JPH11292633A - Silicon nitride-based ceramic part - Google Patents

Silicon nitride-based ceramic part

Info

Publication number
JPH11292633A
JPH11292633A JP11000949A JP94999A JPH11292633A JP H11292633 A JPH11292633 A JP H11292633A JP 11000949 A JP11000949 A JP 11000949A JP 94999 A JP94999 A JP 94999A JP H11292633 A JPH11292633 A JP H11292633A
Authority
JP
Japan
Prior art keywords
silicon nitride
based ceramic
sintering
ceramic part
glass phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11000949A
Other languages
Japanese (ja)
Inventor
Yoji Onishi
洋治 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11000949A priority Critical patent/JPH11292633A/en
Publication of JPH11292633A publication Critical patent/JPH11292633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the mechanical strength comparable to that of a silicon nitride-based ceramic sintered compact sintered by a hot pressing and further readily form a complicated shape by including a glass phase in a silicon nitride- based ceramic sintered compact obtained according to sintering under atmospheric pressure. SOLUTION: A glass phase present in a silicon nitride-based sintered ceramic part is derived from a preadded sintering assistant and one or more kinds selected from yttrium oxide, aluminum oxide and aluminum nitride are used as the sintering assistant. The silicon nitride-based ceramic part is obtained by cutting a silicon nitride-based ceramic sintered compact prepared by sintering under atmospheric pressure into a prescribed shape and heat-treating the cut compact at a lower temperature than the sintering temperature of the silicon nitride-based ceramic sintered compact and a higher temperature than the softening temperature of the glass phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒化ケイ素系セラミ
ックス部品に関し、さらに詳しくは、機械的強度に優れ
た常圧焼結により得られた窒化ケイ素系セラミックス部
品に関する。
The present invention relates to a silicon nitride ceramic part, and more particularly, to a silicon nitride ceramic part obtained by normal pressure sintering having excellent mechanical strength.

【0002】[0002]

【従来の技術】従来から、例えばセラミックス焼結体を
使用して軸受けやボールベアリングのような高い精度を
要求される製品を製造する場合には、最終寸法より大き
めの製品を比較的低い精度で成形して焼成し、このよう
にして得たセラミックス焼結体に切削加工を施して最終
形状とすることが行われていた。
2. Description of the Related Art Conventionally, when a product requiring high precision, such as a bearing or a ball bearing, is manufactured using a ceramic sintered body, a product having a size larger than a final dimension is manufactured with relatively low precision. Molding and firing have been performed, and the ceramic sintered body thus obtained has been subjected to cutting to obtain a final shape.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
な方法で製造されたセラミックス部品では、切削過程で
ミクロな鋭角状の切欠きが生じ、このため機械的強度が
低下して所期の特性を得ることができないという問題が
あった。
However, in a ceramic part manufactured by such a method, micro sharp notches are formed in the cutting process, and the mechanical strength is reduced to obtain desired characteristics. There was a problem that it was not possible.

【0004】特にこのように高い機械的強度を要求され
るセラミックス部品として窒化ケイ素系セラミックス焼
結体からなる部品を用いる場合には、緻密な構造とな
り、かつ密度が理想密度に近いものとなる焼結方法とし
てホットプレスを用いていた。
[0004] In particular, when a component made of a silicon nitride-based ceramics sintered body is used as a ceramic component requiring high mechanical strength as described above, a sintered structure having a dense structure and a density close to an ideal density is obtained. A hot press was used as a bonding method.

【0005】しかしながらホットプレスにより焼結され
た窒化ケイ素系セラミックス焼結体は機械的強度は高い
が、複雑形状とすることは困難であった。また高温高圧
下で行うホットプレスは設備も専用の特殊な炉などが必
要であり、コストも高く、より良い方法が望まれてき
た。
[0005] However, a silicon nitride ceramic sintered body sintered by hot pressing has high mechanical strength, but it is difficult to form a complicated shape. In addition, a hot press performed under high temperature and high pressure requires a special furnace for equipment and the like, so that the cost is high and a better method has been desired.

【0006】一方、常圧焼結により焼結された窒化ケイ
素系セラミックス焼結体は、複雑形状とすることは容易
であるが、100kg/mm2 に満たない機械的強度し
かなかった。
On the other hand, a silicon nitride ceramic sintered body sintered by normal pressure sintering can be easily formed into a complicated shape, but has a mechanical strength of less than 100 kg / mm 2 .

【0007】本発明はこのような従来の欠点を鑑みてな
されたものであり、機械的強度がホットプレスにより焼
結された窒化ケイ素系セラミックス焼結体と同等であ
り、かつ容易に複雑形状にすることができ、コストの低
減も図れる常圧焼結により焼結された窒化ケイ素系セラ
ミックス焼結体からなるセラミックス部品を提供するこ
とを目的とする。
The present invention has been made in view of such conventional disadvantages, and has a mechanical strength equivalent to that of a silicon nitride-based ceramic sintered body sintered by hot pressing, and is easily formed into a complicated shape. It is an object of the present invention to provide a ceramic component made of a silicon nitride-based ceramic sintered body sintered by normal pressure sintering, which can reduce the cost.

【0008】[0008]

【課題を解決するための手段】本発明の窒化ケイ素系セ
ラミックス部品は、請求項1として常圧焼結により得ら
れる窒化ケイ素セラミックス焼結体において、焼結体中
にガラス相を含むことを特徴とする窒化ケイ素系セラミ
ックス部品。
According to a first aspect of the present invention, there is provided a silicon nitride ceramic part obtained by normal pressure sintering, wherein the sintered body contains a glass phase. Silicon nitride ceramic parts.

【0009】請求項2として、窒化ケイ素系セラミック
ス部品に存在するガラス相は、あらかじめ添加した焼結
助剤からなるガラス相であることを特徴とする請求項1
記載の窒化ケイ素系セラミックス部品。
According to a second aspect, the glass phase present in the silicon nitride-based ceramic part is a glass phase comprising a sintering additive added in advance.
The silicon nitride-based ceramic part according to the above.

【0010】請求項3として、焼結助剤は、酸化イット
リウム、酸化アルミニウムおよび窒化アルミニウムより
選ばれた1種または2種以上であることを特徴とする請
求項2記載の窒化ケイ素系セラミックス部品。
According to a third aspect of the present invention, the sintering aid is at least one selected from the group consisting of yttrium oxide, aluminum oxide and aluminum nitride.

【0011】さらに、本発明の窒化ケイ素系セラミック
ス部品は、常圧焼結により得られる窒化ケイ素系セラミ
ックス焼結体を所定の形状に切削加工し、この窒化ケイ
素系セラミックス焼結体の焼結温度よりも低い温度で、
かつそのガラス相の軟化点温度よりも高い温度で加熱処
理してなる窒化ケイ素系セラミックス部品である。
Further, the silicon nitride-based ceramic part of the present invention is obtained by cutting a silicon nitride-based ceramic sintered body obtained by normal pressure sintering into a predetermined shape, and sintering temperature of the silicon nitride-based ceramic sintered body. At lower temperatures than
Further, it is a silicon nitride-based ceramic part obtained by heat treatment at a temperature higher than the softening point temperature of the glass phase.

【0012】また本発明における加熱処理温度は、窒化
ケイ素系セラミックス焼結体のガラス相である酸化イッ
トリウム、酸化アルミニウムおよび窒化アルミニウムの
軟化点である800℃以上の温度である必要がある。ま
た大気中のように酸素の存在下であっても窒化ケイ素系
セラミックス焼結体の酸化がほとんど進行しない温度と
して1100℃以下の温余である必要がある。
The heat treatment temperature in the present invention needs to be 800 ° C. or more, which is the softening point of the glass phase of yttrium oxide, aluminum oxide, and aluminum nitride of the silicon nitride-based ceramics sintered body. Further, even in the presence of oxygen, such as in the atmosphere, the temperature at which oxidation of the silicon nitride-based ceramics sintered body hardly proceeds must be 1100 ° C. or less.

【0013】また加熱処理時間としては1〜24時間が
適当であるが、加熱処理温度が低いと加熱処理時間は長
時間を要し、加熱処理温度が高いと加熱処理時間は短時
間で済む傾向がある。一般的に製品の品質としては、加
熱処理温度が低く加熱処理時間が長い方が加熱処理温度
が高く加熱処理時間が短いものより良い。
The heat treatment time is suitably 1 to 24 hours, but when the heat treatment temperature is low, the heat treatment time is long, and when the heat treatment temperature is high, the heat treatment time tends to be short. There is. In general, the quality of a product is better when the heat treatment temperature is lower and the heat treatment time is longer than when the heat treatment temperature is higher and the heat treatment time is shorter.

【0014】本発明によれば、切削加工の際に生じたミ
クロな鋭角状の切欠きが熱処理により丸められる。また
常圧焼結により得られる窒化ケイ素系セラミックス部品
の表面には二酸化ケイ素からなるサブミクロン単位のき
わめて薄い酸化膜層が形成され、窒化ケイ素系セラミッ
クス部品の表面を保護する。これらの相互作用により、
窒化ケイ素系セラミックス部品の機械的強度は一層向上
し、従来のホットプレスにより得られる窒化ケイ素系セ
ラミックス部品と同等の機械的強度の窒化ケイ素系セラ
ミックス部品が得られる。
According to the present invention, the microscopic notch formed at the time of cutting is rounded by heat treatment. On the surface of the silicon nitride-based ceramic component obtained by normal-pressure sintering, an extremely thin oxide film layer of sub-micron made of silicon dioxide is formed to protect the surface of the silicon nitride-based ceramic component. Due to these interactions,
The mechanical strength of the silicon nitride-based ceramic part is further improved, and a silicon nitride-based ceramic part having the same mechanical strength as the silicon nitride-based ceramic part obtained by conventional hot pressing can be obtained.

【0015】[0015]

【発明の実施の形態】以下本発明の実施例について説明
する。 ・実施例1 Si34 100重量部 Y23 5重量部 AlN 3重量部 Al23 3重量部 上記の混合粉末にバインダーを加えて平板状に加圧成形
し、700℃で3時間脱脂した後、常圧にて1750℃
で3時間焼成して100mm×100mm×12mmの
平板状の窒化ケイ素系セラミックス焼結体を得た。
Embodiments of the present invention will be described below. Example 1 100 parts by weight of Si 3 N 4 5 parts by weight of Y 2 O 3 3 parts by weight of AlN 3 parts by weight of Al 2 O 3 The binder was added to the above mixed powder, pressed into a flat plate, and pressed at 700 ° C. After degreasing for 1 hour, 1750 ° C at normal pressure
For 3 hours to obtain a flat silicon nitride ceramic sintered body of 100 mm × 100 mm × 12 mm.

【0016】次いで、この平板状の窒化ケイ素系セラミ
ックス焼結体の最終仕上げとして粒度#400のダイヤ
モンドディスクを用いて3mm×4mm×40mmに裁
断して角棒状の試験試料を作り、そのうち24試料をそ
のまま標点間距離20mmで3点曲げにより抗折強度を
測定し(比較例1)、残り25試料を大気中、1000
℃で2時間熱処理を施した後同じ条件で抗折強度を測定
した(実施例1)。その結果は表1の通りであった。
Next, as a final finish of the flat silicon nitride ceramic sintered body, a diamond rod having a grain size of # 400 was cut into a piece of 3 mm × 4 mm × 40 mm to prepare a square rod-shaped test sample. The bending strength was measured by three-point bending at a distance of 20 mm between the gauges as it was (Comparative Example 1), and the remaining 25 samples were measured in air at 1000
After heat treatment at 2 ° C. for 2 hours, bending strength was measured under the same conditions (Example 1). The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】またこれらのワイブル分布は図1(実施例
1)および図2(比較例2)に示した通りであった。 ・実施例2 Si3 N4 100重量部 Y23 5重量部 Al23 3重量部 上記の混合粉末にバインダーを加えて平板状に加圧成形
し、700℃で3時間脱脂した後、常圧にて1750℃
で3時間焼成して100mm×100mm×12mmの
平板状の窒化ケイ素系セラミックス焼結体を得た。
The Weibull distribution was as shown in FIG. 1 (Example 1) and FIG. 2 (Comparative Example 2). - Example 2 Si 3 by adding N4 100 parts by weight of Y 2 O 3 5 parts by weight Al 2 O 3 3 parts by weight of the binder in the mixed powder of the pressure-molding into a flat plate, was degreased 3 hours at 700 ° C., 1750 ° C at normal pressure
For 3 hours to obtain a flat silicon nitride ceramic sintered body of 100 mm × 100 mm × 12 mm.

【0019】次いで、この平板状の窒化ケイ素系セラミ
ックス焼結体の最終仕上げとして粒度#600のダイヤ
モンドディスクを用いて3mm×4mm×40mmに裁
断して角棒状の試験試料を作り、そのうち6試料をその
まま標点間距離20mmで3点曲げにより抗折強度を測
定し(比較例2)、残りの25試料を大気中、1000
℃で2時間熱処理を施した後同じ条件で抗折強度を測定
した(実施例2)。その結果は表2の通りであった。
Next, as a final finish of the flat silicon nitride ceramic sintered body, a square rod-shaped test sample was prepared by cutting the sample into 3 mm × 4 mm × 40 mm using a diamond disk having a grain size of # 600. The flexural strength was measured by three-point bending at a distance between the gauge points of 20 mm (Comparative Example 2).
After the heat treatment at 2 ° C. for 2 hours, the transverse rupture strength was measured under the same conditions (Example 2). Table 2 shows the results.

【0020】[0020]

【表2】 またこれらのワイブル分布は図3(実施例2)および図
4(比較例2)に示した通りであった。
[Table 2] The Weibull distribution was as shown in FIG. 3 (Example 2) and FIG. 4 (Comparative Example 2).

【0021】[0021]

【発明の効果】以上明らかなように、本発明の常圧焼結
により得られる窒化ケイ素系セラミックス部品は、研削
加工が施されているにもかかわらずその機械的強度は非
常に大きく、軸受け部品やベアリング等の構造部品に有
利に使用することができる。
As is apparent from the above description, the silicon nitride-based ceramic part obtained by the normal pressure sintering of the present invention has a very high mechanical strength despite being subjected to grinding, and has a large bearing strength. It can be used advantageously for structural components such as bearings and bearings.

【0022】また従来のように非酸化性雰囲気下(窒素
雰囲気や不活性雰囲気下など)で加熱処理する必要がな
いので、加熱処理が容易でまた大気を使用するのでコス
トの低減も図れた。
In addition, since it is not necessary to perform the heat treatment in a non-oxidizing atmosphere (such as a nitrogen atmosphere or an inert atmosphere) as in the prior art, the heat treatment is easy, and the use of air reduces the cost.

【0023】また窒化ケイ素系セラミックス部品に使用
する焼結体っは、常圧焼結により焼結を行うので、ホッ
トプレスにより焼結を行う際より炉などの設備も簡単に
でき、コストの低減を図れ、メンテナンスも容易になっ
た。
Further, since the sintered body used for the silicon nitride-based ceramic part is sintered by normal pressure sintering, equipment such as a furnace can be simpler than when sintering by hot pressing, and the cost can be reduced. And maintenance became easier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のワイブル分布を示すグラフ
である。
FIG. 1 is a graph showing a Weibull distribution according to Example 1 of the present invention.

【図2】本発明の比較例1のワイブル分布を示すグラフ
である。
FIG. 2 is a graph showing a Weibull distribution of Comparative Example 1 of the present invention.

【図3】本発明の実施例2のワイブル分布を示すグラフ
である。
FIG. 3 is a graph showing a Weibull distribution according to a second embodiment of the present invention.

【図4】本発明の比較例2のワイブル分布を示すグラフ
である。
FIG. 4 is a graph showing a Weibull distribution of Comparative Example 2 of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 常圧焼結により得られる窒化ケイ素セラ
ミックス焼結体において、焼結体中にガラス相を含むこ
とを特徴とする窒化ケイ素系セラミックス部品。
1. A silicon nitride ceramic part obtained by normal pressure sintering, wherein the sintered body contains a glass phase.
【請求項2】 窒化ケイ素系セラミックス部品に存在す
るガラス相は、あらかじめ添加した焼結助剤からなるガ
ラス相であることを特徴とする請求項1記載の窒化ケイ
素系セラミックス部品。
2. The silicon nitride-based ceramic part according to claim 1, wherein the glass phase present in the silicon nitride-based ceramic part is a glass phase comprising a sintering agent added in advance.
【請求項3】 焼結助剤は、酸化イットリウム、酸化ア
ルミニウムおよび窒化アルミニウムより選ばれた1種ま
たは2種以上であることを特徴とする請求項2記載の窒
化ケイ素系セラミックス部品。
3. The silicon nitride-based ceramic part according to claim 2, wherein the sintering aid is at least one selected from yttrium oxide, aluminum oxide and aluminum nitride.
JP11000949A 1999-01-06 1999-01-06 Silicon nitride-based ceramic part Pending JPH11292633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11000949A JPH11292633A (en) 1999-01-06 1999-01-06 Silicon nitride-based ceramic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11000949A JPH11292633A (en) 1999-01-06 1999-01-06 Silicon nitride-based ceramic part

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4314275A Division JPH0723270B2 (en) 1992-10-30 1992-10-30 Silicon nitride ceramic parts

Publications (1)

Publication Number Publication Date
JPH11292633A true JPH11292633A (en) 1999-10-26

Family

ID=11487937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11000949A Pending JPH11292633A (en) 1999-01-06 1999-01-06 Silicon nitride-based ceramic part

Country Status (1)

Country Link
JP (1) JPH11292633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020062843A (en) * 2001-01-25 2002-07-31 니뽄 가이시 가부시키가이샤 Corrosion-resistive ceramic materials, method of producing the same, and members for semiconductor manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020062843A (en) * 2001-01-25 2002-07-31 니뽄 가이시 가부시키가이샤 Corrosion-resistive ceramic materials, method of producing the same, and members for semiconductor manufacturing

Similar Documents

Publication Publication Date Title
JP4951753B2 (en) Method for producing sintered silicon carbide
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
JP2518630B2 (en) Silicon nitride sintered body and method for producing the same
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
EP0311289B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
JPH0212893B2 (en)
JP3283238B2 (en) Silicon nitride ceramic parts and method of manufacturing the same
JPH11292633A (en) Silicon nitride-based ceramic part
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0723270B2 (en) Silicon nitride ceramic parts
JPH10259058A (en) Sialon complex and its production
JPS5918165A (en) Manufacture of silicon nitride sintered body
JPS63123868A (en) Manufacture of silicon nitride base sintered body
JP3677360B2 (en) Method for producing silicon nitride sintered body
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JPH0380755B2 (en)
JP3602931B2 (en) Low hardness silicon nitride sintered body and semiconductor manufacturing parts using the same
JP3970629B2 (en) Low thermal expansion ceramics and method for producing the same
JP2581128B2 (en) Alumina-sialon composite sintered body
JPH07187805A (en) Ceramic green body and its production
JPH07165462A (en) Alumina-beta-sialon-yag composite material
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JPS63282163A (en) Production of high-toughness silicon nitride ceramics
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JP4500515B2 (en) Parts for semiconductor manufacturing equipment and mirrors for length measurement