JPH11147769A - Silicon nitride ceramic material and its production - Google Patents

Silicon nitride ceramic material and its production

Info

Publication number
JPH11147769A
JPH11147769A JP9331039A JP33103997A JPH11147769A JP H11147769 A JPH11147769 A JP H11147769A JP 9331039 A JP9331039 A JP 9331039A JP 33103997 A JP33103997 A JP 33103997A JP H11147769 A JPH11147769 A JP H11147769A
Authority
JP
Japan
Prior art keywords
heat treatment
silicon nitride
strength
ceramic material
nitride ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9331039A
Other languages
Japanese (ja)
Inventor
Shigemi Sato
繁美 佐藤
Hashira Andou
柱 安藤
Minchiyoru Aki
▲ミン▼▲チョル▼ 秋
Tatsumasa Ikeda
龍雅 池田
Yasuyoshi Kobayashi
康良 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP9331039A priority Critical patent/JPH11147769A/en
Publication of JPH11147769A publication Critical patent/JPH11147769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of the strength of a ceramic product. SOLUTION: One or more kinds of materials selected from an oxide ceramic, a nitride ceramic and a rare earth element oxide are added as sintering auxiliaries, sintered and subsequently thermally treated preferably in the atmosphere at 800-1400 deg.C to cure the defects (cracks) of the surface and recover the strength of the silicon nitride ceramic material. Thereby, the strength of the ceramic material is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の各種部
品、ガスタービン、燃料電池、炉及びばね等に用いられ
る構造用セラミック材に関し、特に、窒化珪素セラミッ
ク材、窒化珪素を主体とする複合材及びその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural ceramic material used for various parts of automobiles, gas turbines, fuel cells, furnaces, springs, etc., and more particularly to a silicon nitride ceramic material and a composite material mainly composed of silicon nitride. And a method of manufacturing the same.

【0002】[0002]

【従来の技術】一般に、セラミック材(製品)の製造は
原料粉末に焼結助剤を加えて混合、調整する工程、可塑
性や保形性を付与するためのバインダ類を投入して混合
する工程、成形する工程及び焼結する工程からなる。ま
たその後、形状精度、製品表面の性状(粗さ、表面変質
層)を改善するために機械加工が行われる。
2. Description of the Related Art Generally, a ceramic material (product) is manufactured by adding a sintering aid to a raw material powder, mixing and adjusting the mixture, and adding and mixing a binder for imparting plasticity and shape retention. , Forming step and sintering step. Thereafter, machining is performed to improve the shape accuracy and the properties (roughness, surface altered layer) of the product surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、セラミ
ック材は靭性が低いため、微細な欠陥でも強度が低下す
る。また、研削等の機械加工時に割れが生じたり、製造
過程で何らかの原因で亀裂(欠陥)が生じることが多
く、完成したセラミック製品の強度の信頼性が低いと云
う問題があった。この微細な欠陥を非破壊検査によって
見つけることは非常に困難である。本発明者は、使用前
にこれら欠陥を治癒できれば完成したセラミック製品の
信頼性を格段に向上させることができると考えた。
However, since the ceramic material has low toughness, the strength is reduced even with minute defects. In addition, cracks often occur during machining such as grinding, and cracks (defects) often occur for some reason in the manufacturing process, and there is a problem that the reliability of the strength of the completed ceramic product is low. It is very difficult to find these fine defects by nondestructive inspection. The present inventor believed that if these defects could be cured before use, the reliability of the finished ceramic product could be significantly improved.

【0004】本発明は、上記した従来技術の問題点に鑑
みなされたものであり、その目的は、セラミック製品の
強度の信頼性を向上することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to improve the reliability of strength of a ceramic product.

【0005】[0005]

【課題を解決するための手段】上記した目的を達成する
ために本発明は、酸化物セラミック、窒化物セラミック
及び希土類酸化物のうちから選択される1種若しくは2
種以上を焼結助剤として添加し、焼結後、または更に機
械加工後に熱処理する窒化珪素セラミック材の製造方法
及びこの方法により製造された窒化珪素セラミック材を
提供する。
In order to achieve the above-mentioned object, the present invention provides one or two kinds selected from oxide ceramics, nitride ceramics and rare earth oxides.
Provided are a method for producing a silicon nitride ceramic material which is subjected to heat treatment after sintering or further machining after adding at least one kind as a sintering aid, and a silicon nitride ceramic material produced by this method.

【0006】[0006]

【発明の実施の形態】以下に、本発明の好適な実施形態
について説明する。
Preferred embodiments of the present invention will be described below.

【0007】セラミック製品の製造工程の最終段階であ
る焼結後、または機械加工後に熱処理を行うことで、製
品表面の欠陥を治癒させ、強度の信頼性を向上させる。
主な工程としては、機械加工しない場合、 原料調整→成形→脱脂→焼結→熱処理→製品 となり、機械加工する場合、 原料調整→成形→脱脂→焼結→機械加工→熱処理→製品 となる。ここで、原料に添加する焼結助剤としては、M
g、Al、Be、Zr等の酸化物または窒化物、Y
23,CeO,Er23,La23等の希土類酸化物な
どが挙げられる。また、熱処理は、機械加工をしない場
合は焼結後、機械加工をする場合は機械加工後に行う。
その条件としては、温度を800℃〜1400℃とし、
大気中、真空中または不活性ガス中で行うものとする。
特に大気中で行うことが強度向上効果が大きい。
By performing heat treatment after sintering or machining, which is the final stage of the ceramic product manufacturing process, defects on the product surface are cured and the reliability of strength is improved.
The main process is raw material preparation → molding → degreasing → sintering → heat treatment → product when no machining is performed, and raw material preparation → molding → degreasing → sintering → machining → heat treatment → product when machining. Here, as a sintering aid added to the raw material, M
g, oxides or nitrides of Al, Be, Zr, etc., Y
Rare earth oxides such as 2 O 3 , CeO, Er 2 O 3 , and La 2 O 3 are exemplified. The heat treatment is performed after sintering when no machining is performed, and after machining when machining is performed.
As the conditions, the temperature is set to 800 ° C to 1400 ° C,
It should be performed in the air, in a vacuum, or in an inert gas.
In particular, performing in the atmosphere has a large effect of improving strength.

【0008】[0008]

【実施例】実施例1 窒化珪素(Si34)粉末に対して、Y23及び/また
はAl23を焼結助剤とし、これら焼結助剤を1種また
は2種添加して原料を調製した。また、同様に窒化珪素
を主体とする複合材料として、窒化珪素に対して炭化珪
素(SiC)粉末を混合したものに上記の酸化物セラミ
ック粉末を焼結助剤として添加して原料を調製した。原
料調整は以下のように行った。
Against EXAMPLE 1 silicon nitride (Si 3 N 4) powder, Y 2 and O 3 and / or Al 2 O 3 as a sintering aid, adding one or two of these sintering aids Thus, a raw material was prepared. Similarly, as a composite material mainly composed of silicon nitride, a raw material was prepared by adding the above oxide ceramic powder as a sintering aid to a mixture of silicon nitride and silicon carbide (SiC) powder. The raw material adjustment was performed as follows.

【0009】上記粉末をエタノール中でナイロンボール
及びナイロンポットを用いて48時間混合し、その後ロ
ータリエバポレータを用いてエタノールを抽出した後、
真空乾燥させて混合粉末を得た。
The above powder is mixed in ethanol for 48 hours using a nylon ball and a nylon pot, and then ethanol is extracted using a rotary evaporator.
The mixture was dried under vacuum to obtain a mixed powder.

【0010】更に、成形及び焼結は、混合粉末を窒素雰
囲気中、圧力35MPa、焼結温度1800℃〜182
5℃、保持時間1時間〜2時間の条件でホットプレスに
より行った。得られた焼結体のサイズは5mm×90mm×
90mmである。尚、成形のためのバインダを使用してい
ないため脱脂は行わなかった。
[0010] Further, the molding and sintering are performed by mixing the mixed powder in a nitrogen atmosphere at a pressure of 35 MPa and a sintering temperature of 1800 ° C to 182 ° C.
The hot pressing was performed under the conditions of 5 ° C. and a holding time of 1 to 2 hours. The size of the obtained sintered body is 5mm x 90mm x
90 mm. Since no binder was used for molding, degreasing was not performed.

【0011】得られた焼結体をJIS規格に従い3mm×
4mm×40mmのサイズに機械加工し、曲げ試験片を製作
した。曲げ試験はJIS R 1601に従い4点曲げ
試験を実施した。尚、試験温度は室温及び1000℃〜
1400℃の条件下で実施した。
[0011] The obtained sintered body is 3 mm x
It was machined to a size of 4 mm x 40 mm to produce a bending test piece. In the bending test, a four-point bending test was performed according to JIS R1601. The test temperature is room temperature and 1000 ° C ~
The test was performed under the condition of 1400 ° C.

【0012】一方、熱処理によりSi34及びSi34
/SiCセラミック材の亀裂治癒効果を試験する目的
で、引張表面の中央にVicker’s圧子で表面亀裂
を付与した。このVicker’s荷重は2kgf及び
5kgf、荷重保持時間は20secとした。また、熱
処理は、上記亀裂を付与した試験片(以下、これを予亀
裂材と記す)を炉の中に入れ、熱処理温度:800℃〜
1400℃、保持時間:1時間〜10時間、雰囲気:大
気及びAr、昇温速度:10℃/minという条件で実
施した。
On the other hand, Si 3 N 4 and Si 3 N 4
A surface crack was applied to the center of the tensile surface with a Vicker's indenter in order to test the crack healing effect of the / SiC ceramic material. The Vickers' load was 2 kgf and 5 kgf, and the load holding time was 20 sec. In the heat treatment, a test piece provided with the crack (hereinafter, referred to as a pre-cracked material) was placed in a furnace, and a heat treatment temperature: 800 ° C.
The test was performed under the following conditions: 1400 ° C., holding time: 1 hour to 10 hours, atmosphere: air and Ar, and heating rate: 10 ° C./min.

【0013】表1に、窒化珪素セラミック材(供試材N
o.1:Si34+SiC+Y23、供試材No.2:
Si34+Y23+Al23)を大気中で熱処理した場
合の4点曲げ強度と熱処理温度との関係を示す。
Table 1 shows that the silicon nitride ceramic material (test material N
o. 1: Si 3 N 4 + SiC + Y 2 O 3 ; 2:
The relationship between the four-point bending strength and the heat treatment temperature when Si 3 N 4 + Y 2 O 3 + Al 2 O 3 ) is heat-treated in the air is shown.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に示すように、熱処理をすることによ
り、800℃〜1400℃の全温度範囲で予亀裂材より
も強度が向上した。特に効果の高い熱処理条件として、
供試材No.1では熱処理温度1000℃〜1300
℃、供試材No.2では熱処理温度1100℃〜120
0℃の範囲であり、これらは亀裂を付与していない平滑
材以上の強度が熱処理により得られた。
As shown in Table 1, the heat treatment improved the strength over the pre-cracked material over the entire temperature range of 800 ° C. to 1400 ° C. Particularly effective heat treatment conditions include:
Test material No. In the case of 1, the heat treatment temperature is 1000 ° C. to 1300
° C, test material No. In No. 2, the heat treatment temperature is 1100 ° C. to 120
It was in the range of 0 ° C., and these were obtained by heat treatment with a strength higher than that of a smooth material having no crack.

【0016】図1に供試材No.1の大気中熱処理前の
組織表面の走査顕微鏡(SEM)写真を示し、図2に大
気中熱処理後の写真を示す。両図から解るように、熱処
理により表面に新生成物ができ、これが欠陥(亀裂)を
覆い治癒させている。この新生成物は焼結助剤や窒化炭
素、炭化珪素(複合材料の場合)から生成されたもので
あり、Si227とSiO2とが治癒物質である。
FIG. 1 shows a scanning microscope (SEM) photograph of the surface of the structure before the heat treatment in the air, and FIG. 2 shows a photograph after the heat treatment in the air. As can be seen from both figures, the heat treatment produces a new product on the surface that covers and heals the defect (crack). This new product is produced from a sintering aid, carbon nitride, or silicon carbide (in the case of a composite material), and Si 2 Y 2 O 7 and SiO 2 are healing substances.

【0017】表2に、窒化珪素セラミック材(供試材N
o.3:Si34+Y23、供試材No.4:Si34
+SiC+Y23)をAr中及び大気中で熱処理した場
合の4点曲げ強度と熱処理雰囲気との関係及び高温強度
特性を示す。
Table 2 shows that the silicon nitride ceramic material (test material N
o. 3: Si 3 N 4 + Y 2 O 3 ; 4: Si 3 N 4
+ SiC + Y 2 O 3 ) shows the relationship between the four-point bending strength and the heat treatment atmosphere and the high-temperature strength characteristics when heat treatment is performed in Ar and in air.

【0018】[0018]

【表2】 [Table 2]

【0019】予亀裂材を大気中で熱処理した場合、亀裂
を付与していない平滑材の強度の90%以上に回復し
た。一方、Ar中では、大気中で熱処理するよりも回復
効果は小さいが、平滑材の強度の55%〜65%まで回
復した。但し、Ar中では熱処理後、新生成物は認めら
れなかった。
When the pre-cracked material was heat-treated in the air, the strength was recovered to 90% or more of the strength of the smooth material having no crack. On the other hand, in Ar, the recovery effect was smaller than that of heat treatment in the air, but recovered to 55% to 65% of the strength of the smoothing material. However, after heat treatment in Ar, no new product was observed.

【0020】Ar熱処理で強度が回復した原因として
は、供試材表面の残留応力測定結果から、Vicke
r’s亀裂導入時に発生した残留応力がAr熱処理によ
り緩和されたことに起因するものと考えられる。
The reason that the strength was recovered by the Ar heat treatment was as follows from the results of measurement of residual stress on the surface of the test material.
It is considered that the residual stress generated when the r's crack was introduced was relaxed by the Ar heat treatment.

【0021】供試材No.3、No.4の熱処理後の1
300℃に於ける曲げ強度は、平滑材の1300℃にお
ける曲げ強度と同等の値を示した。このことから使用温
度が1300℃までは熱処理による効果が保たれている
と判断される。
Test material No. 3, No. 1 after heat treatment of 4
The bending strength at 300 ° C. was equivalent to the bending strength of the smooth material at 1300 ° C. From this, it is determined that the effect of the heat treatment is maintained up to the use temperature of 1300 ° C.

【0022】表3に、供試材No.3、No.4に亀裂
寸法が異なる2種類の亀裂を付与し、大気中で熱処理し
た場合の4点曲げ強度を示す。
Table 3 shows the test material No. 3, No. 4 shows the four-point bending strength when two types of cracks having different crack sizes were provided and heat-treated in air.

【0023】[0023]

【表3】 [Table 3]

【0024】供試材No.3では、亀裂寸法が110μ
m以下であれば平滑材と同等以上の強度に回復した。一
方、供試材No.4の場合は亀裂寸法が180μm以下
であれば平滑材と同等以上の強度に回復した。このこと
から、複合材の方が熱処理による治癒能力は高いことが
わかる。
Test material No. In 3, the crack size was 110μ
m or less, the strength was restored to a level equal to or higher than that of the smooth material. On the other hand, the test material No. In the case of No. 4, when the crack size was 180 μm or less, the strength was restored to a level equal to or higher than that of the smooth material. This indicates that the composite material has higher healing ability by heat treatment.

【0025】実施例2 窒化珪素(Si34)粉末に対して、Y23、Al
23、CeO、Er23を焼結助剤とし、これら焼結助
剤を1種または2種以上添加して原料を調製した。ま
た、同様に窒化珪素を主体とする複合材料として、窒化
珪素に対して炭化珪素(SiC)粉末を混合したものに
23粉末を焼結助剤として添加して原料を調製した。
原料調整は以下のように行った。
Example 2 Silicon nitride (Si 3 N 4 ) powder was mixed with Y 2 O 3 and Al
Raw materials were prepared by using 2 O 3 , CeO, and Er 2 O 3 as sintering aids, and adding one or more of these sintering aids. Similarly, as a composite material mainly containing silicon nitride, a raw material was prepared by adding Y 2 O 3 powder as a sintering aid to a mixture of silicon nitride and silicon carbide (SiC) powder.
The raw material adjustment was performed as follows.

【0026】上記粉末をエタノール中でナイロンボール
及びナイロンポットを用いて48時間混合し、その後ロ
ータリエバポレータを用いてエタノールを抽出した後、
真空乾燥させて混合粉末を得た。
The above powder was mixed in ethanol for 48 hours using a nylon ball and a nylon pot, and then ethanol was extracted using a rotary evaporator.
The mixture was dried under vacuum to obtain a mixed powder.

【0027】更に、成形及び焼結は、混合粉末を窒素雰
囲気中、圧力35MPa、焼結温度1800℃〜185
0℃、保持時間1時間〜2時間の条件でホットプレスに
より行った。得られた焼結体のサイズは5mm×90mm×
90mmである。尚、成形のためのバインダを使用してい
ないため脱脂は行わなかった。
Further, for molding and sintering, the mixed powder is placed in a nitrogen atmosphere at a pressure of 35 MPa and a sintering temperature of 1800 ° C. to 185 ° C.
The hot pressing was performed under the conditions of 0 ° C. and a holding time of 1 to 2 hours. The size of the obtained sintered body is 5mm x 90mm x
90 mm. Since no binder was used for molding, degreasing was not performed.

【0028】得られた焼結体をJIS規格に従い3mm×
4mm×40mmのサイズに機械加工し、曲げ試験片を制作
した。曲げ試験はJIS R 1601に従い3点曲げ
試験を実施した。尚、試験温度は室温、1000℃及び
1200℃の条件下で実施した。
The obtained sintered body is 3 mm × according to JIS standard.
It was machined to a size of 4 mm x 40 mm to produce a bending test piece. In the bending test, a three-point bending test was performed according to JIS R1601. The test was conducted at room temperature, at 1000 ° C. and at 1200 ° C.

【0029】一方、熱処理によりSi34及びSi34
/SiCセラミック材の亀裂治癒効果を試験する目的
で、引張表面の中央にVicker’s圧子で表面亀裂
を付与した。このVicker’s荷重は2kgf、荷
重保持時間は20secとした。尚、付与した亀裂の長
さは、何れの供試材もSEM写真観察の結果から約11
0μmである。また、熱処理は予亀裂材を炉の中に入
れ、雰囲気:大気中または真空中、熱処理温度:130
0℃、保持時間:1時間、昇温速度10℃/minとい
う条件で実施した。
On the other hand, Si 3 N 4 and Si 3 N 4
A surface crack was applied to the center of the tensile surface with a Vicker's indenter in order to test the crack healing effect of the / SiC ceramic material. This Vicker's load was 2 kgf, and the load holding time was 20 sec. In addition, the length of the applied crack was about 11 from the result of SEM photograph observation for all the test materials.
0 μm. In the heat treatment, the pre-cracked material is placed in a furnace, and the atmosphere is in the air or in a vacuum, and the heat treatment temperature is 130.
The test was carried out under the conditions of 0 ° C., holding time: 1 hour, and heating rate of 10 ° C./min.

【0030】表4に、各窒化珪素セラミック材(供試材
No.5〜No.11)を大気中で熱処理した場合の3
点曲げ強度を示す。
Table 4 shows the results obtained when each silicon nitride ceramic material (test materials Nos. 5 to 11) was heat-treated in the air.
Indicates the point bending strength.

【0031】[0031]

【表4】 [Table 4]

【0032】Vicker’s亀裂を付与した場合、予
亀裂材は、平滑材の約30%〜55%の強度まで低下す
る。これを大気中で熱処理することにより欠陥が治癒さ
れ、全ての供試材が平滑材強度の約70%〜110%ま
で回復した。また、真空中で熱処理した場合は、大気中
で熱処理するよりも回復効果は小さいが、Vicke
r’s亀裂導入時に発生した残留応力が緩和され、平滑
材強度の約45%〜80%まで回復した。
When Vickers' cracks are imparted, the pre-cracked material is reduced to about 30% to 55% of the strength of the smooth material. By heat-treating this in air, the defect was cured, and all the test materials recovered to about 70% to 110% of the strength of the smooth material. When the heat treatment is performed in a vacuum, the recovery effect is smaller than when the heat treatment is performed in the air.
The residual stress generated at the time of the introduction of the r's crack was alleviated and recovered to about 45% to 80% of the strength of the smooth material.

【0033】[0033]

【発明の効果】上記した説明により明らかなように、本
発明による窒化珪素セラミック材及びその製造方法によ
れば、酸化物セラミック、窒化物セラミック及び希土類
酸化物のうちから選択される1種若しくは2種以上を焼
結助剤として添加し、焼結後に好ましくは大気中で熱処
理することにより、表面欠陥(亀裂)が治癒され、強度
が回復する。この理由としては、熱処理により表面に新
生成物ができ、これが欠陥(亀裂)を覆い治癒すること
による。この新生成物は焼結助剤や窒化珪素、炭化珪素
(複合材料の場合)から生成されたものである。また、
不活性ガス及び真空中で熱処理した場合でも残留応力が
緩和され強度が或る程度回復する。従って、セラミック
材の強度の信頼性が向上する。
As is apparent from the above description, according to the silicon nitride ceramic material and the method of manufacturing the same according to the present invention, one or two selected from oxide ceramics, nitride ceramics and rare earth oxides are provided. By adding a seed or more as a sintering aid and heat-treating after sintering, preferably in air, surface defects (cracks) are healed and strength is restored. The reason for this is that the heat treatment creates a new product on the surface, which covers and heals the defect (crack). This new product is produced from a sintering aid, silicon nitride, or silicon carbide (in the case of a composite material). Also,
Even when heat treatment is performed in an inert gas or vacuum, the residual stress is relaxed and the strength is recovered to some extent. Therefore, the reliability of the strength of the ceramic material is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による大気中熱処理前の窒化珪素セラミ
ック材表面の金属組織を示す走査顕微鏡(SEM)写
真。
FIG. 1 is a scanning microscope (SEM) photograph showing a metal structure on a surface of a silicon nitride ceramic material before heat treatment in the air according to the present invention.

【図2】本発明による大気中熱処理後の窒化珪素セラミ
ック材表面の金属組織を示す走査顕微鏡(SEM)写
真。
FIG. 2 is a scanning microscope (SEM) photograph showing a metal structure on the surface of a silicon nitride ceramic material after heat treatment in the air according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 龍雅 神奈川県横浜市金沢区高舟台2−34−14 (72)発明者 小林 康良 神奈川県横浜市金沢区福浦3丁目10番地 日本発条株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsumasa Ikeda 2-34-14 Takafunai, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Yasuyoshi Kobayashi 3-10-10 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa Japan

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸化物セラミック、窒化物セラミック
及び希土類酸化物のうちから選択される1種若しくは2
種以上が焼結助剤として添加され、かつ焼結後に熱処理
されていることを特徴とする窒化珪素セラミック材。
1. One or two selected from oxide ceramics, nitride ceramics and rare earth oxides
A silicon nitride ceramic material, wherein at least one of the seeds is added as a sintering aid and heat-treated after sintering.
【請求項2】 更に炭化珪素を含むことを特徴とする
請求項1に記載の窒化珪素セラミック材。
2. The silicon nitride ceramic material according to claim 1, further comprising silicon carbide.
【請求項3】 酸化物セラミック、窒化物セラミック
及び希土類酸化物のうちから選択される1種若しくは2
種以上を焼結助剤として添加した原材料を焼結し、その
後熱処理することを特徴とする窒化珪素セラミック材の
製造方法。
3. One or two selected from an oxide ceramic, a nitride ceramic, and a rare earth oxide.
A method for producing a silicon nitride ceramic material, comprising sintering a raw material added with at least one or more species as a sintering aid, followed by heat treatment.
【請求項4】 前記熱処理を800℃乃至1400℃
の間の温度で行うことを特徴とする請求項3に記載の窒
化珪素セラミック材の製造方法。
4. The heat treatment is performed at 800 ° C. to 1400 ° C.
The method for producing a silicon nitride ceramic material according to claim 3, wherein the method is carried out at a temperature between the above steps.
【請求項5】 前記熱処理を大気中で行うことを特徴
とする請求項3または請求項4に記載の窒化珪素セラミ
ック材の製造方法。
5. The method according to claim 3, wherein the heat treatment is performed in the atmosphere.
JP9331039A 1997-11-14 1997-11-14 Silicon nitride ceramic material and its production Pending JPH11147769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9331039A JPH11147769A (en) 1997-11-14 1997-11-14 Silicon nitride ceramic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9331039A JPH11147769A (en) 1997-11-14 1997-11-14 Silicon nitride ceramic material and its production

Publications (1)

Publication Number Publication Date
JPH11147769A true JPH11147769A (en) 1999-06-02

Family

ID=18239159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9331039A Pending JPH11147769A (en) 1997-11-14 1997-11-14 Silicon nitride ceramic material and its production

Country Status (1)

Country Link
JP (1) JPH11147769A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641381B2 (en) 2002-07-12 2010-01-05 Gideon Levingston Mechanical oscillator system
JP2010042957A (en) * 2008-08-12 2010-02-25 Yokohama National Univ Method of producing ceramic product, and ceramic product
US7726872B2 (en) 2003-10-20 2010-06-01 Gideon Levingston Balance wheel, balance spring and other components and assemblies for a mechanical oscillator system and methods of manufacture
US8100579B2 (en) 2006-09-08 2012-01-24 Gideon Levingston Thermally compensating balance wheel
US8333501B2 (en) 2005-05-14 2012-12-18 Carbontime Limited Balance spring, regulated balance wheel assembly and methods of manufacture thereof
EP3312151A4 (en) * 2015-06-17 2018-11-21 National Institute for Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641381B2 (en) 2002-07-12 2010-01-05 Gideon Levingston Mechanical oscillator system
US7726872B2 (en) 2003-10-20 2010-06-01 Gideon Levingston Balance wheel, balance spring and other components and assemblies for a mechanical oscillator system and methods of manufacture
US8333501B2 (en) 2005-05-14 2012-12-18 Carbontime Limited Balance spring, regulated balance wheel assembly and methods of manufacture thereof
US8100579B2 (en) 2006-09-08 2012-01-24 Gideon Levingston Thermally compensating balance wheel
JP2010042957A (en) * 2008-08-12 2010-02-25 Yokohama National Univ Method of producing ceramic product, and ceramic product
EP3312151A4 (en) * 2015-06-17 2018-11-21 National Institute for Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition
US10822277B2 (en) 2015-06-17 2020-11-03 National Institute For Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic compositions

Similar Documents

Publication Publication Date Title
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
KR0138018B1 (en) Manufacture of silicon nitride system ceramics part
CN105016776B (en) Aluminum oxynitride transparent ceramic and preparation method thereof
JPH11147769A (en) Silicon nitride ceramic material and its production
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JPH08295569A (en) Silicon nitride-based sintered compact and its production
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JPH11147774A (en) Ceramic material and its production
JP3215625B2 (en) Method for producing silicon nitride based sintered body
JP2825338B2 (en) Method for producing silicon carbide ceramics
JPH05194060A (en) Silicon nitride ceramic part
JP2694369B2 (en) Silicon nitride sintered body
JPS6241773A (en) Manufacture of composite ceramics
JPS6319473B2 (en)
JPH037633B2 (en)
JPH06116072A (en) Heat treatment of silicon nitride-silicon carbide composite sintered compact
JP2600116B2 (en) Superplastic silicon nitride sintered body and its manufacturing method
JPH04238867A (en) Silicon nitride-based sintered material and production thereof
JPS63282163A (en) Production of high-toughness silicon nitride ceramics
JPH04114973A (en) Sintered sialon and production thereof
JPH01115877A (en) Production of sic whisker-reinforced ceramics
JPH11314983A (en) Silicon nitride ceramic part and its production
JPH06100387A (en) Reinforcement of silicon nitride ceramic
JPH06144932A (en) Production of silicon nitride-based sintered compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904