JPH0521054A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH0521054A
JPH0521054A JP3175284A JP17528491A JPH0521054A JP H0521054 A JPH0521054 A JP H0521054A JP 3175284 A JP3175284 A JP 3175284A JP 17528491 A JP17528491 A JP 17528491A JP H0521054 A JPH0521054 A JP H0521054A
Authority
JP
Japan
Prior art keywords
positive electrode
metal core
secondary battery
metal
core body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3175284A
Other languages
Japanese (ja)
Inventor
Masami Suzuki
正美 鈴木
Kenji Tsuchiya
謙二 土屋
Yoshikazu Kobayashi
義和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3175284A priority Critical patent/JPH0521054A/en
Publication of JPH0521054A publication Critical patent/JPH0521054A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the gas generation at the boundary surface of respective members upon charging and discharging by covering a metal core body via a predetermined conducting layer with a positive electrode mixture. CONSTITUTION:A generating element 3 is stored in a metal container 1. The generating element 3 is constituted in such a manner that a negative electrode, a separator 5, and a positive electrode are, in this turn, stacked to form a band-like substance followed by spirally winding the band-like substance. The positive electrode 6 is made up in such a way that a metal core body containing a metal cobalt layer is covered with an active substance layer consisted mainly of a lithium containing compound oxide, and is integrated therewith. Since conductivity at the boundary surface between the metal core body and a positive electrode mixture can be enhanced thereby, the occurrence of the conductivity defect points can be prevented. Whereby, gas due to the reaction of the metal core body with an electrolyte is unlikely to be generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水溶媒二次電池に係わ
り、特に正極を改良した非水溶媒二次電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery, and more particularly to a non-aqueous solvent secondary battery having an improved positive electrode.

【0002】[0002]

【従来の技術】近年、カルコゲン化合物を正極合剤の活
物質とし、リチウム等のアルカリ金属を負極として用い
る非水溶媒二次電池は、高いエネルギー密度を有するも
のとして注目されている。その中でも最近、カルコゲン
酸化物を用いた正極,あるいはカルコゲン酸化物にリチ
ウムを保持させた複合酸化物を活物質として用いた正極
と、リウチムを活物質として用いた負極,あるいはリチ
ウムを炭素質物に保持させたものを負極とする非水溶媒
二次電池が開発されている。このような二次電池とし
て、例えば二硫化チタン−リチウム電池、二硫化モリブ
デン−リチウム電池、二酸化マンガン−リチウム電池等
が知られている。これら非水溶媒二次電池の正極は、ニ
ッケル、ステンレス鋼製の網、エキスパンドメタル等の
金属芯体に活物質、結着剤を含むシート状の正極合剤を
圧着一体化した構造になっている。
2. Description of the Related Art In recent years, a non-aqueous solvent secondary battery using a chalcogen compound as an active material of a positive electrode mixture and an alkali metal such as lithium as a negative electrode has been attracting attention as having a high energy density. Among them, recently, a positive electrode using chalcogen oxide, a positive electrode using a composite oxide in which chalcogen oxide holds lithium as an active material, a negative electrode using Lithium as an active material, or holding lithium in a carbonaceous material A non-aqueous solvent secondary battery in which the negative electrode is used is being developed. As such secondary batteries, for example, titanium disulfide-lithium batteries, molybdenum disulfide-lithium batteries, manganese dioxide-lithium batteries and the like are known. The positive electrode of these non-aqueous solvent secondary batteries has a structure in which a sheet-shaped positive electrode mixture containing an active material and a binder is pressure-bonded and integrated to a metal core such as nickel, a stainless steel net, and expanded metal. There is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た非水溶媒二次電池の正極は、製造プロセスが簡単であ
り、電池の製造コストも安価であるにも拘らず実用化さ
れていない。これは前述した正極を用いて電池を製造す
ると、電池の充放電サイクル寿命が短くなり、しかも個
々の放電特性が不均質となることによるものである。
However, the positive electrode of the above-mentioned non-aqueous solvent secondary battery has not been put into practical use despite its simple manufacturing process and low battery manufacturing cost. This is because when the battery is manufactured using the above-mentioned positive electrode, the charge / discharge cycle life of the battery is shortened and the individual discharge characteristics become non-uniform.

【0004】すなわち、上記した非水溶媒二次電池の正
極において、金属芯体と正極合剤との圧着界面に導電性
不良箇所があると、電池反応が行われる際にこの圧着界
面の電流分布が不均一となり、電流密度の粗密化が生じ
る。電流密度の粗密化は、電解液の分解電圧より高い電
圧で反応を行う部分を前記圧着界面に生じさせる。この
ため、前述したような導電性不良箇所が存在したまま電
池反応が行われると、電解液の分解電圧より高い電圧で
反応が起こる部分では、正極合剤中の電解液と金属芯体
が反応して電解液の分解が生じ、水素ガス,炭酸ガス等
のガスが発生する。このガスは、電池の充放電の繰り返
しの度毎に、金属芯体と正極合剤の界面に少しずつ蓄積
され、正極合剤を金属芯体から徐々に剥離せしめる働き
をする。従って、金属芯体と正極合剤との界面での接触
面積は、充放電の繰り返しに伴い徐々に減少してゆき、
金属芯体と正極合剤との間に電子伝導性が著しく低下す
る。その結果、電池の充放電の繰り返しに伴って正極合
剤が十分な機能を有するにも拘らず充放電サイクル寿命
が低下し、電池性能の不均一化を生じさせるという問題
があった。
That is, in the positive electrode of the non-aqueous solvent secondary battery described above, if there is a defective conductive portion at the pressure-bonding interface between the metal core and the positive electrode mixture, the current distribution at this pressure-bonding interface during the battery reaction. Becomes non-uniform, and the current density becomes coarse. The roughening of the current density causes a portion in which the reaction is performed at a voltage higher than the decomposition voltage of the electrolytic solution at the pressure bonding interface. For this reason, when the battery reaction is carried out with the presence of the above-mentioned poor conductivity part, the electrolytic solution in the positive electrode mixture reacts with the metal core at the part where the reaction occurs at a voltage higher than the decomposition voltage of the electrolytic solution. As a result, the electrolytic solution is decomposed, and gases such as hydrogen gas and carbon dioxide gas are generated. This gas accumulates little by little at the interface between the metal core and the positive electrode mixture each time the battery is repeatedly charged and discharged, and acts to gradually separate the positive electrode mixture from the metal core. Therefore, the contact area at the interface between the metal core and the positive electrode mixture gradually decreases with repeated charging and discharging,
The electron conductivity between the metal core and the positive electrode mixture is significantly reduced. As a result, there has been a problem that the charge / discharge cycle life is shortened and the battery performance is non-uniform even though the positive electrode mixture has a sufficient function as the battery is repeatedly charged and discharged.

【0005】本発明は上記問題を解決するためになされ
たもので、正極合剤を所定の導電層を介して金属芯体に
被覆することによって、正極合剤を電気的に良好に被覆
した正極とし、充放電時に前記各部材の界面でのガス発
生を抑制した非水溶媒二次電池を提供することを目的と
するものである。
The present invention has been made in order to solve the above problems, and a positive electrode in which a positive electrode mixture is electrically and satisfactorily coated by coating the positive electrode mixture on a metal core through a predetermined conductive layer. It is an object of the present invention to provide a non-aqueous solvent secondary battery in which gas generation at the interface of each member during charge / discharge is suppressed.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の非水溶媒二次電池は、金属芯体と、この芯
体表面に金属コバルト薄層からなる導電層と、この導電
層に被覆形成したLiCoO2 を主体とする正極合剤と
から構成された正極を具備するようにしたものである。
In order to achieve the above object, a non-aqueous solvent secondary battery of the present invention comprises a metal core body, a conductive layer comprising a thin metal cobalt layer on the surface of the core body, and It is provided with a positive electrode composed of a positive electrode mixture mainly composed of LiCoO 2 coated on the layer.

【0007】本発明の金属芯体としては、例えばニッケ
ル、鉄、ニッケルメッキを施した鉄、ステンレス鋼など
の金属からなる金網、エキスパンドメタル、パンチドメ
タル、金属箔等を挙げることができる。また、金属コバ
ルトからなる導電層の厚さは、3〜100μmの範囲と
することが望ましい。この理由は、導電層の厚さを3μ
m未満にすると、電池の使用時における電極の変形に伴
い、金属芯体が部分的に露出して導電層としての機能が
損なわれ、充分な導電性が得られなくなる恐れがある。
一方、導電層の厚さが100μmを越えると、金属芯体
に導電層を形成する工程に手間がかかり、電池の生産性
が低下する恐れがあるからである。
Examples of the metal core of the present invention include metal mesh made of metal such as nickel, iron, nickel-plated iron, and stainless steel, expanded metal, punched metal, metal foil and the like. The thickness of the conductive layer made of metallic cobalt is preferably in the range of 3 to 100 μm. The reason is that the thickness of the conductive layer is 3μ.
If it is less than m, the metal core may be partially exposed due to the deformation of the electrode during use of the battery, impairing the function as the conductive layer, and sufficient conductivity may not be obtained.
On the other hand, if the thickness of the conductive layer exceeds 100 μm, the process of forming the conductive layer on the metal core will be troublesome and the productivity of the battery may decrease.

【0008】また、金属コバルトからなる導電層は、一
つはポリオレフィン系樹脂溶液に金属コバルトの粉末を
分散させ、この分散溶液を金属芯体に塗布、乾燥するこ
とにより形成される。ここに用いるポリオレフィン系樹
脂としては、例えば、ポリエチレン、ポリプロピレン、
ポリアクリル酸等を挙げることができる。かかる導電性
樹脂を構成するポリオレフィン系樹脂と金属コバルト粉
末との配合割合は、3〜35重量%濃度のポリオレフィ
ン系樹脂溶液に対し、金属コバルト粉末の量が10〜5
0重量%の範囲にする。コバルト粉末が10重量%未満
であると、前記導電性樹脂の導電性が低下し、内部抵抗
の増加を生じて電池が作動しなくなる恐れがある。しか
し、コバルト粉末が50重量%を越えると、導電性樹脂
の結着力の低下を生じると共に導電性樹脂からなる導電
層を金属芯体に均一に被覆することが困難となるからで
ある。さらに、導電層の厚さは、特に金属芯体への導電
層の被覆工程の簡便化と電池性能の安定化の観点から、
80〜100μmの範囲にすることがより望ましい。
One of the conductive layers made of metallic cobalt is formed by dispersing powder of metallic cobalt in a polyolefin resin solution, coating the dispersed solution on a metal core, and drying. Examples of the polyolefin resin used here include polyethylene, polypropylene,
Examples thereof include polyacrylic acid. The compounding ratio of the polyolefin-based resin and the metallic cobalt powder constituting the conductive resin is such that the amount of the metallic cobalt powder is 10 to 5 with respect to the polyolefin-based resin solution having a concentration of 3 to 35% by weight.
The range is 0% by weight. If the cobalt powder content is less than 10% by weight, the conductivity of the conductive resin may be lowered and the internal resistance may be increased to cause the battery to stop operating. However, when the cobalt powder content exceeds 50% by weight, the binding force of the conductive resin is reduced and it becomes difficult to uniformly coat the conductive layer made of the conductive resin on the metal core. Further, the thickness of the conductive layer, particularly from the viewpoint of simplifying the coating step of the conductive layer on the metal core and stabilizing the battery performance,
It is more desirable to set it in the range of 80 to 100 μm.

【0009】[0009]

【作用】本発明によれば、金属芯体と、この金属芯体表
面に形成された金属コバルトからなる導電層と、この導
電層上に被覆形成されたLiCoO2 からなる正極合剤
とから構成された正極を用いることによって金属芯体と
正極合剤との界面での導電性を向上させることができる
ので、導電性不良箇所の発生を防止できる。このため、
金属芯体と電解液との反応によるガスを発生させること
がなく、前記界面の電流密度を均一化できる。その結
果、金属芯体に正極合剤を電気的に良好に接続できるた
め、安定した放電特性を有すると共に充放電サイクル寿
命、重負荷特性等が改善された非水溶媒二次電池を得る
ことができる。
According to the present invention, it comprises a metal core, a conductive layer made of metal cobalt formed on the surface of the metal core, and a positive electrode mixture made of LiCoO 2 coated on the conductive layer. Since the conductivity at the interface between the metal core body and the positive electrode mixture can be improved by using the positive electrode thus prepared, the occurrence of defective conductivity can be prevented. For this reason,
The current density at the interface can be made uniform without generating gas due to the reaction between the metal core and the electrolytic solution. As a result, the positive electrode mixture can be electrically and satisfactorily connected to the metal core, so that a non-aqueous solvent secondary battery having stable discharge characteristics and improved charge / discharge cycle life and heavy load characteristics can be obtained. it can.

【0010】一方、正極合剤を金属芯体に金属コバルト
からなる導電層を介して被覆することによって、当該金
属コバルトの薄層により前記界面の導電性を向上でき、
加えて金属コバルトとリチウムドープをしてなるコバル
ト酸化物(LiCoO2 )は両者間の結着力があり、当
該金属芯体と正極合剤の被覆性を良好にできるので、被
覆不良箇所、剥離部の発生を抑制できる。その結果、前
記界面での電流密度を均一化できると共に、被覆不良箇
所、剥離箇所が生じるのを防止できるため、前記界面で
の電流密度の粗密化を防止でき、電流密度の粗密化に伴
うガス発生を抑制することができる。
On the other hand, by coating the positive electrode mixture on the metal core through the conductive layer made of metallic cobalt, the thin layer of metallic cobalt can improve the conductivity of the interface,
In addition, metallic cobalt and lithium-doped cobalt oxide (LiCoO 2 ) have a binding force between the two and can improve the coverage of the metal core body and the positive electrode mixture, so that a defective coating portion or a peeled portion can be formed. Can be suppressed. As a result, the current density at the interface can be made uniform, and the occurrence of coating defects and peeling points can be prevented. Therefore, the current density at the interface can be prevented from becoming dense and dense, and the gas accompanying the current density becoming dense can be prevented. Occurrence can be suppressed.

【0011】従って、正極合剤の金属芯体からの剥離、
脱落の防止及び金属芯体への正極合剤の電気的に有効な
接続により、安定した放電特性を有すると共に充放電サ
イクル寿命、重負荷特性等が改善された非水溶媒二次電
池を得ることができる。
Therefore, peeling of the positive electrode mixture from the metal core,
(EN) A non-aqueous solvent secondary battery having stable discharge characteristics and improved charge / discharge cycle life, heavy load characteristics, etc. by preventing falling and electrically connecting a positive electrode mixture to a metal core. You can

【0012】[0012]

【実施例】以下、本発明の実施例としてを円筒型リチウ
ム二次電池に適用した例について図を参照して詳細に説
明する。
EXAMPLE An example in which the present invention is applied to a cylindrical lithium secondary battery will be described in detail below with reference to the drawings.

【0013】(実施例)図1は本発明の一実施例である
円筒型リチウム二次電池の断面図である。同図におい
て、1は底部に絶縁紙2が配置された負極端子を兼ねる
有底円筒型の金属製容器であり、この容器1内には円筒
型の発電要素3が収納されている。発電要素3は、金属
リチウムを含有した炭素剤からなる負極4と、多孔性ポ
リプロピレン薄膜にプロピレンカーボネートを含浸した
セパレータ5と、正極6とをこの順序で積層して帯状物
とし、この帯状物を渦巻き状に捲回することにより構成
されている。さらに、正極6の金属芯体8(図2参照)
と接続された正極リード7を正極端子12へ接続する。
同様に負極4と接続している負極リード13を金属製容
器1に接続し、封口板11で封口し金属製容器1の開口
部を内方へ折曲して密封口すると、本実施例の円筒形リ
チウム二次電池が得られる。
(Embodiment) FIG. 1 is a sectional view of a cylindrical lithium secondary battery which is an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a bottomed cylindrical metal container having an insulating paper 2 arranged at the bottom and also serving as a negative electrode terminal. In this container 1, a cylindrical power generating element 3 is housed. The power generation element 3 has a negative electrode 4 made of a carbon agent containing metallic lithium, a separator 5 obtained by impregnating a porous polypropylene thin film with propylene carbonate, and a positive electrode 6 in this order to form a strip, and the strip is formed. It is configured by spirally winding. Furthermore, the metal core 8 of the positive electrode 6 (see FIG. 2)
The positive electrode lead 7 connected to is connected to the positive electrode terminal 12.
Similarly, the negative electrode lead 13 connected to the negative electrode 4 is connected to the metal container 1, sealed with the sealing plate 11, the opening of the metal container 1 is bent inward, and the sealing port is formed. A cylindrical lithium secondary battery can be obtained.

【0014】ところで、正極6は、図2(a)の正面図
及び同図(b)の断面図に示すように、金属芯体8の両
側に導電層9を設け、その外側に正極合剤10が設けら
れた構造になっている。このような構造の正極6は、次
のような方法により製造される。まず、導電層9は、ポ
リアクリル酸水溶液(ポリアクリル酸濃度3〜35重量
%)をメタノールで希釈した溶液100重量部と、粒径
0.1〜15μmに調整をした金属コバルト粉10重量
部とを混練し、厚さ10μmのステンレス鋼からなる金
属芯体8に塗布、乾燥して作成する。正極合剤10は、
酸化コバルトと炭酸リチウムを所定比で混合したものを
800℃で12時間焼成することにより得られたLiC
oO2 90重量部と、導電剤としてアセチレンブラック
7重量部とを混合する。続いて結着剤溶液は、エチレン
単位60〜70モル%、プロピレン単位40〜30モル
%及びジシクロペンタジエン単位5モル%以下からなる
三元共重合体3重量部をトルエンに溶解して結着剤溶液
とする。この結着剤溶液100重量部をLiCoO2
アセチレンブラックの混合物97重量部に混練する。次
いで、この混練物を前記導電層上に塗布、乾燥して正極
合剤10を作成する。このようにして正極6を製造す
る。
By the way, as shown in the front view of FIG. 2A and the sectional view of FIG. 2B, the positive electrode 6 is provided with conductive layers 9 on both sides of the metal core body 8, and the positive electrode mixture is provided on the outside thereof. 10 is provided. The positive electrode 6 having such a structure is manufactured by the following method. First, the conductive layer 9 is composed of 100 parts by weight of a solution of a polyacrylic acid aqueous solution (polyacrylic acid concentration: 3 to 35% by weight) diluted with methanol, and 10 parts by weight of metallic cobalt powder adjusted to have a particle size of 0.1 to 15 μm. And are kneaded, applied to a metal core body 8 made of stainless steel having a thickness of 10 μm, and dried to prepare the metal core body 8. The positive electrode mixture 10 is
LiC obtained by firing a mixture of cobalt oxide and lithium carbonate at a predetermined ratio for 12 hours at 800 ° C.
90 parts by weight of oO 2 and 7 parts by weight of acetylene black as a conductive agent are mixed. Subsequently, the binder solution was prepared by dissolving 3 parts by weight of a terpolymer containing 60 to 70 mol% of ethylene units, 40 to 30 mol% of propylene units and 5 mol% or less of dicyclopentadiene units in toluene and binding it. Use the drug solution. 100 parts by weight of this binder solution is kneaded with 97 parts by weight of a mixture of LiCoO 2 and acetylene black. Next, the kneaded material is applied onto the conductive layer and dried to prepare the positive electrode mixture 10. In this way, the positive electrode 6 is manufactured.

【0015】(比較例)本発明の比較例として金属芯体
に正極合剤を導電層を介さずに直接被覆して構成した正
極を用いた以外、上記実施例と同様な構造の円筒形リチ
ウム二次電池を組み立てた。
(Comparative Example) As a comparative example of the present invention, a cylindrical lithium having the same structure as that of the above-described example except that a positive electrode constituted by directly coating a positive electrode material mixture on a metal core without a conductive layer was used. The secondary battery was assembled.

【0016】次に、本実施例及び比較例のリチウム二次
電池について、20℃の室温で90mAの電流により7
時間充電を行い、この後2.9Vの放電電圧を示すまで
放電を行う工程を1サイクルとして、放電容量の特性評
価を行った。その結果、図3に示す特性図を得た。な
お、図中のAは本実施例の二次電池の特性線、Bは比較
例の二次電池の特性線を示す。この図3から明らかなよ
うに本実施例の二次電池Aは、サイクル数の増加に伴う
放電容量の低下は緩やかで優れた放電特性を有すること
がわかる。これに対し、比較例の二次電池Bにおいて
は、サイクル数の増加に伴う放電容量の低下が著しくな
ることがわかる。特にサイクル数が80回付近になると
放電容量が極端に低下する。
Next, the lithium secondary batteries of this example and the comparative example were tested at room temperature of 20 ° C. with a current of 90 mA.
Characteristic evaluation of the discharge capacity was performed with one cycle of a process of performing charging for a time and then discharging until a discharge voltage of 2.9 V was exhibited. As a result, the characteristic diagram shown in FIG. 3 was obtained. In the figure, A indicates the characteristic line of the secondary battery of this example, and B indicates the characteristic line of the secondary battery of the comparative example. As is clear from FIG. 3, the secondary battery A of this example has excellent discharge characteristics in which the decrease in discharge capacity with the increase in the number of cycles is gradual. On the other hand, in the secondary battery B of the comparative example, it can be seen that the discharge capacity significantly decreases with the increase in the number of cycles. Particularly, when the number of cycles is around 80, the discharge capacity is extremely reduced.

【0017】また、本実施例及び比較例の二次電池につ
いて、230mAの負荷による重負荷放電を行った。そ
の結果、図4に示す放電接続時間と電池端子電圧との関
係の特性図を得た。なお、図中のAは本実施例の二次電
池の特性線、Bは比較例の二次電池の特性線を示す。こ
の図4から明らかなように、本実施例の二次電池は、比
較例の二次電池に比べて放電端子電圧が急激に減少する
までの放電接続時間が長くなり、重負荷における放電特
性が大幅に改善されていることがわかる。特に、比較例
の二次電池は放電時間が60分間を越えると急激に電圧
が低下するのに対して、実施例の二次電池は90分間を
越えても急激な電圧低下が生じず、安定した電池特性を
示している。
Further, the secondary batteries of this example and comparative example were subjected to heavy load discharge with a load of 230 mA. As a result, the characteristic diagram of the relationship between the discharge connection time and the battery terminal voltage shown in FIG. 4 was obtained. In the figure, A indicates the characteristic line of the secondary battery of this example, and B indicates the characteristic line of the secondary battery of the comparative example. As is clear from FIG. 4, the secondary battery of the present example has a longer discharge connection time until the discharge terminal voltage sharply decreases, as compared with the secondary battery of the comparative example, and has a discharge characteristic under heavy load. It can be seen that it has been greatly improved. In particular, the secondary battery of the comparative example drastically lowers the voltage when the discharge time exceeds 60 minutes, whereas the secondary battery of the embodiment does not undergo a drastic voltage drop even after 90 minutes, and is stable. The battery characteristics are shown.

【0018】さらに、本実施例及び比較例の二次電池を
各々100個について、前述した放電容量の特性評価試
験を40サイクル行ない、その時点での電池容量分布を
調べた。その結果を下記表1に示す。
Further, the above-mentioned discharge capacity characteristic evaluation test was performed for 40 cycles for 100 secondary batteries of each of the present embodiment and comparative example, and the battery capacity distribution at that time was examined. The results are shown in Table 1 below.

【0019】[0019]

【表1】 [Table 1]

【0020】上記表1から明らかなように、本実施例の
二次電池は比較例の二次電池に比べて、電池容量にバラ
ツキが少なく個々の電池の性能が向上させ、かつ均一化
されており、電池性能の安定化がなされていることがわ
かる。
As is apparent from Table 1 above, the secondary battery of this example has less variation in battery capacity than the secondary battery of the comparative example, and the performance of each battery is improved and uniformized. Therefore, it can be seen that the battery performance is stabilized.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
正極合剤を所定の導電層を介して金属芯体に被覆するこ
とによって、該正極合剤を金属芯体に対して電気的に良
好に被覆した正極を備えているので、充放電時に前記各
部材の界面でのガス発生を抑制でき、ひいては電池容量
の安定化を達成するとともに充放電サイクル寿命及び重
負荷放電特性を向上した非水溶媒二次電池を提供するこ
とができる。
As described above, according to the present invention,
Since the metal core is coated with the positive electrode mixture through the predetermined conductive layer to provide a positive electrode in which the positive electrode mixture is electrically excellently coated on the metal core, each of the above It is possible to provide a non-aqueous solvent secondary battery that can suppress the generation of gas at the interface of members and, in addition, can stabilize the battery capacity and have improved charge / discharge cycle life and heavy load discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の非水溶媒二次電池の断面
図。
FIG. 1 is a cross-sectional view of a non-aqueous solvent secondary battery according to an embodiment of the present invention.

【図2】(a)は図1の非水溶媒二次電池の正極の正面
図、(b)は同図(a)のI−I線に沿う断面図。
2A is a front view of the positive electrode of the non-aqueous solvent secondary battery of FIG. 1, and FIG. 2B is a cross-sectional view taken along line I-I of FIG.

【図3】実施例及び比較例の充放電サイクル数と放電容
量との関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity in Examples and Comparative Examples.

【図4】実施例及び比較例の放電接続時間と電池端子電
圧との関係を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between discharge connection time and battery terminal voltage in Examples and Comparative Examples.

Claims (1)

【特許請求の範囲】 【請求項1】 金属コバルト層を有する金属芯体上にリ
チウム含有複合酸化物を主体とする活物質層を着設し、
一体化したものを正極として用いたことを特徴とする非
水溶媒二次電池。
Claim: What is claimed is: 1. An active material layer comprising a lithium-containing composite oxide as a main component is provided on a metal core having a metal cobalt layer,
A non-aqueous solvent secondary battery characterized by using the integrated one as a positive electrode.
JP3175284A 1991-07-16 1991-07-16 Nonaqueous secondary battery Pending JPH0521054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175284A JPH0521054A (en) 1991-07-16 1991-07-16 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175284A JPH0521054A (en) 1991-07-16 1991-07-16 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH0521054A true JPH0521054A (en) 1993-01-29

Family

ID=15993437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175284A Pending JPH0521054A (en) 1991-07-16 1991-07-16 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0521054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084622A1 (en) * 2009-01-26 2010-07-29 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084622A1 (en) * 2009-01-26 2010-07-29 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and use thereof
JP5158452B2 (en) * 2009-01-26 2013-03-06 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and its utilization
US8586239B2 (en) 2009-01-26 2013-11-19 Toyota Jidosha Kabushiki Kaisha Positive electrode for lithium secondary batteries and use thereof

Similar Documents

Publication Publication Date Title
JP3111791B2 (en) Non-aqueous electrolyte secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
EP3663265A2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
US11990616B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
EP2575198A2 (en) Lithium ion secondary battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JPH0676860A (en) Secondary battery and manufacture thereof
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JPH07130389A (en) Nonaqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
JPH0521054A (en) Nonaqueous secondary battery
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP2001135305A (en) Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery
JPH0433249A (en) Nonaqueous solvent secondary battery
JP2000323173A (en) Nonaqueous secondary battery
JP2002083588A (en) Manufacturing method of positive electrode mixture for lithium ion secondary battery
JP2020061224A (en) Method of manufacturing nickel metal hydride storage battery
KR100674524B1 (en) Hydrogen Absorbing Alloy Electrode, Method of Fabricating The Same and Alkaline Storage Battery
JPH0982364A (en) Nonaqueous electrolyte secondary battery
JPH07130394A (en) Nonaqueous electrolyte secondary battery
JPH0367462A (en) Nonaqueous solvent secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery