JPH11147774A - Ceramic material and its production - Google Patents

Ceramic material and its production

Info

Publication number
JPH11147774A
JPH11147774A JP9313724A JP31372497A JPH11147774A JP H11147774 A JPH11147774 A JP H11147774A JP 9313724 A JP9313724 A JP 9313724A JP 31372497 A JP31372497 A JP 31372497A JP H11147774 A JPH11147774 A JP H11147774A
Authority
JP
Japan
Prior art keywords
ceramic material
heat treatment
sintering
strength
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9313724A
Other languages
Japanese (ja)
Inventor
Shigemi Sato
繁美 佐藤
Hashira Andou
柱 安藤
Ryusuke Adachi
隆介 安達
Yasuyoshi Kobayashi
康良 小林
Minchiyoru Aki
▲ミン▼▲チョル▼ 秋
Tomoyuki Sone
智之 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP9313724A priority Critical patent/JPH11147774A/en
Publication of JPH11147774A publication Critical patent/JPH11147774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of the strength of a ceramic product. SOLUTION: A ceramic product having a low strength is easily removed by subjecting a ceramic product to an overload test comprising adding a larger load than a practically used load to a sintered ceramic product in the same state as a practical using state and further preferably to a thermal treatment carried out in the atmosphere. The fine detects of the surface of the ceramic product are repaired with a new product produced from a sintering auxiliary, silicon nitride and silicon carbide (in a case of a composite material). Thereby, the reliability of the strength of the ceramic product can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種構造用セラミッ
ク材及びその製造方法に関するもので、例えば酸化物セ
ラミック材としてはアルミナ、ムライト等があり、非酸
化物セラミック材としては窒化珪素、窒化アルミ、炭化
珪素、サイアロン等がある。この用途としては、自動車
の各種部品、ガスタービン、燃料電池、炉及びばね等が
あり、特に、窒化珪素セラミック材、窒化珪素を主体と
する複合材及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various structural ceramic materials and methods for producing the same. For example, oxide ceramic materials include alumina and mullite, and non-oxide ceramic materials include silicon nitride and aluminum nitride. There are silicon carbide, sialon, and the like. This application includes various parts of automobiles, gas turbines, fuel cells, furnaces, springs, and the like, and particularly relates to a silicon nitride ceramic material, a composite material mainly composed of silicon nitride, and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、セラミック材(製品)の製造は
原料粉末に焼結助剤を加えて混合、調整する工程、可塑
性や保形性を付与するためのバインダ類を投入して混合
する工程、成形する工程及び焼結する工程からなる。ま
たその後、形状精度、製品表面の性状(粗さ、表面変質
層)を改善するために機械加工が行われる。
2. Description of the Related Art Generally, a ceramic material (product) is manufactured by adding a sintering aid to a raw material powder, mixing and adjusting the mixture, and adding and mixing a binder for imparting plasticity and shape retention. , Forming step and sintering step. Thereafter, machining is performed to improve the shape accuracy and the properties (roughness, surface altered layer) of the product surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、セラミ
ック材は靭性が低いため、微細な欠陥でも強度が低下す
る。また、研削等の機械加工時に割れが生じたり、製造
過程で何らかの原因で亀裂(欠陥)が生じることが多
く、完成したセラミック製品の強度の信頼性が低いと云
う問題があった。この微細な欠陥を非破壊検査によって
見つけることは非常に困難である。本発明者は、使用前
にこれら欠陥を有するセラミック製品を除去し、また表
面欠陥を治癒(自己治癒)できれば完成したセラミック
製品の信頼性を格段に向上させることができると考え
た。
However, since the ceramic material has low toughness, the strength is reduced even with minute defects. In addition, cracks often occur during machining such as grinding, and cracks (defects) often occur for some reason in the manufacturing process, and there is a problem that the reliability of the strength of the completed ceramic product is low. It is very difficult to find these fine defects by nondestructive inspection. The inventor of the present invention has considered that the reliability of the finished ceramic product can be remarkably improved if the ceramic product having these defects can be removed before use and the surface defect can be cured (self-healing).

【0004】本発明は、上記した従来技術の問題点に鑑
みなされたものであり、その目的は、セラミック製品の
強度の信頼性を向上することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to improve the reliability of strength of a ceramic product.

【0005】[0005]

【課題を解決するための手段】上記した目的を達成する
ために本発明は、焼結後、または焼結させ、機械加工し
た後、実際の使用状態と同様な状態で、実際に加えられ
る負荷以上の負荷を加え、更に熱処理することを特徴と
するセラミック材の製造方法及びこの方法により製造さ
れたセラミック材を提供する。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention relates to a method of manufacturing a semiconductor device, comprising the steps of: Provided are a method for producing a ceramic material, which is characterized by applying the above load and further performing a heat treatment, and a ceramic material produced by this method.

【0006】[0006]

【発明の実施の形態】以下に、本発明の好適な実施形態
について説明する。
Preferred embodiments of the present invention will be described below.

【0007】セラミック製品の製造工程の最終段階であ
る焼結後、または機械加工後にその製品が使用される応
力と同等または高い応力を負荷し、低応力で破壊する製
品(欠陥を有する製品)を除去すると共に熱処理を行う
ことで、製品表面の欠陥を治癒させ、強度の信頼性を向
上させる。主な工程としては、機械加工しない場合、 原料調整→成形→脱脂→焼結→過負荷試験→熱処理→製
品 または、 原料調整→成形→脱脂→焼結→熱処理→過負荷試験→製
品 となり、機械加工する場合、 原料調整→成形→脱脂→焼結→機械加工→過負荷試験→
熱処理→製品 または、 原料調整→成形→脱脂→焼結→機械加工→熱処理→過負
荷試験→製品 となる。過負荷試験と熱処理とは工程順が逆であっても
良い。過負荷試験では、製品の使用状態と同じ負荷状態
で、使用される応力と同等以上の応力を与え、低応力で
破壊する製品(欠陥を有する製品)を除去する。ここ
で、製品の使用状態と同じ負荷状態とは、製品に加わる
負荷と同一方向の荷重を負荷することを意味し、製品と
全く同じ取り付け状態で荷重を負荷する状態に限定され
るものではない。熱処理温度としては、材料によって適
正な条件が異なるものの800℃〜1400℃の範囲が
適している。そして、大気中、真空中または不活性ガス
中で熱処理を行うものとする。特に大気中で行うことが
強度向上効果が大きい。
[0007] After sintering or machining, which is the final stage of the manufacturing process of a ceramic product, a product (defected product) that breaks at a low stress by applying a stress equal to or higher than the stress used by the product is obtained. Removal and heat treatment cure defects on the surface of the product and improve the reliability of strength. As the main process, if no machining is performed, material adjustment → molding → degreasing → sintering → overload test → heat treatment → product or material adjustment → molding → degreasing → sintering → heat treatment → overload test → product When processing, adjust raw materials → molding → degreasing → sintering → machining → overload test →
Heat treatment → product or raw material adjustment → molding → degreasing → sintering → machining → heat treatment → overload test → product. The order of the steps of the overload test and the heat treatment may be reversed. In the overload test, under the same load condition as the use condition of the product, a stress equal to or higher than the stress used is applied, and a product (a product having a defect) that is broken by low stress is removed. Here, the same load state as the use state of the product means that a load is applied in the same direction as the load applied to the product, and is not limited to a state in which the load is applied in the same mounting state as the product. . As the heat treatment temperature, a range of 800 ° C. to 1400 ° C. is suitable, though appropriate conditions vary depending on the material. Then, the heat treatment is performed in the air, in a vacuum, or in an inert gas. In particular, performing in the atmosphere has a large effect of improving strength.

【0008】[0008]

【実施例】実施例1 窒化珪素(Si34)を主原料として用いた。この主原
料に添加する焼結助剤としては、Mg、Al、Be、Z
r等の酸化物または窒化物、Y23、CeO、Er
23、La23等の希土類酸化物などが挙げられる。本
実施例では窒化珪素粉末に対して、5wt%のY23
3wt%のAl23を添加した。これらの粉末をボール
ミルを用いて蒸留水により湿式混合し、その後、乾燥さ
せて混合粉末を得た。この混合粉末に対して、バインダ
ーとしてメチルセルロースと可塑剤とを用い、溶剤とし
て蒸留水を添加し、均一混練を行った。
EXAMPLES Example 1 Silicon nitride (Si 3 N 4 ) was used as a main raw material. Sintering aids added to the main raw materials include Mg, Al, Be, Z
oxide or nitride such as r, Y 2 O 3 , CeO, Er
Rare earth oxides such as 2 O 3 and La 2 O 3 are exemplified. In this example, 5 wt% of Y 2 O 3 and 3 wt% of Al 2 O 3 were added to the silicon nitride powder. These powders were wet-mixed with distilled water using a ball mill, and then dried to obtain a mixed powder. To this mixed powder, methylcellulose and a plasticizer were used as a binder, and distilled water was added as a solvent, followed by uniform kneading.

