JPH0521564A - 拡散層深さ測定装置 - Google Patents
拡散層深さ測定装置Info
- Publication number
- JPH0521564A JPH0521564A JP3172787A JP17278791A JPH0521564A JP H0521564 A JPH0521564 A JP H0521564A JP 3172787 A JP3172787 A JP 3172787A JP 17278791 A JP17278791 A JP 17278791A JP H0521564 A JPH0521564 A JP H0521564A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- diffusion layer
- infrared
- scanning
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 66
- 239000012535 impurity Substances 0.000 claims abstract description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 claims abstract description 10
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 abstract description 16
- 230000005855 radiation Effects 0.000 abstract 6
- 239000000523 sample Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000005498 polishing Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 1
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/282—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
- G01R31/2831—Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Lasers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
(57)【要約】
【目的】 拡散ウェーハにおける拡散層の深さを簡略か
つ正確に求めることができる拡散層深さ測定装置を提供
する。 【構成】 一面側に高濃度不純物拡散層(1b)を有し
反対面側に表面研磨された低濃度不純物拡散層(1b)
を有する被測定半導体基板から切り出した試料(1)を
前記一面側を支持する試料台(11)と、赤外線発生器
(12)と、この赤外線発生器で発生された赤外線(1
3)を試料面に平行に前記試料の側面から入射させると
ともに前記試料の厚さ方向に前記赤外線照射位置を走査
させる赤外線走査手段と、前記試料を透過した赤外線の
強度を測定する透過光測定手段(16)と、この透過光
測定手段で測定された透過光強度の入射光強度に対する
比率を求め、その変化点と前記走査位置との関係から前
記高濃度不純物拡散層の拡散深さを求める拡散層深さ演
算手段(18)とを備える。散乱光測定手段(15)に
より、散乱光強度の変化点から高濃度不純物拡散層の拡
散深さを求めるようにしても良い。
つ正確に求めることができる拡散層深さ測定装置を提供
する。 【構成】 一面側に高濃度不純物拡散層(1b)を有し
反対面側に表面研磨された低濃度不純物拡散層(1b)
を有する被測定半導体基板から切り出した試料(1)を
前記一面側を支持する試料台(11)と、赤外線発生器
(12)と、この赤外線発生器で発生された赤外線(1
3)を試料面に平行に前記試料の側面から入射させると
ともに前記試料の厚さ方向に前記赤外線照射位置を走査
させる赤外線走査手段と、前記試料を透過した赤外線の
強度を測定する透過光測定手段(16)と、この透過光
測定手段で測定された透過光強度の入射光強度に対する
比率を求め、その変化点と前記走査位置との関係から前
記高濃度不純物拡散層の拡散深さを求める拡散層深さ演
算手段(18)とを備える。散乱光測定手段(15)に
より、散乱光強度の変化点から高濃度不純物拡散層の拡
散深さを求めるようにしても良い。
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はシリコン基板の拡散層深
さ測定装置に関するもので、特に大出力トランジスタや
ダイオードなどの個別半導体の製造に用いられる拡散ウ
ェーハの拡散深さを測定するのに用いられるものであ
る。
さ測定装置に関するもので、特に大出力トランジスタや
ダイオードなどの個別半導体の製造に用いられる拡散ウ
ェーハの拡散深さを測定するのに用いられるものであ
る。
【0002】
【従来の技術】大出力トランジスタ、ダイオード、整流
素子などのいわゆるパワーデバイスの製造には、シリコ
ンウェーハの裏面の表面に不純物を高濃度に拡散させた
拡散ウェーハが用いられる。このような拡散ウェーハの
