in Table 1 according to the test number. Hold for 20 minutes at a given peak temperature. Then, it was cooled to room temperature at a rate of 5° C./min in a pure nitrogen atmosphere containing no water vapor. In this way, a fired body of the paste was formed on the ceramic substrate to obtain a fired body/ceramic laminate. The surface resistance and the thickness of a circuit having a width of 5 mm and a length of 20 mm obtained by cooling to room temperature were measured, and the specific resistance was calculated as a three-point average. The results are shown in Table 1.

(手順12:テープ剥離試験)
上記手順で得られた回路と基板にカーボン両面テープ(日新EM 社製)を用い、JIS Z 0237:2009に従い、テープ剥離試験を引きはがし角度90°、引きはがし速度5mm/sで行い、テープの接着面に回路が付着しないかを確認した。1回の剥離試験で少なくとも一部の回路(焼結体)が基板からはがれた場合は×、2回または3回で剥がれた場合は△、4回以上で剥がれた場合は○と判定した。結果を表1に示す。
(Procedure 12: Tape peeling test)
Using the carbon double-sided tape (manufactured by Nisshin EM Co., Ltd.) for the circuit and substrate obtained by the above procedure, according to JIS Z 0237:2009, a tape peeling test was performed at a peeling angle of 90° and a peeling speed of 5 mm/s. It was confirmed that the circuit did not adhere to the adhesive surface of. In one peeling test, at least a part of the circuit (sintered body) was peeled off from the substrate, and when peeled off twice or three times, it was judged as Δ, and when peeled off after four times or more, it was judged as ○. The results are shown in Table 1.

Figure 2020111797
Figure 2020111797

[考察]
BET比表面積、固めかさ密度、及び焼成雰囲気が適切であった実施例1〜13の製造方法によれば、導体の比抵抗が低く、セラミックと導体間の密着性に優れた導体・セラミック積層体が得られた。
一方、比較例1では、焼成時のピーク温度が高すぎたため、降温時のデラミネーションの度合いが大きく、セラミックと導体間の密着性が不足した。
比較例2では、焼成時のピーク温度が低すぎたため焼結が不十分となり、セラミックと導体間の密着性が不足した。また、導体の導電性も悪化した。
比較例3では、焼成時の水蒸気分圧が高過ぎたため、水分が焼結体中に取り込まれ、界面近傍に取り込まれた水分が原因でセラミックと導体間の密着性が不足した。
比較例4では、焼成時の水蒸気分圧が低すぎたため焼結が不十分となり、セラミックと導体間の密着性が不足した。また、導体の導電性も悪化した。
比較例5では、第1の銅紛のサイズが大きく、BET比表面積が不足した。このため、低温の焼成温度では焼結が不十分となり、セラミックと導体間の密着性が不足した。また、導体の導電性も悪化した。
比較例6では、第1の銅紛の固めかさ密度が高過ぎたために、セラミック−導体間に空隙が発生し、セラミックと導体間の密着性が不足した。また、導体にも空隙が発生したことで導体の導電性も不足した。
[Discussion]
According to the manufacturing methods of Examples 1 to 13 in which the BET specific surface area, the compacted bulk density, and the firing atmosphere were appropriate, the conductor-ceramic laminate having a low specific resistance of the conductor and excellent adhesion between the ceramics was gotten.
On the other hand, in Comparative Example 1, since the peak temperature during firing was too high, the degree of delamination during cooling was large, and the adhesion between the ceramic and the conductor was insufficient.
In Comparative Example 2, the peak temperature during firing was too low, resulting in insufficient sintering and insufficient adhesion between the ceramic and the conductor. Also, the conductivity of the conductor deteriorated.
In Comparative Example 3, since the water vapor partial pressure during firing was too high, water was taken into the sintered body, and the water taken into the vicinity of the interface caused insufficient adhesion between the ceramic and the conductor.
In Comparative Example 4, the partial pressure of water vapor during firing was too low, resulting in insufficient sintering and insufficient adhesion between the ceramic and the conductor. Also, the conductivity of the conductor deteriorated.
In Comparative Example 5, the size of the first copper powder was large and the BET specific surface area was insufficient. For this reason, sintering becomes insufficient at a low firing temperature, resulting in insufficient adhesion between the ceramic and the conductor. Also, the conductivity of the conductor deteriorated.
In Comparative Example 6, since the compacted bulk density of the first copper powder was too high, voids were generated between the ceramic and the conductor, and the adhesion between the ceramic and the conductor was insufficient. In addition, the conductivity of the conductor was insufficient due to the formation of voids in the conductor.

Claims (9)

BET比表面積が1.0〜10.0m2/gであって、固めかさ密度が3.0g/cm3以下である第1の銅粉と、前記第1の銅粉よりBET比表面積が小さい第2の銅粉と、バインダー樹脂と、分散媒とを含む導電性組成物をセラミック基板に塗布するステップと、
前記セラミック基板と前記塗布された導電性組成物とを、水蒸気分圧0.02〜0.15atmの非酸化性雰囲気において、ピーク温度を400〜700℃として焼成するステップと、
を備えるセラミックと導体の複合体の製造方法。
A first copper powder having a BET specific surface area of 1.0 to 10.0 m 2 /g and a compacted bulk density of 3.0 g/cm 3 or less, and a BET specific surface area smaller than that of the first copper powder. Applying a conductive composition containing a second copper powder, a binder resin, and a dispersion medium to the ceramic substrate,
Firing the ceramic substrate and the applied conductive composition in a non-oxidizing atmosphere having a water vapor partial pressure of 0.02 to 0.15 atm with a peak temperature of 400 to 700° C.;
A method of manufacturing a composite of a ceramic and a conductor.
前記導電性組成物はガラスフリットを含む請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the conductive composition includes a glass frit. 前記非酸化性雰囲気は不活性雰囲気である請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1, wherein the non-oxidizing atmosphere is an inert atmosphere. 前記焼成するステップは、昇温時、100℃からピーク温度に到達するまでは少なくとも、前記セラミック基板と前記塗布された導電性組成物とを、水蒸気分圧0.02〜0.15atmの非酸化性雰囲気で行う請求項1〜3の何れか一項に記載の製造方法。 In the firing step, at the time of temperature increase, at least the ceramic substrate and the applied conductive composition are non-oxidized at a steam partial pressure of 0.02 to 0.15 atm until a peak temperature is reached from 100°C. The manufacturing method according to any one of claims 1 to 3, which is performed in a neutral atmosphere. 前記焼成するステップは、
前記ピーク温度まで0.1〜10℃/minで昇温させるステップと、
前記ピーク温度で1〜180分間維持するステップと、
を含む請求項1〜4の何れか一項に記載の製造方法。
The firing step includes
Raising the temperature to the peak temperature at 0.1 to 10° C./min,
Maintaining the peak temperature for 1 to 180 minutes,
The manufacturing method according to claim 1, further comprising:
第1の銅粉及び第2の銅粉の合計質量に対する第1の銅粉の質量比率が50%以上である請求項1〜5の何れか一項に記載の製造方法。 The manufacturing method according to claim 1, wherein a mass ratio of the first copper powder to a total mass of the first copper powder and the second copper powder is 50% or more. 第2の銅粉のBET比表面積は0.1m2/g以上である請求項1〜6のいずれか1項に記載の製造方法。 The manufacturing method according to claim 1, wherein the BET specific surface area of the second copper powder is 0.1 m 2 /g or more. 請求項1〜7の何れか一項に記載の製造方法を使用してセラミックと導体の複合体を得る工程を含む積層セラミックコンデンサーの製造方法。 A method of manufacturing a monolithic ceramic capacitor, which comprises the step of obtaining a composite of a ceramic and a conductor by using the method of manufacturing according to claim 1. 請求項1〜7の何れか一項に記載の製造方法を使用してセラミックと導体の複合体を得る工程を含むセラミック回路基板の製造方法。 A method of manufacturing a ceramic circuit board, comprising the step of obtaining a composite of ceramic and conductor using the method of manufacturing according to claim 1.
JP2019003895A 2019-01-11 2019-01-11 Method for producing a composite of ceramic and conductor Active JP6588174B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019003895A JP6588174B1 (en) 2019-01-11 2019-01-11 Method for producing a composite of ceramic and conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019003895A JP6588174B1 (en) 2019-01-11 2019-01-11 Method for producing a composite of ceramic and conductor

Publications (2)

Publication Number Publication Date
JP6588174B1 JP6588174B1 (en) 2019-10-09
JP2020111797A true JP2020111797A (en) 2020-07-27

Family

ID=68159766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019003895A Active JP6588174B1 (en) 2019-01-11 2019-01-11 Method for producing a composite of ceramic and conductor

Country Status (1)

Country Link
JP (1) JP6588174B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030196A (en) * 1983-07-28 1985-02-15 富士通株式会社 Method of producing multilayer circuit board
JPH0242796A (en) * 1988-08-02 1990-02-13 Asahi Glass Co Ltd Manufacture of multilayer ceramic substrate
JPH02263731A (en) * 1989-03-31 1990-10-26 Shoei Chem Ind Co Thick film copper paste
JPH05218652A (en) * 1992-01-31 1993-08-27 Hitachi Ltd Manufacture of ceramic multilayer wiring board
JPH06290634A (en) * 1993-03-31 1994-10-18 Miyoshi Denshi Kk Low temperature baked copper composite
US5403376A (en) * 1992-03-18 1995-04-04 Printron, Inc. Particle size distribution for controlling flow of metal powders melted to form electrical conductors
JP2014112518A (en) * 2012-09-10 2014-06-19 Heraeus Precious Metals North America Conshohocken Llc Low temperature burnable copper composition
JP2017101286A (en) * 2015-12-02 2017-06-08 Dowaホールディングス株式会社 Copper powder, method for producing copper powder and conductive paste
JP2017133083A (en) * 2016-01-29 2017-08-03 住友金属鉱山株式会社 Manufacturing method of copper powder and manufacturing method of conductive paste
JP2017179428A (en) * 2016-03-29 2017-10-05 Dowaエレクトロニクス株式会社 Conductive material, forming method of conducive film, circuit board, semiconductor device, and manufacturing method of semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030196A (en) * 1983-07-28 1985-02-15 富士通株式会社 Method of producing multilayer circuit board
JPH0242796A (en) * 1988-08-02 1990-02-13 Asahi Glass Co Ltd Manufacture of multilayer ceramic substrate
JPH02263731A (en) * 1989-03-31 1990-10-26 Shoei Chem Ind Co Thick film copper paste
JPH05218652A (en) * 1992-01-31 1993-08-27 Hitachi Ltd Manufacture of ceramic multilayer wiring board
US5403376A (en) * 1992-03-18 1995-04-04 Printron, Inc. Particle size distribution for controlling flow of metal powders melted to form electrical conductors
JPH06290634A (en) * 1993-03-31 1994-10-18 Miyoshi Denshi Kk Low temperature baked copper composite
JP2014112518A (en) * 2012-09-10 2014-06-19 Heraeus Precious Metals North America Conshohocken Llc Low temperature burnable copper composition
JP2017101286A (en) * 2015-12-02 2017-06-08 Dowaホールディングス株式会社 Copper powder, method for producing copper powder and conductive paste
JP2017133083A (en) * 2016-01-29 2017-08-03 住友金属鉱山株式会社 Manufacturing method of copper powder and manufacturing method of conductive paste
JP2017179428A (en) * 2016-03-29 2017-10-05 Dowaエレクトロニクス株式会社 Conductive material, forming method of conducive film, circuit board, semiconductor device, and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP6588174B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
US9780011B2 (en) Brazing material, brazing material paste, ceramic circuit substrate, ceramic master circuit substrate, and power semiconductor module
EP1800773B1 (en) Nickel powder, conductive paste, and multilayer electronic component using same
CN113632217A (en) Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit substrate, and semiconductor package
JP3629783B2 (en) Circuit board
JP6609622B2 (en) Wiring board
CA2216457C (en) Nickel powder and process for preparing the same
CN114512345A (en) High specific volume porous electrode foil and preparation method thereof
KR20000028837A (en) Nickel composite particle and production process therefor
US8231961B2 (en) Low temperature co-fired ceramic material, low temperature co-fired ceramic body, and multilayer ceramic substrate
JP6588174B1 (en) Method for producing a composite of ceramic and conductor
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
KR102471934B1 (en) Surface treated metal powder and conductive composition
JP6303022B2 (en) Copper powder
JP4862653B2 (en) Conductive nickel paste
JP4562282B2 (en) Manufacturing method of ceramic circuit board
JP6637201B1 (en) Method for producing composite of ceramic and conductor
JP2010077501A (en) Nickel-copper alloy powder, method for producing the same, conductive paste and electronic component
JP2004356347A (en) Resin sheet and method of manufacturing ceramic multilayer wiring board using the same
JP3878803B2 (en) Manufacturing method of glass ceramic substrate
JP4134602B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
JP3330817B2 (en) Multilayer ceramic parts
JP2553268B2 (en) Method for manufacturing aluminum nitride sintered body
JPH1179828A (en) Production of alumina ceramic substrate
JP2606155B2 (en) Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used therefor
JPH11130567A (en) Metal layer formation on ceramic surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190319

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6588174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250