【0009】その後、押出成形機を用いてこの混練物を
線材に成形した。更に、この線材を脱バインダー処理
(脱脂)し、焼結した。焼結は、Si34の分解反応を
抑制し、表面性状の良い高密度な線材を得るために、N
2雰囲気中で、N2ガス圧を0.93MPaとし、185
0℃×4hの条件で加圧焼結法により行った。
Thereafter, the kneaded material was formed into a wire using an extruder. Further, the wire was subjected to a binder removal treatment (degreasing) and sintered. Sintering suppresses the decomposition reaction of Si 3 N 4 and obtains a high-density wire with good surface properties.
In two atmospheres, the N 2 gas pressure was set to 0.93 MPa, and 185
The pressure sintering was performed under the conditions of 0 ° C. × 4 hours.

【0010】線材は、線径:φ3.6mm、長さ:4
0.0mmとした。研削・研磨などの機械加工は行わな
かった。過負荷試験は、室温で応力を675MPa、ク
ロスヘッド速度を0.5mm/minの条件で4点曲げ
試験により行った。また、熱処理は、大気中で温度を8
00℃〜1400℃、保持時間を1時間〜10時間、昇
温速度を10℃/minとして実施した。線材の強度評
価は、長スパン30mm、短スパン10mm、クロスヘ
ッド速度0.5mm/minの条件で室温にて4点曲げ
試験により行った。
The wire has a diameter of 3.6 mm and a length of 4 mm.
0.0 mm. No machining such as grinding or polishing was performed. The overload test was performed by a four-point bending test at room temperature with a stress of 675 MPa and a crosshead speed of 0.5 mm / min. The heat treatment is carried out at a temperature of 8 in the atmosphere.
The test was performed at a temperature of 00 ° C. to 1400 ° C., a holding time of 1 hour to 10 hours, and a heating rate of 10 ° C./min. The strength of the wire was evaluated by a four-point bending test at room temperature under the conditions of a long span of 30 mm, a short span of 10 mm, and a crosshead speed of 0.5 mm / min.

【0011】表1に、焼結助剤をY23+Al23
し、焼結後に大気中で熱処理した窒化珪素セラミック材
からなる線材の4点曲げ強度及びワイブル値の評価結果
を示す。尚、供試材Aは焼結後に過負荷試験をせず大気
中で熱処理したものであり、供試材Bは焼結後に過負荷
試験をし、低強度のもの(内部及び表面に比較的大きな
欠陥を有するもの)を除去した後、更に大気中で熱処理
したものである。
Table 1 shows the evaluation results of the four-point bending strength and the Weibull value of a wire made of a silicon nitride ceramic material heat-treated in the air after sintering, with the sintering aid being Y 2 O 3 + Al 2 O 3. . Specimen A was heat-treated in air without sintering after sintering, and Specimen B was subjected to overloading after sintering and had a low strength (relative to the inside and surface). After the removal of a material having a large defect), it is further heat-treated in the air.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示すように、熱処理をすることによ
り、800℃〜1400℃の全ての熱処理温度において
熱処理していないものに比較して強度が向上した。ま
た、ワイブル解析により算出されたm値が高くなってい
ることから強度ばらつきも小さくなり、信頼性も向上し
た。過負荷試験を行うことにより更に低強度のものを予
め除去でき、その強度及び信頼性は一層向上した。
As shown in Table 1, the heat treatment improved the strength at all heat treatment temperatures from 800 ° C. to 1400 ° C. as compared with those not heat-treated. Further, since the m-value calculated by the Weibull analysis is high, the variation in strength is small, and the reliability is improved. By performing an overload test, a material having a lower strength could be removed in advance, and the strength and reliability were further improved.

【0014】強度の向上は、熱処理により残留応力が除
去されると共に表面に新生成物ができ、欠陥(亀裂)を
覆い治癒することによる。この新生成物は製品の主原料
や焼結助剤から生成されたもので、X線回折からSi2
27とSiO2とが治癒物質であることが確認され
た。
The improvement in strength is due to the fact that the residual stress is removed by the heat treatment and a new product is formed on the surface, covering and healing the defect (crack). The new product has been produced from primary raw material and sintering aid products, Si 2 from the X-ray diffraction
It was confirmed that Y 2 O 7 and SiO 2 were healing substances.

【0015】実施例2 窒化珪素(Si34)粉末に対して、5wt%のY23
と3wt%のAl23を添加した。尚、窒化珪素(Si
34)を用いる場合、原料に添加する焼結助剤として
は、上記以外にMg、Al、Be、Zr等の酸化物また
は窒化物、CeO、Er23、La23等の希土類酸化
物などが挙げられる。これらの粉末をボールミルを用い
て蒸留水により湿式混合し、その後、乾燥させて混合粉
末を得た。この混合粉末に対して、バインダーとしてメ
チルセルロースと可塑剤とを用い、溶剤として蒸留水を
添加し、均一混練を行った。
Example 2 5 wt% of Y 2 O 3 based on silicon nitride (Si 3 N 4 ) powder
And 3 wt% of Al 2 O 3 . In addition, silicon nitride (Si
When 3N 4 ) is used, other than the above, sintering aids added to the raw material include oxides or nitrides such as Mg, Al, Be, and Zr, CeO, Er 2 O 3 , and La 2 O 3 . Rare earth oxides and the like. These powders were wet-mixed with distilled water using a ball mill, and then dried to obtain a mixed powder. To this mixed powder, methylcellulose and a plasticizer were used as a binder, and distilled water was added as a solvent, followed by uniform kneading.

【0016】その後、押出成形機を用いてこの混練物を
線材に成形した。この線材をコイリングし、コイルばね
形状にした後、このコイルばね材を脱バインダー処理
(脱脂)し、焼結した。焼結は、Si34の分解反応を
抑制し、表面性状の良い高密度なコイルばねを得るため
に、N2雰囲気中で、N2ガス圧を0.93MPaとし、
1850℃×4hの条件で加圧焼結法により行った。コ
イルばねは、外径:φ20.65mm、線径:φ2.4
5mm、自由長:54.65mm、総巻数:13巻、有
効巻数:11.5巻とした。過負荷試験は、室温で応力
を42.5kgf/mm2、クロスヘッド速度を20m
m/minとして実施した。また、熱処理は、大気中で
温度を1000℃〜1300℃、保持時間を1時間〜1
0時間、昇温速度を10℃/minとして実施した。実
際にはコイルばねは応力を負荷した状態で熱処理を行っ
ても良い。コイルばねの強度評価は、クロスヘッド速度
20mm/minの条件で室温にて圧縮し、破壊試験を
行った。
Thereafter, the kneaded material was formed into a wire using an extruder. The wire was coiled into a coil spring shape, and then the coil spring was debindered (degreased) and sintered. In the sintering, in order to suppress the decomposition reaction of Si 3 N 4 and obtain a high-density coil spring having good surface properties, the N 2 gas pressure is set to 0.93 MPa in an N 2 atmosphere.
The pressure sintering was performed at 1850 ° C. × 4 hours. The coil spring has an outer diameter of φ20.65 mm and a wire diameter of φ2.4.
5 mm, free length: 54.65 mm, total number of turns: 13, effective number of turns: 11.5. In the overload test, at room temperature, the stress was 42.5 kgf / mm 2 and the crosshead speed was 20 m.
m / min. The heat treatment is performed in the atmosphere at a temperature of 1000 ° C. to 1300 ° C. and a holding time of 1 hour to 1 hour.
The operation was performed at a heating rate of 10 ° C./min for 0 hour. Actually, the coil spring may be subjected to the heat treatment while applying a stress. For evaluation of the strength of the coil spring, a compression test was performed at room temperature under the condition of a crosshead speed of 20 mm / min, and a destructive test was performed.

【0017】表2に、焼結助剤をY23+Al23
し、焼結後に大気中で熱処理した窒化珪素セラミック材
からなるコイルばねの破壊強度試験結果を示す。尚、供
試材Aは焼結後に過負荷試験をせず大気中で熱処理した
ものであり、供試材Bは焼結後に過負荷試験をし、低強
度のものを除去した後、更に大気中で熱処理したもので
ある。
Table 2 shows the results of a fracture strength test of a coil spring made of a silicon nitride ceramic material heat-treated in the air after sintering, with the sintering aid being Y 2 O 3 + Al 2 O 3 . Sample A was heat-treated in air without sintering after sintering. Sample B was subjected to overload after sintering, and after removing low-strength materials, Heat treated inside.

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示すように、平均強度を比較する
と、熱処理をすることにより、1000℃〜1300℃
の全ての熱処理温度において熱処理していないものに比
較して強度が向上した。しかし、コイルばね内部に大き
な欠陥(亀裂)が存在するような場合、熱処理を施して
も大きな強度の改善は期待できず、場合によっては4
0.0kgf/mm2以下の負荷で破壊する。そこで、
過負荷試験(42.5kgf/mm2)を行い、このよ
うな低強度のものを予め除去することにより、更にその
後の熱処理により強度が向上すると共に強度ばらつきが
小さくなり信頼性が向上する。
As shown in Table 2, the average strength is compared.
At all the heat treatment temperatures, the strength was improved as compared with those not heat-treated. However, when a large defect (crack) is present inside the coil spring, a large improvement in strength cannot be expected even if heat treatment is performed.
Breaks down under a load of 0.0 kgf / mm 2 or less. Therefore,
By performing an overload test (42.5 kgf / mm 2 ) and removing such a low-strength material in advance, the strength is further improved by a subsequent heat treatment, the strength variation is reduced, and the reliability is improved.

【0020】尚、上記実施例では過負荷試験を室温にて
行ったが、製品の使用環境に応じて加熱した状態で行っ
ても良い。
Although the overload test is performed at room temperature in the above embodiment, the overload test may be performed in a heated state according to the use environment of the product.

【0021】[0021]

【発明の効果】上記した説明により明らかなように、本
発明によるセラミック材及びその製造方法によれば、焼
結後に実際の使用状態と同様な状態で、使用される負荷
以上の負荷を加える過負荷試験と、好ましくは大気中で
行う熱処理とにより、容易に低強度のものを除去すると
共に表面の欠陥を、焼結助剤やセラミックの主原料から
熱処理により生成された新生成物により治癒(自己治
癒)させるもので、セラミック製品の強度の信頼性を向
上することができる。
As is apparent from the above description, according to the ceramic material and the method of manufacturing the same according to the present invention, the sintering is performed under the same condition as the actual use condition, by applying a load more than the load used. By a load test and a heat treatment preferably performed in the air, low-strength materials are easily removed, and surface defects are cured by a new product produced by heat treatment from a sintering aid or a ceramic main material ( Self-healing), thereby improving the reliability of the strength of the ceramic product.

フロントページの続き (72)発明者 小林 康良 神奈川県横浜市金沢区福浦3丁目10番地 日本発条株式会社内 (72)発明者 秋 ▲みん▼▲ちょる▼ 神奈川県横浜市港南区日野南4−29藤ヶ沢 住宅7−401 (72)発明者 曽根 智之 茨城県那珂郡東海村村松4−33Continuation of the front page (72) Inventor Yasuyoshi Kobayashi 3-10-10 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture Within Nihon Hojo Co., Ltd. (72) Inventor Autumn 29 Fujigazawa House 7-401 (72) Inventor Tomoyuki Sone 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki Prefecture

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 焼結後に実際の使用状態と同様な状態
で、実際に加えられる負荷以上の荷重が負荷され、かつ
熱処理がなされていることを特徴とするセラミック材。
1. A ceramic material characterized in that after sintering, in a state similar to an actual use state, a load greater than an actually applied load is applied and a heat treatment is performed.
【請求項2】 焼結後に機械加工され、その後前記荷
重の負荷及び熱処理がなされていることを特徴とする請
求項1に記載のセラミック材。
2. The ceramic material according to claim 1, wherein the ceramic material is machined after sintering, and then subjected to the load and heat treatment.
【請求項3】 応力が加えられた状態で前記熱処理が
されていることを特徴とする請求項1または請求項2に
記載のセラミック材。
3. The ceramic material according to claim 1, wherein the heat treatment is performed in a state where a stress is applied.
【請求項4】 前記熱処理が800℃乃至1400℃
の間の温度で行われたことを特徴とする請求項1乃至請
求項3のいずれかに記載のセラミック材。
4. The heat treatment is performed at 800 ° C. to 1400 ° C.
The ceramic material according to any one of claims 1 to 3, wherein the ceramic material is formed at a temperature of between:
【請求項5】 前記熱処理が大気中で行われたことを
特徴とする請求項1乃至請求項4のいずれかに記載のセ
ラミック材。
5. The ceramic material according to claim 1, wherein the heat treatment is performed in the atmosphere.
【請求項6】 当該セラミック材が窒化珪素セラミッ
ク材からなり、 酸化物セラミック、窒化物セラミック及び希土類酸化物
のうちから選択される1種若しくは2種以上が焼結助剤
として添加されていることを特徴とする請求項1乃至請
求項5のいずれかに記載のセラミック材。
6. The ceramic material is made of a silicon nitride ceramic material, and one or more selected from oxide ceramics, nitride ceramics, and rare earth oxides are added as a sintering aid. The ceramic material according to any one of claims 1 to 5, wherein:
【請求項7】 焼結後に実際の使用状態と同様な状態
で、実際に加えられる負荷以上の荷重を負荷する過程
と、熱処理を行う過程とを有することを特徴とするセラ
ミック材の製造方法。
7. A method for producing a ceramic material, comprising: a step of applying a load equal to or more than an actually applied load in a state similar to an actual use state after sintering; and a step of performing a heat treatment.
【請求項8】 焼結後に機械加工を行い、その後更に
前記荷重の負荷及び熱処理する過程を更に有することを
特徴とする請求項7に記載のセラミック材の製造方法。
8. The method for producing a ceramic material according to claim 7, further comprising a step of performing machining after sintering, and thereafter further applying the load and heat-treating.
【請求項9】 前記熱処理を800℃乃至1400℃
の間の温度で行うことを特徴とする請求項7または請求
項8に記載のセラミック材の製造方法。
9. The heat treatment is performed at 800 ° C. to 1400 ° C.
9. The method for producing a ceramic material according to claim 7, wherein the method is carried out at a temperature between the steps (a) and (b).
【請求項10】 前記熱処理を大気中で行うことを特
徴とする請求項7乃至請求項9のいずれかに記載のセラ
ミック材の製造方法。
10. The method according to claim 7, wherein the heat treatment is performed in the atmosphere.
【請求項11】 前記セラミック材が窒化珪素セラミ
ック材からなり、 酸化物セラミック、窒化物セラミック及び希土類酸化物
のうちから選択される1種若しくは2種以上が焼結助剤
として添加した原材料を焼結し、その後の前記各処理を
行うことを特徴とする請求項7乃至請求項10のいずれ
かに記載のセラミック材の製造方法。
11. A ceramic material comprising a silicon nitride ceramic material, wherein one or more selected from an oxide ceramic, a nitride ceramic and a rare earth oxide are added as a sintering aid to sinter a raw material. 11. The method for manufacturing a ceramic material according to claim 7, wherein each of the subsequent processes is performed.
JP9313724A 1997-11-14 1997-11-14 Ceramic material and its production Pending JPH11147774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9313724A JPH11147774A (en) 1997-11-14 1997-11-14 Ceramic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9313724A JPH11147774A (en) 1997-11-14 1997-11-14 Ceramic material and its production

Publications (1)

Publication Number Publication Date
JPH11147774A true JPH11147774A (en) 1999-06-02

Family

ID=18044761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9313724A Pending JPH11147774A (en) 1997-11-14 1997-11-14 Ceramic material and its production

Country Status (1)

Country Link
JP (1) JPH11147774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312151A4 (en) * 2015-06-17 2018-11-21 National Institute for Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312151A4 (en) * 2015-06-17 2018-11-21 National Institute for Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition
US10822277B2 (en) 2015-06-17 2020-11-03 National Institute For Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic compositions

Similar Documents

Publication Publication Date Title
KR0138018B1 (en) Manufacture of silicon nitride system ceramics part
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
JPH0987037A (en) Silicon nitride-base sintered compact and its production
JPS63303867A (en) Production of silicon nitride ceramic part
JPH11147774A (en) Ceramic material and its production
JPH11147769A (en) Silicon nitride ceramic material and its production
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JPH08295569A (en) Silicon nitride-based sintered compact and its production
US4752427A (en) Method for plastic working of ceramics
JPH10259058A (en) Sialon complex and its production
JPH0371388B2 (en)
JP2000327430A (en) Aluminum nitride sintered compact and its production
JP3207940B2 (en) Silicon nitride sintered body
JPH10331857A (en) Ceramic rolling element and manufacture thereof
JP2001002466A (en) High-voltage-withstanding aluminous sintered compact and its production
JP2577472B2 (en) Manufacturing method of ceramic sintered body
JPH06116072A (en) Heat treatment of silicon nitride-silicon carbide composite sintered compact
JP3202670B2 (en) Manufacturing method of multilayer ceramics
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JP3215625B2 (en) Method for producing silicon nitride based sintered body
JP3667064B2 (en) Silicon nitride-based sintered body and method for producing the same
JP2600116B2 (en) Superplastic silicon nitride sintered body and its manufacturing method
JPH037633B2 (en)
JPH11139878A (en) Silicon nitride ceramic member and its production
JPH07102993B2 (en) Method for manufacturing silicon nitride sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109