JPH05194060A - Silicon nitride ceramic part - Google Patents

Silicon nitride ceramic part

Info

Publication number
JPH05194060A
JPH05194060A JP4314275A JP31427592A JPH05194060A JP H05194060 A JPH05194060 A JP H05194060A JP 4314275 A JP4314275 A JP 4314275A JP 31427592 A JP31427592 A JP 31427592A JP H05194060 A JPH05194060 A JP H05194060A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintering
temperature
nitride ceramics
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4314275A
Other languages
Japanese (ja)
Other versions
JPH0723270B2 (en
Inventor
Yoji Onishi
洋治 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4314275A priority Critical patent/JPH0723270B2/en
Publication of JPH05194060A publication Critical patent/JPH05194060A/en
Publication of JPH0723270B2 publication Critical patent/JPH0723270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a Si3N4 ceramic part having an excellent mechanical strength at a low cost by cutting a Si3N4 ceramic sintered product produced by an ordinary pressure sintering method and thermally treating the cut product at the sintering temperature to a glass-softening temperature. CONSTITUTION:A Si3N4 ceramic sintered product obtained by an ordinary pressure sintering method is cut into a desired shape. The processed product is thermally treated at a temperature which is lower than the above-mentioned sintering temperature and which is higher than the softening temperature of the glass phase. The glass phase contains a sintering auxiliary preliminarily added, and the sintering auxiliary is preferably one kind or more of Y2O3, Al2O3 and AlN. The sintering temperature of the sintering auxiliary is preferably approximately 800 deg.C, and the above-mentioned thermal treatment temperature is preferably 800-1100 deg.C for preventing the proceeding of the oxidation of the sintered product. Thereby, an oxidation film-protecting layer comprising an extremely thin SiO2 is formed on the surface of the sintered product, and a Si3N4 ceramic part having an average flexure-resistant strength of >=105kg/mm<2> measured by bending 25 arbitrarily extracted test pieces at three points, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化ケイ素系セラミック
ス部品に関し、さらに詳しくは、機械的強度に優れた常
圧焼結により得られた窒化ケイ素系セラミックス部品に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride ceramic part, and more particularly to a silicon nitride ceramic part obtained by pressureless sintering which is excellent in mechanical strength.

【0002】[0002]

【従来の技術】従来から、例えばセラミックス焼結体を
使用して軸受けやボールベアリングのような高い精度を
要求される製品を製造する場合には、最終寸法より大き
めの製品を比較的低い精度で成形して焼成し、このよう
にして得たセラミックス焼結体に研削加工を施して最終
形状とすることが行われていた。
2. Description of the Related Art Conventionally, for example, when a product such as a bearing or a ball bearing that requires high accuracy is manufactured by using a ceramics sintered body, a product larger than the final size is manufactured with relatively low accuracy. It has been performed that a ceramic sintered body obtained in this way is molded and fired, and is ground to a final shape.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
な方法で製造されたセラミックス部品では、研削過程で
ミクロな鋭角状の切欠きが生じ、このため機械的強度が
低下して所期の特性を得ることができないという問題が
あった。
However, in the ceramic component manufactured by such a method, micro sharp-angled notches are generated in the grinding process, and therefore the mechanical strength is lowered and desired characteristics are obtained. There was a problem that I could not.

【0004】特にこのように高い機械的強度を要求され
るセラミックス部品として窒化ケイ素系セラミックス焼
結体からなる部品を用いる場合には、緻密な構造とな
り、かつ密度が理想密度に近いものとなる焼結方法とし
てホットプレスを用いていた。
In particular, when a component made of a silicon nitride ceramics sintered body is used as such a ceramic component required to have high mechanical strength, a sintered structure having a dense structure and a density close to an ideal density is obtained. A hot press was used as a binding method.

【0005】しかしながらホットプレスにより焼結され
た窒化ケイ素系セラミックス焼結体は機械的強度は高い
が、複雑形状とすることは困難であった。また高温高圧
下で行うホットプレスは設備も専用の特殊な炉などが必
要であり、コストも高く、より良い方法が望まれてき
た。
However, although the silicon nitride ceramics sintered body sintered by hot pressing has high mechanical strength, it has been difficult to form it into a complicated shape. Further, the hot pressing performed under high temperature and high pressure requires a special furnace for exclusive use of equipment, the cost is high, and a better method has been desired.

【0006】一方、常圧焼結により焼結された窒化ケイ
素系セラミックス焼結体は、複雑形状とすることは容易
であるが、100kg/mm2 に満たない機械的強度し
かなかった。
On the other hand, a silicon nitride ceramics sintered body sintered by atmospheric pressure can easily be made into a complicated shape, but has a mechanical strength of less than 100 kg / mm 2 .

【0007】本発明はこのような従来の欠点を鑑みてな
されたものであり、機械的強度がホットプレスにより焼
結された窒化ケイ素系セラミックス焼結体と同等であ
り、かつ容易に複雑形状にすることができ、コストの低
減も図れる常圧焼結により焼結された窒化ケイ素系セラ
ミックス焼結体からなるセラミックス部品を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned conventional drawbacks, and has a mechanical strength equivalent to that of a silicon nitride ceramics sintered body sintered by hot pressing, and easily formed into a complicated shape. It is an object of the present invention to provide a ceramic part made of a silicon nitride-based ceramics sintered body that is sintered by atmospheric pressure sintering and that can reduce the cost.

【0008】[0008]

【課題を解決するための手段】本発明の窒化ケイ素系セ
ラミックス部品は、常圧焼結により得られる窒化ケイ素
系セラミックス焼結体から任意に抽出した少なくとも2
5試料の抗折強度を3点曲げにより測定したとき、その
平均が105kg/mm2 以上であることを特徴とする
ものである。
The silicon nitride ceramic part of the present invention is at least 2 arbitrarily extracted from a silicon nitride ceramic sintered body obtained by pressureless sintering.
When the bending strength of five samples is measured by three-point bending, the average is 105 kg / mm 2 or more.

【0009】さらに本発明の窒化ケイ素系セラミックス
部品は、常圧焼結により得られる窒化ケイ素系セラミッ
クス焼結体を所定の形状に研削加工し、この窒化ケイ素
系セラミックス焼結体の焼結温度よりも低い温度で、か
つそのガラス相の軟化温度よりも高い温度で加熱処理し
てなる窒化ケイ素系セラミックス部品である。
Further, in the silicon nitride ceramics component of the present invention, a silicon nitride ceramics sintered body obtained by pressureless sintering is ground into a predetermined shape, Is a silicon nitride-based ceramic component obtained by heat treatment at a low temperature and at a temperature higher than the softening temperature of the glass phase.

【0010】本発明における窒化ケイ素系セラミックス
部品に存在するガラス相は、窒化ケイ素系セラミックス
焼結体を製造する際にあらかじめ添加する焼結助剤であ
る酸化イットリウム,酸化アルミニウムおよび窒化アル
ミニウムより選ばれた1種または2種以上からなるもの
である。
The glass phase existing in the silicon nitride ceramics part in the present invention is selected from yttrium oxide, aluminum oxide and aluminum nitride, which are sintering aids added in advance when producing a silicon nitride ceramics sintered body. It is composed of one kind or two or more kinds.

【0011】また本発明における加熱処理温度は、窒化
ケイ素系セラミックス焼結体のガラス相である酸化イッ
トリウム,酸化アルミニウムおよび窒化アルミニウムの
軟化点である800℃以上の温度である必要がある。ま
た大気中のように酸素の存在下であっても窒化ケイ素系
セラミックス焼結体の酸化がほとんど進行しない温度と
して1100℃以下の温度である必要がある。
The heat treatment temperature in the present invention needs to be 800 ° C. or higher which is the softening point of yttrium oxide, aluminum oxide and aluminum nitride, which are the glass phases of the silicon nitride ceramics sintered body. Further, the temperature at which the oxidation of the silicon nitride-based ceramics sintered body hardly proceeds even in the presence of oxygen such as in the air needs to be 1100 ° C. or less.

【0012】また加熱処理時間としては1〜24時間が
適当であるが、加熱処理温度が低いと加熱処理時間は長
時間を要し、加熱処理温度が高いと加熱処理時間は短時
間で済む傾向がある。一般的に製品の品質としては、加
熱処理温度が低く加熱処理時間が長い方が加熱処理温度
が高く加熱処理時間が短いものより良い。
The heat treatment time is preferably 1 to 24 hours, but when the heat treatment temperature is low, the heat treatment time is long, and when the heat treatment temperature is high, the heat treatment time is short. There is. Generally, as for the quality of the product, the lower heat treatment temperature and longer heat treatment time are better than those having higher heat treatment temperature and shorter heat treatment time.

【0013】[0013]

【作用】本発明によれば、研削加工の際に生じたミクロ
な鋭角状の切欠きが熱処理により丸められる。また常圧
焼結により得られる窒化ケイ素系セラミックス部品の表
面には二酸化ケイ素からなるサブミクロン単位のきわめ
て薄い酸化膜層が形成され、窒化ケイ素系セラミックス
部品の表面を保護する。これらの相互作用により、窒化
ケイ素系セラミックス部品の機械的強度は一層向上し、
従来のホットプレスにより得られる窒化ケイ素系セラミ
ックス部品と同等の機械的強度の窒化ケイ素系セラミッ
クス部品が得られる。
According to the present invention, the microscopic acute-angled notch formed during the grinding process is rounded by the heat treatment. An extremely thin oxide film layer of submicron made of silicon dioxide is formed on the surface of the silicon nitride ceramics component obtained by pressureless sintering to protect the surface of the silicon nitride ceramics component. Due to these interactions, the mechanical strength of silicon nitride ceramic parts is further improved,
It is possible to obtain a silicon nitride ceramics component having mechanical strength equivalent to that of the conventional silicon nitride ceramics component obtained by hot pressing.

【0014】[0014]

【実施例】以下本発明の実施例について説明する。 ・実施例1 Si3 4 100重量部 Y2 3 5重量部 AlN 3重量部 Al2 3 3重量部 上記の混合粉末にバインダーを加えて平板状に加圧成形
し、700℃で3時間脱脂した後、常圧にて1750℃
で3時間焼成して100mm×100mm×12mmの
平板状の窒化ケイ素系セラミックス焼結体を得た。
EXAMPLES Examples of the present invention will be described below. Example 1 Si 3 N 4 100 parts by weight Y 2 O 3 5 parts by weight AlN 3 parts by weight Al 2 O 3 3 parts by weight A binder was added to the above-mentioned mixed powder and pressure-molded into a flat plate, and the mixture was molded at 700 ° C. for 3 days. After degreasing for 1 hour, at normal pressure 1750 ° C
And sintered for 3 hours to obtain a flat plate-shaped silicon nitride ceramics sintered body of 100 mm × 100 mm × 12 mm.

【0015】次いで、この平板状の窒化ケイ素系セラミ
ックス焼結体の最終仕上げとして粒度#400のダイヤ
モンドディスクを用いて3mm×4mm×40mmに裁
断して角棒状の試験試料を作り、そのうち24試料をそ
のまま標点間距離20mmで3点曲げにより抗折強度を
測定し(比較例1)、残りの25試料を大気中、100
0℃で2時間熱処理を施した後同じ条件で抗折強度を測
定した(実施例1)。その結果は表1の通りであった。
Then, as a final finish of this flat plate-shaped silicon nitride ceramics sintered body, a diamond disk having a grain size of # 400 was used to cut into 3 mm × 4 mm × 40 mm to prepare a square rod-shaped test sample, 24 of which were sampled The bending strength was measured as it was by three-point bending at a gauge length of 20 mm (Comparative Example 1), and the remaining 25 samples were subjected to 100 in air.
After heat treatment at 0 ° C. for 2 hours, the bending strength was measured under the same conditions (Example 1). The results are shown in Table 1.

【0016】[0016]

【表1】 またこれらのワイブル分布は図1(実施例1)および図
2(比較例1)に示した通りであった。 ・実施例2 Si3 4 100重量部 Y2 3 5重量部 Al2 3 2重量部 上記の混合粉末にバインダーを加えて平板状に加圧成形
し、700℃で3時間脱脂した後、常圧にて1750℃
で3時間焼成して100mm×100mm×12mmの
平板状の窒化ケイ素系セラミックス焼結体を得た。
[Table 1] Further, these Weibull distributions were as shown in FIG. 1 (Example 1) and FIG. 2 (Comparative Example 1). Example 2 Si 3 N 4 100 parts by weight Y 2 O 3 5 parts by weight Al 2 O 3 2 parts by weight After adding a binder to the above mixed powder and press-molding it into a flat plate shape, and degreasing at 700 ° C. for 3 hours , 1750 ℃ at normal pressure
And sintered for 3 hours to obtain a flat plate-shaped silicon nitride ceramics sintered body of 100 mm × 100 mm × 12 mm.

【0017】次いで、この平板状の窒化ケイ素系セラミ
ックス焼結体の最終仕上げとして粒度#600のダイヤ
モンドディスクを用いて3mm×4mm×40mmに裁
断して角棒状の試験試料を作り、そのうち6試料をその
まま標点間距離20mmで3点曲げにより抗折強度を測
定し(比較例2)、残りの25試料を大気中、1000
℃で2時間熱処理を施した後同じ条件で抗折強度を測定
した(実施例2)。その結果は表2の通りであった。
Next, as a final finish of this flat plate-shaped silicon nitride ceramics sintered body, a diamond disk having a grain size of # 600 was used to cut into 3 mm × 4 mm × 40 mm to prepare square bar-shaped test samples, of which 6 samples were prepared. The bending strength was measured as it was by bending at three points with a gauge length of 20 mm (Comparative Example 2), and the remaining 25 samples were measured in air at 1000
After heat-treating at ℃ for 2 hours, the bending strength was measured under the same conditions (Example 2). The results are shown in Table 2.

【0018】[0018]

【表2】 またこれらのワイブル分布は図3(実施例2)および図
4(比較例2)に示した通りであった。
[Table 2] Moreover, these Weibull distributions were as shown in FIG. 3 (Example 2) and FIG. 4 (Comparative Example 2).

【0019】[0019]

【発明の効果】以上明らかなように、本発明の常圧焼結
により得られる窒化ケイ素系セラミックス部品は、研削
加工が施されているにもかかわらずその機械的強度は非
常に大きく、軸受け部品やベアリング等の構造部品に有
利に使用することができる。
As is apparent from the above, the silicon nitride ceramics component obtained by pressureless sintering according to the present invention has a very large mechanical strength, even though it is ground. It can be advantageously used for structural parts such as bearings and bearings.

【0020】また従来のように非酸化性雰囲気下(窒素
雰囲気下や不活性雰囲気下など)で加熱処理する必要が
ないので、加熱処理が容易でまた大気を使用するのでコ
ストの低減も図れた。
Since it is not necessary to perform heat treatment in a non-oxidizing atmosphere (nitrogen atmosphere, inert atmosphere, etc.) as in the conventional case, the heat treatment is easy and the cost can be reduced because the atmosphere is used. .

【0021】また窒化ケイ素系セラミックス部品に使用
する焼結体は、常圧焼結により焼結を行うので、ホット
プレスにより焼結を行う際より炉などの設備も簡単にで
き、コストの低減を図れ、メンテナンスも容易になっ
た。
Further, since the sintered body used for the silicon nitride ceramics part is sintered by pressureless sintering, equipment such as a furnace can be simplified and the cost can be reduced as compared with the case of sintering by hot pressing. This made it easier to maintain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のワイブル分布を示すグラフ
である。
FIG. 1 is a graph showing a Weibull distribution according to a first embodiment of the present invention.

【図2】本発明の比較例1のワイブル分布を示すグラフ
である。
FIG. 2 is a graph showing a Weibull distribution of Comparative Example 1 of the present invention.

【図3】本発明の実施例2のワイブル分布を示すグラフ
である。
FIG. 3 is a graph showing a Weibull distribution according to a second embodiment of the present invention.

【図4】本発明の比較例2のワイブル分布を示すグラフ
である。
FIG. 4 is a graph showing a Weibull distribution of Comparative Example 2 of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】常圧焼結により得られる窒化ケイ素系セラ
ミックス焼結体から任意に抽出した少なくとも25試料
の抗折強度を3点曲げにより測定したとき、その平均が
105kg/mm2 以上であることを特徴とする窒化ケ
イ素系セラミックス部品。
1. An average of 105 kg / mm 2 or more when the bending strength of at least 25 samples arbitrarily extracted from a silicon nitride ceramics sintered body obtained by pressureless sintering is measured by three-point bending. A silicon nitride-based ceramic part characterized by the above.
【請求項2】常圧焼結により得られる窒化ケイ素系セラ
ミックス焼結体を所定の形状に研削加工し、この窒化ケ
イ素系セラミックス焼結体の焼結温度よりも低い温度
で、かつそのガラス相の軟化温度よりも高い温度で加熱
処理してなる請求項1記載の窒化ケイ素系セラミックス
部品。
2. A silicon nitride ceramics sintered body obtained by pressureless sintering is ground into a predetermined shape, and the glass phase thereof is lower than the sintering temperature of the silicon nitride ceramics sintered body. The silicon nitride ceramics component according to claim 1, which is heat-treated at a temperature higher than the softening temperature of.
【請求項3】窒化ケイ素系セラミックス部品に存在する
ガラス相は、あらかじめ添加した焼結助剤からなるガラ
ス相である請求項1または請求項2記載の窒化ケイ素系
セラミックス部品。
3. The silicon nitride ceramics component according to claim 1 or 2, wherein the glass phase present in the silicon nitride ceramics component is a glass phase comprising a sintering additive added in advance.
【請求項4】焼結助剤は、酸化イットリウム,酸化アル
ミニウムおよび窒化アルミニウムより選ばれた1種また
は2種以上である請求項3記載の窒化ケイ素系セラミッ
クス部品。
4. The silicon nitride ceramic part according to claim 3, wherein the sintering aid is one or more selected from yttrium oxide, aluminum oxide and aluminum nitride.
【請求項5】表面にきわめて薄い二酸化ケイ素からなる
酸化膜層を有する請求項1ないし請求項4いずれか1項
に記載の窒化ケイ素系セラミックス部品。
5. The silicon nitride ceramics component according to claim 1, which has an oxide film layer made of extremely thin silicon dioxide on the surface.
【請求項6】加熱処理温度は800〜1100℃である
請求項1ないし請求項5いずれか1項に記載の窒化ケイ
素系セラミックス部品。
6. The silicon nitride-based ceramic component according to claim 1, wherein the heat treatment temperature is 800 to 1100 ° C.
JP4314275A 1992-10-30 1992-10-30 Silicon nitride ceramic parts Expired - Lifetime JPH0723270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4314275A JPH0723270B2 (en) 1992-10-30 1992-10-30 Silicon nitride ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4314275A JPH0723270B2 (en) 1992-10-30 1992-10-30 Silicon nitride ceramic parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61195213A Division JPS6355180A (en) 1986-08-22 1986-08-22 Ceramic part

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP11000949A Division JPH11292633A (en) 1999-01-06 1999-01-06 Silicon nitride-based ceramic part
JP00094899A Division JP3283238B2 (en) 1999-01-06 1999-01-06 Silicon nitride ceramic parts and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05194060A true JPH05194060A (en) 1993-08-03
JPH0723270B2 JPH0723270B2 (en) 1995-03-15

Family

ID=18051404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4314275A Expired - Lifetime JPH0723270B2 (en) 1992-10-30 1992-10-30 Silicon nitride ceramic parts

Country Status (1)

Country Link
JP (1) JPH0723270B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827472A (en) * 1994-10-19 1998-10-27 Sumitomo Electric Industries, Ltd. Process for the production of silicon nitride sintered body
CN108203300A (en) * 2018-02-07 2018-06-26 陕西科谷新材料科技有限公司 A kind of preparation method of high tenacity, high resistivity silicon carbide ceramics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122783A (en) * 1983-12-02 1985-07-01 工業技術院長 Manufacture of ceramics
JPS60151290A (en) * 1984-01-19 1985-08-09 トヨタ自動車株式会社 Surface treatment for non-oxide ceramic structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122783A (en) * 1983-12-02 1985-07-01 工業技術院長 Manufacture of ceramics
JPS60151290A (en) * 1984-01-19 1985-08-09 トヨタ自動車株式会社 Surface treatment for non-oxide ceramic structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827472A (en) * 1994-10-19 1998-10-27 Sumitomo Electric Industries, Ltd. Process for the production of silicon nitride sintered body
CN108203300A (en) * 2018-02-07 2018-06-26 陕西科谷新材料科技有限公司 A kind of preparation method of high tenacity, high resistivity silicon carbide ceramics

Also Published As

Publication number Publication date
JPH0723270B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JPS59116175A (en) Ceramic sintered member
US5449649A (en) Monolithic silicon nitride having high fracture toughness
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JPH05194060A (en) Silicon nitride ceramic part
JPH0371388B2 (en)
JP3283238B2 (en) Silicon nitride ceramic parts and method of manufacturing the same
Hirata et al. Processing of high performance silicon carbide
JPH11147769A (en) Silicon nitride ceramic material and its production
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JPH11292633A (en) Silicon nitride-based ceramic part
JPH0380755B2 (en)
JPH07165462A (en) Alumina-beta-sialon-yag composite material
JP3139646B2 (en) Method for producing silicon nitride sintered body
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JP2581128B2 (en) Alumina-sialon composite sintered body
JP3970629B2 (en) Low thermal expansion ceramics and method for producing the same
US5756042A (en) Process for producing non-oxidic ceramic having a defined thermal conductivity
JP3667145B2 (en) Silicon nitride sintered body
JP2694369B2 (en) Silicon nitride sintered body
JP3667064B2 (en) Silicon nitride-based sintered body and method for producing the same
JP2687633B2 (en) Method for producing silicon nitride sintered body
JPS63282163A (en) Production of high-toughness silicon nitride ceramics
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JPH06100387A (en) Reinforcement of silicon nitride ceramic
JPH02307871A (en) Production of ceramic sintered compact

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term