高濃度拡散層は、このウェーハを用いて形成されるトラ
ンジスタのコレクタ電極の形成時のシリーズ抵抗の低減
あるいは電極金属のオーミック接触抵抗を低減させるた
めのものである。
素子などのいわゆるパワーデバイスの製造には、シリコ
ンウェーハの裏面の表面に不純物を高濃度に拡散させた
拡散ウェーハが用いられる。このような拡散ウェーハの
高濃度拡散層は、このウェーハを用いて形成されるトラ
ンジスタのコレクタ電極の形成時のシリーズ抵抗の低減
あるいは電極金属のオーミック接触抵抗を低減させるた
めのものである。
【0003】このような拡散ウェーハは従来次のように
して製造される。まず、リンが低濃度にドープされ、比
抵抗100Ωcmで厚さ1000μmのn−型シリコン
基板20を準備し(図3(a))、約1200℃の加熱
雰囲気中でドーピングガスとしてPOCl3を用いて表
面から拡散深さxjが約100μmになるようにリンを
高濃度に拡散させてn+層21を形成する(図3
(b))。低濃度拡散層20はトランジスタのエミッ
タ、ベース、コレクタなどのデバイス機能を果たす領域
が形成されるとなるところであるので、この低濃度拡散
層20の厚さIsoが素子の設計上の要求、例えば耐圧や
トランジスタの電流増幅率βなどの仕様に合致させるべ
く片面を研削して20〜150μmの厚さになるように
する。この結果、高濃度拡散層21の厚さxjと低濃度
拡散層20の厚さIsoの合計はウェーハのハンドリング
において、割れが生じない程度の強度のある数百μmの
厚さとなる。
して製造される。まず、リンが低濃度にドープされ、比
抵抗100Ωcmで厚さ1000μmのn−型シリコン
基板20を準備し(図3(a))、約1200℃の加熱
雰囲気中でドーピングガスとしてPOCl3を用いて表
面から拡散深さxjが約100μmになるようにリンを
高濃度に拡散させてn+層21を形成する(図3
(b))。低濃度拡散層20はトランジスタのエミッ
タ、ベース、コレクタなどのデバイス機能を果たす領域
が形成されるとなるところであるので、この低濃度拡散
層20の厚さIsoが素子の設計上の要求、例えば耐圧や
トランジスタの電流増幅率βなどの仕様に合致させるべ
く片面を研削して20〜150μmの厚さになるように
する。この結果、高濃度拡散層21の厚さxjと低濃度
拡散層20の厚さIsoの合計はウェーハのハンドリング
において、割れが生じない程度の強度のある数百μmの
厚さとなる。
【0004】そして、このようにして得られた拡散ウェ
ーハを利用して、例えば表面酸化工程、拡散のための窓
を形成するPEP工程、不純物拡散工程をベースおよび
コレクタについて繰り返し、必要な電極、配線、保護膜
等を形成することにより、バイポーラトランジスタを含
む半導体装置が形成される。
ーハを利用して、例えば表面酸化工程、拡散のための窓
を形成するPEP工程、不純物拡散工程をベースおよび
コレクタについて繰り返し、必要な電極、配線、保護膜
等を形成することにより、バイポーラトランジスタを含
む半導体装置が形成される。
【0005】図5はウェーハの厚さ方向の不純物濃度プ
ロファイルを示すグラフであり、図4(b)の状態にお
いて、深さ方向をx方向にとって示したものである。こ
のような曲線が求まればxjおよびIsoの厚さを正確に
知ることができる。
ロファイルを示すグラフであり、図4(b)の状態にお
いて、深さ方向をx方向にとって示したものである。こ
のような曲線が求まればxjおよびIsoの厚さを正確に
知ることができる。
【0006】このような不純物濃度プロファイルを求め
るための方法の一つは、逆導電性のp型ウェーハを用い
て拡散を行い、シリンダラップやボールラップ法でp−
n拡散面が露出するようにウェーハ表面を円筒状や球状
に研磨し、p−n接合をステイニングして可視化し、バ
ーニヤ目盛りでn+層の厚さ計測を行う方法である。
るための方法の一つは、逆導電性のp型ウェーハを用い
て拡散を行い、シリンダラップやボールラップ法でp−
n拡散面が露出するようにウェーハ表面を円筒状や球状
に研磨し、p−n接合をステイニングして可視化し、バ
ーニヤ目盛りでn+層の厚さ計測を行う方法である。
【0007】図6はウェーハ表面を半径Rで球状に研磨
した様子を示しており、可視化したp−n接合の位置か
らaとbを求め、これを利用してxjを xj=R{(1−b2 /R2 )1/2 −(1−a2 /R2 )1/2 } として求めることができる。
した様子を示しており、可視化したp−n接合の位置か
らaとbを求め、これを利用してxjを xj=R{(1−b2 /R2 )1/2 −(1−a2 /R2 )1/2 } として求めることができる。
【0008】また、拡散ウェーハの実際の仕上がり精度
を調べるには次のような方法を用いる。ロット処理され
た母体からサンプリングされた試料ウェーハから切り出
した試料片40を図7に示すような角度θの傾斜基台3
1を有する治具30にワックスで取付け、平坦なガラス
板上で研磨剤を溶かした液を用いて試料片を斜めに研磨
し、得られた斜面の表面を図8に示すようにn−領域4
1からn+領域42にかけて2本の探針43により走査
しながら抵抗値の分布を求め、図9に示すようにn−領
域を表わす直線L1とn+領域を表わす外挿接線L2と
の交点を求め、この位置からn−層のIso厚さを決定
する。
を調べるには次のような方法を用いる。ロット処理され
た母体からサンプリングされた試料ウェーハから切り出
した試料片40を図7に示すような角度θの傾斜基台3
1を有する治具30にワックスで取付け、平坦なガラス
板上で研磨剤を溶かした液を用いて試料片を斜めに研磨
し、得られた斜面の表面を図8に示すようにn−領域4
1からn+領域42にかけて2本の探針43により走査
しながら抵抗値の分布を求め、図9に示すようにn−領
域を表わす直線L1とn+領域を表わす外挿接線L2と
の交点を求め、この位置からn−層のIso厚さを決定
する。
【0009】拡散ウェーハの所望の非拡散層厚さI
soは、素材の時の厚さから上述した方法で得られた拡散
深さxjとIsoの合計厚さを差し引いた厚さを研磨代と
決定し、研磨を行うことにより正確に得られる。
soは、素材の時の厚さから上述した方法で得られた拡散
深さxjとIsoの合計厚さを差し引いた厚さを研磨代と
決定し、研磨を行うことにより正確に得られる。
【0010】
【発明が解決しようとする課題】しかしながら、上述し
た測定方法では正確な拡散深さ決定を行うことは困難で
ある。
た測定方法では正確な拡散深さ決定を行うことは困難で
ある。
【0011】例えば、斜面の研磨においては、治具へ試
料ウェーハをワックスで取付ける作業、均一な研磨など
において極めて高い習熟度が必要とされる。また、2探
針による測定においても、研磨面の微小な傷や研磨材の
吸着により、n−領域が50Ωcm以上の高抵抗である
とn−領域における抵抗率曲線は平坦にはならず、n−
領域とn+領域の境界点を正確に定めることが困難とな
ってn−領域厚さの決定に誤差を生じる。
料ウェーハをワックスで取付ける作業、均一な研磨など
において極めて高い習熟度が必要とされる。また、2探
針による測定においても、研磨面の微小な傷や研磨材の
吸着により、n−領域が50Ωcm以上の高抵抗である
とn−領域における抵抗率曲線は平坦にはならず、n−
領域とn+領域の境界点を正確に定めることが困難とな
ってn−領域厚さの決定に誤差を生じる。
【0012】また、2探針による測定においては、図1
0に示すように、測定値を不純物濃度に換算して縦軸の
値とし、特定濃度点で接線を引いてn−領域の厚さを求
めることもできるが、この場合には特定濃度(2端子抵
抗率)はウェーハメーカやユーザにより基準が一定して
おらず、正確な測定は行われていない。特に、Iso厚
さが10μm程度の場合、接線の引き方で50%もの誤
差が発生している。
0に示すように、測定値を不純物濃度に換算して縦軸の
値とし、特定濃度点で接線を引いてn−領域の厚さを求
めることもできるが、この場合には特定濃度(2端子抵
抗率)はウェーハメーカやユーザにより基準が一定して
おらず、正確な測定は行われていない。特に、Iso厚
さが10μm程度の場合、接線の引き方で50%もの誤
差が発生している。
【0013】さらに、従来の方法は測定のために特別な
試料を作成する必要があるため、非常に煩雑な作業が必
要となり、例えば2時間程度の長い時間がかかるという
問題がある。
試料を作成する必要があるため、非常に煩雑な作業が必
要となり、例えば2時間程度の長い時間がかかるという
問題がある。
【0014】本発明はこのような問題を解決するために
なされたもので、拡散ウェーハにおける拡散層の深さを
簡略かつ正確に求めることができる拡散層深さ測定装置
を提供することを目的とする。
なされたもので、拡散ウェーハにおける拡散層の深さを
簡略かつ正確に求めることができる拡散層深さ測定装置
を提供することを目的とする。
【0015】
【課題を解決するための手段】本発明にかかる拡散層深
さ測定装置によれば、一面側に高濃度不純物拡散層を有
し反対面側を研磨した被測定半導体基板から切り出した
試料を前記一面側を支持する試料台と、赤外線発生器
と、この赤外線発生器で発生された赤外線を試料面に平
行に前記試料の側面から入射させるとともに前記試料の
厚さ方向に前記赤外線照射位置を走査させる赤外線走査
手段と、前記試料を透過した赤外線の強度を測定する透
過光測定手段と、この透過光測定手段で測定された透過
光強度の入射光強度に対する比率を求め、その変化点と
前記走査位置との関係から前記高濃度不純物拡散層の拡
散深さを求める拡散層深さ演算手段とを備えたことを特
徴とする。
さ測定装置によれば、一面側に高濃度不純物拡散層を有
し反対面側を研磨した被測定半導体基板から切り出した
試料を前記一面側を支持する試料台と、赤外線発生器
と、この赤外線発生器で発生された赤外線を試料面に平
行に前記試料の側面から入射させるとともに前記試料の
厚さ方向に前記赤外線照射位置を走査させる赤外線走査
手段と、前記試料を透過した赤外線の強度を測定する透
過光測定手段と、この透過光測定手段で測定された透過
光強度の入射光強度に対する比率を求め、その変化点と
前記走査位置との関係から前記高濃度不純物拡散層の拡
散深さを求める拡散層深さ演算手段とを備えたことを特
徴とする。
【0016】透過光測定手段の代りに散乱光測定手段を
備えるようにしてもよく、透過光測定手段と散乱光測定
手段を共に備えるようにしてもよい。
備えるようにしてもよく、透過光測定手段と散乱光測定
手段を共に備えるようにしてもよい。
【0017】
【作用】試料の側面から赤外線を照射して試料の厚さ方
向に走査させると、不純物濃度が高い領域と低い領域の
境界部で赤外線の透過率あるいは散乱率が急変する。こ
の急変を検知し、そのときの走査位置を求めることによ
り、拡散層の深さを正確かつ簡便に求めることができ
る。
向に走査させると、不純物濃度が高い領域と低い領域の
境界部で赤外線の透過率あるいは散乱率が急変する。こ
の急変を検知し、そのときの走査位置を求めることによ
り、拡散層の深さを正確かつ簡便に求めることができ
る。
【0018】
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
に説明する。
【0019】まず、本発明において使用される原理を説
明する。
明する。
【0020】本発明においては、シリコン結晶中におけ
る赤外線の透過率が図2に示すように、不純物濃度が5
×1019/cm3より高くなると急速に減衰することを
利用している。これは、不純物が1250〜1300℃
もの高温で拡散されるため、N−領域では結晶中に存在
する酸素による析出欠陥があり、またN+領域では固溶
限界に近い高濃度拡散を行っているため、図3に示すよ
うに、不純物の異常析出やパイプと呼ばれる結晶欠陥2
を生じ、これらの欠陥が入射した赤外線に対して散乱核
となるため起こる現象である。したがってシリコン基板
1のN+領域1bではN−領域1aに比べ、散乱が非常
に多くなり、その結果透過率は急激に低下する。したが
って、透過率あるいは散乱率が急変する走査位置を求め
れば拡散層深さを求めることができる。
る赤外線の透過率が図2に示すように、不純物濃度が5
×1019/cm3より高くなると急速に減衰することを
利用している。これは、不純物が1250〜1300℃
もの高温で拡散されるため、N−領域では結晶中に存在
する酸素による析出欠陥があり、またN+領域では固溶
限界に近い高濃度拡散を行っているため、図3に示すよ
うに、不純物の異常析出やパイプと呼ばれる結晶欠陥2
を生じ、これらの欠陥が入射した赤外線に対して散乱核
となるため起こる現象である。したがってシリコン基板
1のN+領域1bではN−領域1aに比べ、散乱が非常
に多くなり、その結果透過率は急激に低下する。したが
って、透過率あるいは散乱率が急変する走査位置を求め
れば拡散層深さを求めることができる。
【0021】図1は本発明にかかる拡散層深さ測定装置
の一実施例を示す概略構成図である。
の一実施例を示す概略構成図である。
【0022】この装置は低濃度不純物拡散層1aと高濃
度不純物拡散層1bが上下に設けられた試料を載置する
試料台11、この試料台11の側方から赤外線13を発
生する赤外線発生器12、この赤外線発生器12で発生
された赤外線13を絞って試料に対して導くスリット1
4、試料台11の上方にあって試料中で散乱した散乱光
13aを検出する第1の検出器15、赤外線発生器12
で発生した赤外線の光軸上にあって試料を透過した透過
光13bを検出する第2の検出器16、これらの検出器
の出力を増幅する演算増幅器17、その出力に対して所
定の演算を行い拡散層深さを求める演算器18、演算結
果を出力するプリンタ19が設けられた構成となってい
る。
度不純物拡散層1bが上下に設けられた試料を載置する
試料台11、この試料台11の側方から赤外線13を発
生する赤外線発生器12、この赤外線発生器12で発生
された赤外線13を絞って試料に対して導くスリット1
4、試料台11の上方にあって試料中で散乱した散乱光
13aを検出する第1の検出器15、赤外線発生器12
で発生した赤外線の光軸上にあって試料を透過した透過
光13bを検出する第2の検出器16、これらの検出器
の出力を増幅する演算増幅器17、その出力に対して所
定の演算を行い拡散層深さを求める演算器18、演算結
果を出力するプリンタ19が設けられた構成となってい
る。
【0023】この装置で使用される試料としてシリコン
基板の一部を単純に切り出して用いるが、その長さは特
に厳格な寸法精度は不要である。例えば、長さは2−6
mm程度で良い。なお、破断面における不要な散乱を防
ぐために端面をエッチング研磨しておくことが望まし
い。
基板の一部を単純に切り出して用いるが、その長さは特
に厳格な寸法精度は不要である。例えば、長さは2−6
mm程度で良い。なお、破断面における不要な散乱を防
ぐために端面をエッチング研磨しておくことが望まし
い。
【0024】赤外線発生器12の光源としてはコヒーレ
ンシーが高く、かつビーム操作の容易なものがよく、例
えばYAGレーザ光などを発するものが好ましい。第1
の検出器と第2の検出器の検出特性は揃っていることが
望ましい。
ンシーが高く、かつビーム操作の容易なものがよく、例
えばYAGレーザ光などを発するものが好ましい。第1
の検出器と第2の検出器の検出特性は揃っていることが
望ましい。
【0025】このような拡散層深さ測定装置を用いた測
定は次のように行われる。
定は次のように行われる。
【0026】赤外線発生器12から赤外線13を発生さ
せ、スリット14を通して試料に赤外線を照射する。こ
の赤外線はその散乱光が第1の検出器15により、透過
光が第2の検出器16により、それぞれ検出される。こ
れらの検出器の出力は演算増幅器17で増幅された後、
演算器18において予め既知の赤外線強度に対する比を
とり、散乱率および透過率が求められる。試料台11は
図示しない駆動機構により図1の上下方向に走査される
ようになっており、これにより連続的に散乱率および透
過率を観測することができる。
せ、スリット14を通して試料に赤外線を照射する。こ
の赤外線はその散乱光が第1の検出器15により、透過
光が第2の検出器16により、それぞれ検出される。こ
れらの検出器の出力は演算増幅器17で増幅された後、
演算器18において予め既知の赤外線強度に対する比を
とり、散乱率および透過率が求められる。試料台11は
図示しない駆動機構により図1の上下方向に走査される
ようになっており、これにより連続的に散乱率および透
過率を観測することができる。
【0027】拡散がある基板ではn−からn+へ移行す
る際に赤外線の透過率が急激に低下し、あるいは散乱率
が急激に増加する。したがって、この変化を生じた走査
位置を求めることにより、不純物拡散層が達している深
さを求めることができる。
る際に赤外線の透過率が急激に低下し、あるいは散乱率
が急激に増加する。したがって、この変化を生じた走査
位置を求めることにより、不純物拡散層が達している深
さを求めることができる。
【0028】このように、透過率が急激に変化する点を
検出することにより、きわめて容易かつ正確に不純物拡
散層深さを求めることができる。同様に、散乱率が急激
に変化する点を検出するようにしてもよい。
検出することにより、きわめて容易かつ正確に不純物拡
散層深さを求めることができる。同様に、散乱率が急激
に変化する点を検出するようにしてもよい。
【0029】以上の実施例では、低濃度領域から高濃度
領域へ走査を行っているが、逆方向の走査を行っても良
い。また、走査は赤外線と試料の厚さ方向が相対的に移
動すれば良く、実施例のように試料台を移動させても、
赤外線発生器側を移動させても良い。
領域へ走査を行っているが、逆方向の走査を行っても良
い。また、走査は赤外線と試料の厚さ方向が相対的に移
動すれば良く、実施例のように試料台を移動させても、
赤外線発生器側を移動させても良い。
【0030】また、実施例では既知の赤外線強度に対す
る透過光強度あるいは散乱光強度の比をとった透過率あ
るいは散乱率を用いているが、第1の検出器の出力と第
2の検出器の出力との比を用いるようにしてもよい。こ
の場合には急増する出力と急減する出力の双方を用いる
ため、より急激な変化が得られることになる。
る透過光強度あるいは散乱光強度の比をとった透過率あ
るいは散乱率を用いているが、第1の検出器の出力と第
2の検出器の出力との比を用いるようにしてもよい。こ
の場合には急増する出力と急減する出力の双方を用いる
ため、より急激な変化が得られることになる。
【0031】さらに、単位長さを有する試料についての
不純物濃度と透過率あるいは散乱率の関係をあらかじめ
データベース化しておき、これを測定値とを比較するこ
とにより、濃度分布をより正確に求めることもできる。
不純物濃度と透過率あるいは散乱率の関係をあらかじめ
データベース化しておき、これを測定値とを比較するこ
とにより、濃度分布をより正確に求めることもできる。
【0032】
【発明の効果】本発明によれば、シリコン中の不純物濃
度が一定値を超えると赤外線の透過率あるいは散乱率が
急変することを利用して、試料の厚さ方向の走査から高
濃度領域の拡散深さを求めるようにしているので、特別
な試料作成や特殊な測定を行うこと無く、正確な拡散深
さ測定を簡便に行うことができる。
度が一定値を超えると赤外線の透過率あるいは散乱率が
急変することを利用して、試料の厚さ方向の走査から高
濃度領域の拡散深さを求めるようにしているので、特別
な試料作成や特殊な測定を行うこと無く、正確な拡散深
さ測定を簡便に行うことができる。
【図1】図1は本発明にかかる拡散層深さ測定装置の概
略構成を示すブロック図である。
略構成を示すブロック図である。
【図2】図2は不純物濃度と赤外線透過率との関係を示
すグラフである。
すグラフである。
【図3】図3は高濃度領域で赤外線透過率が低下する理
由を示す説明図である。
由を示す説明図である。
【図4】図4は拡散ウェーハの製造工程を示す工程別断
面図である。
面図である。
【図5】図5はウェーハに拡散を行った状態での不純物
濃度分布を示すグラフである。
濃度分布を示すグラフである。
【図6】図6は従来行われているボールラップによる拡
散深さ測定の原理を示す説明図である。
散深さ測定の原理を示す説明図である。
【図7】図7は2探針法による測定のために必要な試料
の加工を説明する説明図である。
の加工を説明する説明図である。
【図8】図8は2探針法の説明図である。
【図9】図9は2探針法において、抵抗率の変化からn
−領域の位置を求める様子を示す説明図である。
−領域の位置を求める様子を示す説明図である。
【図10】図10は2探針法において、抵抗率を不純物
濃度に換算してn−領域の位置を求める様子を示す説明
図である。
濃度に換算してn−領域の位置を求める様子を示す説明
図である。
1 シリコン基板
1a 低濃度不純物拡散層
1b 高濃度不純物拡散層
11 試料台
12 赤外線発生器
13 赤外線
14 スリット
15 第1の検出器
16 第2の検出器
17 演算増幅器
18 演算器
Claims (3)
- 【請求項1】一面側に高濃度不純物拡散層を有するとと
もに反対面側に表面研磨された低濃度不純物拡散層を有
する被測定シリコン基板から切り出した試料の前記一面
側を支持する試料台と、 赤外線発生器と、 この赤外線発生器で発生された赤外線を試料面に平行に
前記試料の側面から入射させるとともに前記試料の厚さ
方向に前記赤外線照射位置を走査させる赤外線走査手段
と、 前記試料を透過した赤外線の強度を測定する透過光測定
手段と、 この透過光測定手段で測定された透過光強度の入射光強
度に対する比率を求め、その変化点と前記走査位置との
関係から前記高濃度不純物拡散層の拡散深さを求める拡
散層深さ演算手段とを備えた拡散層深さ測定装置。 - 【請求項2】一面側に高濃度不純物拡散層を有するとと
もに反対面に表面研磨された低濃度不純物拡散層を有す
る被測定シリコン基板から切り出した試料の前記一面側
を支持する試料台と、 赤外線発生器と、 この赤外線発生器で発生された赤外線を試料面に平行に
前記試料の側面から入射させるとともに前記試料の厚さ
方向に前記赤外線照射位置を走査させる赤外線走査手段
と、 前記試料の上方に設けられ、前記試料中で散乱した赤外
線の強度を測定する散乱光測定手段と、 この散乱光測定手段で測定された散乱光強度の入射光強
度に対する比率を求め、その変化点と前記走査位置との
関係から前記高濃度不純物拡散層の拡散深さを求める拡
散層深さ演算手段とを備えた拡散層深さ測定装置。 - 【請求項3】一面側に高濃度不純物拡散層を有するとと
もに反対面に表面研磨された低濃度不純物拡散層を有す
る被測定シリコン基板から切り出した試料の前記一面側
を支持する試料台と、 赤外線発生器と、 この赤外線発生器で発生された赤外線を試料面に平行に
前記試料の側面から入射させるとともに前記試料の厚さ
方向に前記赤外線照射位置を走査させる赤外線走査手段
と、 前記試料を透過した赤外線の強度を測定する透過光測定
手段と、 前記試料の上方に設けられ、前記試料中で散乱した赤外
線の強度を測定する散乱光測定手段と、 この透過光測定手段で測定された透過光強度と前記散乱
光測定手段の入射光強度に対する比率を求め、その変化
点と前記走査位置との関係から前記高濃度不純物拡散層
の拡散深さを求める拡散層深さ演算手段とを備えた拡散
層深さ測定装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17278791A JP2937557B2 (ja) | 1991-07-12 | 1991-07-12 | 拡散層深さ測定装置 |
US07/912,336 US5272342A (en) | 1991-07-12 | 1992-07-13 | Diffused layer depth measurement apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17278791A JP2937557B2 (ja) | 1991-07-12 | 1991-07-12 | 拡散層深さ測定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0521564A true JPH0521564A (ja) | 1993-01-29 |
JP2937557B2 JP2937557B2 (ja) | 1999-08-23 |
Family
ID=15948350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17278791A Expired - Fee Related JP2937557B2 (ja) | 1991-07-12 | 1991-07-12 | 拡散層深さ測定装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US5272342A (ja) |
JP (1) | JP2937557B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9167145B2 (en) | 2010-04-09 | 2015-10-20 | Canon Kabushiki Kaisha | Receiving device for receiving a wireless operation signal for controlling a lens or a camera by a first or a second method |
JP2017034025A (ja) * | 2015-07-30 | 2017-02-09 | 濱田重工株式会社 | 半導体ウェハの加工ダメージ評価方法 |
CN109580688A (zh) * | 2018-12-20 | 2019-04-05 | 北京科技大学 | 用于GaN中痕量杂质元素浓度及分布的高精度检测方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0898298B1 (en) | 1997-07-15 | 2007-09-12 | STMicroelectronics S.r.l. | Determination of the thickness of a denuded zone in a silicon wafer |
US6614532B1 (en) * | 2000-04-28 | 2003-09-02 | Mcgill University | Apparatus and method for light profile microscopy |
WO2005096061A1 (en) * | 2004-03-30 | 2005-10-13 | Univ Mcgill | Light profile microscopy apparatus and method |
EP2137518B1 (en) * | 2007-04-16 | 2017-11-29 | Viscom Ag | Through-substrate optical imaging device and method |
US8106665B2 (en) * | 2008-06-25 | 2012-01-31 | Applied Micro Circuits Corporation | 3-D mapping focused beam failure analysis |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51137382A (en) * | 1975-05-22 | 1976-11-27 | Mitsubishi Electric Corp | Measuring method for junction point within semi conductor wafer |
JPS5798840A (en) * | 1980-12-12 | 1982-06-19 | Fujitsu Ltd | Devide for measuring concentration of semiconductor impurity |
JPS61213651A (ja) * | 1985-03-19 | 1986-09-22 | Mitsui Mining & Smelting Co Ltd | 赤外線トモグラフイ−装置 |
JPH0233947A (ja) * | 1988-07-23 | 1990-02-05 | Mitsubishi Monsanto Chem Co | 赤外光散乱を用いたイオン注入量測定方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60146132A (ja) * | 1984-01-10 | 1985-08-01 | Nec Corp | 半導体結晶の評価装置及び評価方法 |
JPH02244106A (ja) * | 1989-03-17 | 1990-09-28 | Hitachi Ltd | 薄膜光学定数の測定方法及びそれを用いて作製した光集積回路もしくは半導体素子 |
-
1991
- 1991-07-12 JP JP17278791A patent/JP2937557B2/ja not_active Expired - Fee Related
-
1992
- 1992-07-13 US US07/912,336 patent/US5272342A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51137382A (en) * | 1975-05-22 | 1976-11-27 | Mitsubishi Electric Corp | Measuring method for junction point within semi conductor wafer |
JPS5798840A (en) * | 1980-12-12 | 1982-06-19 | Fujitsu Ltd | Devide for measuring concentration of semiconductor impurity |
JPS61213651A (ja) * | 1985-03-19 | 1986-09-22 | Mitsui Mining & Smelting Co Ltd | 赤外線トモグラフイ−装置 |
JPH0233947A (ja) * | 1988-07-23 | 1990-02-05 | Mitsubishi Monsanto Chem Co | 赤外光散乱を用いたイオン注入量測定方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9167145B2 (en) | 2010-04-09 | 2015-10-20 | Canon Kabushiki Kaisha | Receiving device for receiving a wireless operation signal for controlling a lens or a camera by a first or a second method |
JP2017034025A (ja) * | 2015-07-30 | 2017-02-09 | 濱田重工株式会社 | 半導体ウェハの加工ダメージ評価方法 |
CN109580688A (zh) * | 2018-12-20 | 2019-04-05 | 北京科技大学 | 用于GaN中痕量杂质元素浓度及分布的高精度检测方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2937557B2 (ja) | 1999-08-23 |
US5272342A (en) | 1993-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4949034A (en) | Method for contactless evaluation of characteristics of semiconductor wafers and devices | |
KR100458883B1 (ko) | Id 마크를 갖는 반도체 웨이퍼, 반도체 장치 제조 장비및 반도체 장치 제조 방법 | |
JPH02119236A (ja) | 直線状定フォトン束光電圧測定値から少数担体拡散長を判定するための方法および装置 | |
EP0077021B1 (en) | Apparatus for nondestructively measuring characteristics of a semiconductor wafer having a junction | |
Linnros | Carrier lifetime measurements using free carrier absorption transients. II. Lifetime mapping and effects of surface recombination | |
EP0118199B1 (en) | An apparatus for measuring carrier lifetimes in a semiconductor | |
JP2937557B2 (ja) | 拡散層深さ測定装置 | |
WO1994014188A1 (en) | Method for chemical surface passivation for in-situ bulk lifetime measurement of silicon semiconductor material | |
US5471293A (en) | Method and device for determining defects within a crystallographic substrate | |
US4755049A (en) | Method and apparatus for measuring the ion implant dosage in a semiconductor crystal | |
Zharin et al. | Determining the lifetime of minority charge carriers and iron impurity concentration in semiconductor structures with submicron layers | |
US3650020A (en) | Method of monitoring semiconductor device fabrication | |
Bakowski et al. | Influence of bevel angle and surface charge on the breakdown voltage of negatively beveled diffused pn junctions | |
Tyavlovsky et al. | Scanning photostimulated electrometry for testing the uniformity of spatial distribution of semiconductor wafers parameters | |
JP2906924B2 (ja) | ウエーハの表面粗さ測定方法 | |
JPH0862122A (ja) | シリコンウェーハの酸素析出欠陥密度評価方法 | |
JPS6253944B2 (ja) | ||
JPH0518063B2 (ja) | ||
Pawlik | Dopant profiling in silicon | |
JP2002340794A (ja) | 半導体ウェーハの赤外吸収測定法 | |
JPH071780B2 (ja) | エピタキシャルウエーハの遷移領域の評価方法 | |
JPH0422019B2 (ja) | ||
White et al. | Contactless nondestructive technique for the measurement of minority-carrier lifetime and diffusion length in silicon | |
JPH01142447A (ja) | 熱定数測定装置 | |
JPS6228606A (ja) | 膜厚測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |