JPH0380755B2 - - Google Patents

Info

Publication number
JPH0380755B2
JPH0380755B2 JP61195213A JP19521386A JPH0380755B2 JP H0380755 B2 JPH0380755 B2 JP H0380755B2 JP 61195213 A JP61195213 A JP 61195213A JP 19521386 A JP19521386 A JP 19521386A JP H0380755 B2 JPH0380755 B2 JP H0380755B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride ceramic
temperature
manufacturing
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61195213A
Other languages
Japanese (ja)
Other versions
JPS6355180A (en
Inventor
Yoji Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61195213A priority Critical patent/JPS6355180A/en
Publication of JPS6355180A publication Critical patent/JPS6355180A/en
Publication of JPH0380755B2 publication Critical patent/JPH0380755B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、セラミツクス部品の製造方法に関
し、さらに詳しくは機械的強度に優れた窒化ケイ
素系セラミツクス部品の製造方法に関する。 (従来の技術) 従来から、例えばセラミツクス焼結体により軸
受けやボールベアリングのような高い精度を有す
る製品を製造する場合には、最終寸法より大きめ
の製品を比較的低い精度で成形して焼成し、この
ようにして得たセラミツクス焼結体に研削加工を
施して最終形状にすることが行われていた。 (発明が解決しようとする問題点) しかるにこのような方法で製造されたセラミツ
クス部品では、研削過程でミクロな鋭角状の切欠
きが生じ、このため機械的強度が低下して所期の
特性を得ることができないという問題があつた。 この現象はダイヤモンド工具のダイヤモンドの
粒径を小さくしても同様に生じ、その改善が求め
られていた。 本発明はこのような従来の欠点を解消すべくな
されたもので、機械的強度の改善された窒化ケイ
素系セラミツクス部品の製造方法を提供すること
を目的とする。 [発明の構成] (問題点を解決するための手段) 本発明は、窒化ケイ素系セラミツクス焼結体を
所定の形状に研削加工し、この窒化ケイ素系セラ
ミツクス焼結体の焼結温度よりも低い温度で、か
つそのガラス相の軟化温度よりも高い温度で加熱
処理して成る窒化ケイ素系セラミツクス部品の製
造方法において、前記加熱処理が大気中かつ800
〜1100℃の温度で行われることを特徴としてい
る。 本発明における加熱処理温度は、窒化ケイ素系
セラミツクス焼結体のガラス相である酸化イツト
リウム、酸化アルミニウムおよび窒化アルミニウ
ムの軟化点である800℃以上の温度である必要が
ある。また大気中のように酸素の存在下であつて
も窒化ケイ素系セラミツクス焼結体に酸化物の生
成による機械的強度の劣化などの悪影響のない、
すなわち窒化ケイ素の酸化がほとんど進行しない
温度として1100℃以下の温度である必要がある。
また加熱処理時間としては1〜24時間が適当であ
るが、加熱処理温度が低いと加熱処理時間は長時
間を要し、加熱処理温度が高いと加熱処理時間は
短時間で済む。一般的に品質としては、加熱処理
温度が低く加熱処理時間が長い方が加熱処理温度
が高く加熱処理時間が短いものより良い。 (作 用) 本発明によれば、研削加工の際生じたミクロな
鋭角状の切欠きが熱処理により丸められる。また
窒化ケイ素系セラミツクス部品の表面には二酸化
ケイ素SiO2からなるきわめて薄い酸化膜層が形
成され、窒化ケイ素系セラミツクス部品の表面を
保護する。これらの相互作用により、窒化ケイ素
系セラミツクス部品の機械的強度は一層向上す
る。 (実施例) 以下本発明の実施例について説明する。 実施例 1 Si3N4 100重量部 Y2O3 5 〃 AlN 3 〃 Al2O3 3 〃 上記の混合粉末にバインダーを加えて平板状に
加圧成形し、700℃で3時間脱脂した後、1750℃
で3時間焼成して100mm×100mm×12mmの平板状の
窒化ケイ素系セラミツクス焼結体を得た。 次いで、この平板状の窒化ケイ素系セラミツク
ス焼結体を最終仕上げを粒度#400のダイヤモン
ドデイスクを用いて3mm×4mm×40mmに裁断して
角棒状の試験試料を作り、そのうち24試料をその
まま標点間距離20mmで3点曲げにより抗折強度を
測定し(比較例1)、残りの25試料を1000℃で2
時間熱処理を施した後同じ条件で抗折強度を測定
した(実施例1)。その結果は第1表の通りであ
つた。
(Industrial Application Field) The present invention relates to a method for manufacturing ceramic parts, and more particularly to a method for manufacturing silicon nitride ceramic parts having excellent mechanical strength. (Prior art) Conventionally, when manufacturing high-precision products such as bearings and ball bearings using ceramic sintered bodies, products larger than the final dimensions are formed with relatively low precision and fired. The ceramic sintered body thus obtained was subjected to a grinding process to give it its final shape. (Problem to be solved by the invention) However, in ceramic parts manufactured by such a method, microscopic notches with acute angles occur during the grinding process, which reduces mechanical strength and prevents desired characteristics from being achieved. The problem was that I couldn't get it. This phenomenon occurs even when the diamond grain size of the diamond tool is reduced, and an improvement has been sought. The present invention has been made to overcome these conventional drawbacks, and an object of the present invention is to provide a method for manufacturing silicon nitride ceramic parts with improved mechanical strength. [Structure of the Invention] (Means for Solving the Problems) The present invention involves grinding a silicon nitride ceramic sintered body into a predetermined shape, and grinding the silicon nitride ceramic sintered body at a temperature lower than the sintering temperature of the silicon nitride ceramic sintered body. In the method of manufacturing a silicon nitride ceramic component, the heat treatment is performed in the atmosphere and at a temperature higher than the softening temperature of the glass phase.
It is characterized by being carried out at a temperature of ~1100℃. The heat treatment temperature in the present invention needs to be 800° C. or higher, which is the softening point of yttrium oxide, aluminum oxide, and aluminum nitride, which are the glass phases of the silicon nitride ceramic sintered body. In addition, even in the presence of oxygen, such as in the atmosphere, the silicon nitride ceramic sintered body does not have any adverse effects such as deterioration of mechanical strength due to the formation of oxides.
In other words, the temperature needs to be 1100° C. or lower at which oxidation of silicon nitride hardly progresses.
The heat treatment time is suitably 1 to 24 hours; however, if the heat treatment temperature is low, the heat treatment time will take a long time, whereas if the heat treatment temperature is high, the heat treatment time will be short. Generally, in terms of quality, a lower heat treatment temperature and a longer heat treatment time are better than a higher heat treatment temperature and a shorter heat treatment time. (Function) According to the present invention, micro-acute notches generated during grinding are rounded by heat treatment. Furthermore, an extremely thin oxide film layer made of silicon dioxide (SiO 2 ) is formed on the surface of the silicon nitride ceramic component to protect the surface of the silicon nitride ceramic component. These interactions further improve the mechanical strength of silicon nitride ceramic parts. (Example) Examples of the present invention will be described below. Example 1 Si 3 N 4 100 parts by weight Y 2 O 3 5 〃 AlN 3 〃 Al 2 O 3 3 〃 A binder was added to the above mixed powder, pressure molded into a flat plate shape, and degreased at 700°C for 3 hours. ,1750℃
After firing for 3 hours, a flat silicon nitride ceramic sintered body measuring 100 mm x 100 mm x 12 mm was obtained. Next, this flat plate-shaped silicon nitride ceramic sintered body was finally finished and cut into 3 mm x 4 mm x 40 mm using a diamond disk with a grain size of #400 to make square rod-shaped test samples, and 24 of these samples were used as gauges as they were. The bending strength was measured by three-point bending with a distance of 20 mm (Comparative Example 1), and the remaining 25 samples were
After heat treatment was performed for a period of time, the bending strength was measured under the same conditions (Example 1). The results were as shown in Table 1.

【表】 またこれらの試料のワイブル分布は第1図(実
施例1)および第2図(比較例1)に示した通り
であつた。 実施例 2 Si3N4 100重量部 Y2O3 5 〃 Al2O3 2 〃 上記の混合粉末にバインダーを加えて平板状に
加圧成形し、700℃で3時間脱脂した後、1750℃
で3時間焼成して100mm×100mm×12mmの平板状の
窒化ケイ素系セラミツクス焼結体を得た。 次いで、この平板状の窒化ケイ素系セラミツク
ス焼結体を最終仕上げを粒度#600のダイヤモン
ドデイスクを用いて3mm×4mm×40mmに裁断して
角棒状の試験試料を作り、そのうち6試料をその
まま標点間距離20mmで3点曲げにより抗折強度を
測定し(比較例2)、残りの25試料を1000℃で2
時間熱処理を施した後同じ条件で抗折強度を測定
した(実施例2)。その結果は第2表の通りであ
つた。
[Table] The Weibull distributions of these samples were as shown in FIG. 1 (Example 1) and FIG. 2 (Comparative Example 1). Example 2 Si 3 N 4 100 parts by weight Y 2 O 3 5 Al 2 O 3 2 A binder was added to the above mixed powder, pressure molded into a flat plate, degreased at 700°C for 3 hours, and then heated at 1750°C.
After firing for 3 hours, a flat silicon nitride ceramic sintered body measuring 100 mm x 100 mm x 12 mm was obtained. Next, this flat silicon nitride ceramic sintered body was finally finished and cut to 3 mm x 4 mm x 40 mm using a diamond disk with a grain size of #600 to make square rod-shaped test samples, and 6 of them were used as gauges. The bending strength was measured by three-point bending with a distance of 20 mm (Comparative Example 2), and the remaining 25 samples were
After heat treatment for a period of time, the bending strength was measured under the same conditions (Example 2). The results were as shown in Table 2.

【表】 またこれらのワイブル分布は第3図(実施例
2)および第4図(比較例2)に示す通りであつ
た。 [発明の効果] 以上明らかなように、本発明の製造方法により
得られた窒化ケイ素系セラミツクス部品は、研削
加工が施されているにかかわらずその機械的強度
は非常に大きく、軸受け部品やベアリング等の構
造部品に有利に使用することができる。 また従来のように非酸化性雰囲気下(窒素雰囲
気下や不活性雰囲気など)で加熱処理する必要が
ないので、加熱処理が容易でまた大気を使用する
のでコストも低減が図れた。
[Table] Moreover, these Weibull distributions were as shown in FIG. 3 (Example 2) and FIG. 4 (Comparative Example 2). [Effects of the Invention] As is clear from the above, the silicon nitride ceramic parts obtained by the manufacturing method of the present invention have extremely high mechanical strength despite being subjected to grinding, and are suitable for bearing parts and bearings. It can be advantageously used for structural parts such as Further, since there is no need for heat treatment in a non-oxidizing atmosphere (such as a nitrogen atmosphere or an inert atmosphere) as in the conventional method, the heat treatment is easy, and since air is used, costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第3図は、それぞれ本発明の実施
例のワイブル分布を示すグラフ、第2図および第
4図は、それぞれ比較例のワイブル分布を示すグ
ラフである。
FIGS. 1 and 3 are graphs showing the Weibull distribution of the example of the present invention, and FIGS. 2 and 4 are graphs showing the Weibull distribution of the comparative example, respectively.

Claims (1)

【特許請求の範囲】 1 窒化ケイ素系セラミツクス焼結体を所定の形
状に研削加工し、この窒化ケイ素系セラミツクス
焼結体の焼結温度よりも低い温度で、かつそのガ
ラス相の軟化温度よりも高い温度で加熱処理して
成る窒化ケイ素系セラミツクス部品の製造方法に
おいて、前記加熱処理が大気中かつ800〜1100℃
の温度で行われることを特徴とする窒化ケイ素系
セラミツクス部品の製造方法。 2 ガラス相は、あらかじめ添加した焼結助剤か
らなるガラス相である特許請求の範囲第1項記載
の窒化ケイ素系セラミツクス部品の製造方法。 3 焼結助剤は、酸化イツトリウム、酸化アルミ
ニウムおよび窒化アルミニウムより選ばれた1種
または2種以上である特許請求の範囲第2項記載
の窒化ケイ素系セラミツクス部品の製造方法。
[Claims] 1. A silicon nitride ceramic sintered body is ground into a predetermined shape, and the silicon nitride ceramic sintered body is ground at a temperature lower than the sintering temperature of the silicon nitride ceramic sintered body and lower than the softening temperature of its glass phase. In a method for manufacturing silicon nitride ceramic parts that is heat-treated at a high temperature, the heat treatment is performed in the atmosphere and at a temperature of 800 to 1100°C.
1. A method for manufacturing silicon nitride ceramic parts, characterized in that the manufacturing method is carried out at a temperature of . 2. The method for manufacturing a silicon nitride ceramic component according to claim 1, wherein the glass phase is a glass phase consisting of a sintering aid added in advance. 3. The method for manufacturing silicon nitride ceramic parts according to claim 2, wherein the sintering aid is one or more selected from yttrium oxide, aluminum oxide, and aluminum nitride.
JP61195213A 1986-08-22 1986-08-22 Ceramic part Granted JPS6355180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61195213A JPS6355180A (en) 1986-08-22 1986-08-22 Ceramic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61195213A JPS6355180A (en) 1986-08-22 1986-08-22 Ceramic part

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4314275A Division JPH0723270B2 (en) 1992-10-30 1992-10-30 Silicon nitride ceramic parts

Publications (2)

Publication Number Publication Date
JPS6355180A JPS6355180A (en) 1988-03-09
JPH0380755B2 true JPH0380755B2 (en) 1991-12-25

Family

ID=16337341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61195213A Granted JPS6355180A (en) 1986-08-22 1986-08-22 Ceramic part

Country Status (1)

Country Link
JP (1) JPS6355180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577581Y2 (en) * 1993-04-19 1998-07-30 美津濃株式会社 Golf putter club head

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299708A (en) * 1994-04-26 1995-11-14 Sumitomo Electric Ind Ltd Manufacture of silicon nitride system ceramics part
US5827472A (en) * 1994-10-19 1998-10-27 Sumitomo Electric Industries, Ltd. Process for the production of silicon nitride sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122783A (en) * 1983-12-02 1985-07-01 工業技術院長 Manufacture of ceramics
JPS60151290A (en) * 1984-01-19 1985-08-09 トヨタ自動車株式会社 Surface treatment for non-oxide ceramic structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122783A (en) * 1983-12-02 1985-07-01 工業技術院長 Manufacture of ceramics
JPS60151290A (en) * 1984-01-19 1985-08-09 トヨタ自動車株式会社 Surface treatment for non-oxide ceramic structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577581Y2 (en) * 1993-04-19 1998-07-30 美津濃株式会社 Golf putter club head

Also Published As

Publication number Publication date
JPS6355180A (en) 1988-03-09

Similar Documents

Publication Publication Date Title
US4879263A (en) Sliding member of high strength and high abrasion resistance
US4356136A (en) Method of densifying an article formed of reaction bonded silicon nitride
JPS6168373A (en) Silicon nitride sintered body and manufacture
JP4951753B2 (en) Method for producing sintered silicon carbide
JPS62246865A (en) Silicon nitride sintered body and manufacture
US4834926A (en) Process for producing silicon nitride ceramic articles
JPH0380755B2 (en)
JPH01252581A (en) Production of nitride ceramics
JPH0371388B2 (en)
JP3744703B2 (en) Reference device
JP3283238B2 (en) Silicon nitride ceramic parts and method of manufacturing the same
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JP2588215B2 (en) Ceramic sintered body
JPH0640765A (en) Spinel ceramics and its production
JPH0723270B2 (en) Silicon nitride ceramic parts
JP4803872B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JPH11292633A (en) Silicon nitride-based ceramic part
JP2742619B2 (en) Silicon nitride sintered body
JP2652425B2 (en) Manufacturing method of piezoelectric ceramics
JPS63242976A (en) Manufacture of ceramic sintered body
JPS6340768A (en) Silicon nitride base ceramics
JPH03164472A (en) Production of silicon nitride sintered body
JP2692353B2 (en) Method for producing high-temperature high-strength silicon nitride sintered body
JPH0558714A (en) Ceramic substrate and production of the same
JPS63282163A (en) Production of high-toughness silicon nitride ceramics