JP3207940B2 - Silicon nitride sintered body - Google Patents

Silicon nitride sintered body

Info

Publication number
JP3207940B2
JP3207940B2 JP29795292A JP29795292A JP3207940B2 JP 3207940 B2 JP3207940 B2 JP 3207940B2 JP 29795292 A JP29795292 A JP 29795292A JP 29795292 A JP29795292 A JP 29795292A JP 3207940 B2 JP3207940 B2 JP 3207940B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
particles
columnar
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29795292A
Other languages
Japanese (ja)
Other versions
JPH06122560A (en
Inventor
和浩 浦島
容 多島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP29795292A priority Critical patent/JP3207940B2/en
Publication of JPH06122560A publication Critical patent/JPH06122560A/en
Application granted granted Critical
Publication of JP3207940B2 publication Critical patent/JP3207940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高靱性・高強度で耐衝
撃性、耐熱衝撃性に優れる窒化珪素焼結体に関するもの
で、特に工具、機械部品、構造部品等に好適に利用され
得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having high toughness and high strength, and excellent in impact resistance and thermal shock resistance, and can be suitably used particularly for tools, machine parts, structural parts and the like. .

【0002】[0002]

【従来の技術】窒化珪素質焼結体は、抗折強度、特に高
温強度に優れているものの、ジルコニア焼結体に比して
靱性に劣るという問題があった。従って、その靱性を高
めようとする手段は、種々提案されており、例えば、窒
化珪素よりも熱膨張率の大きい硬質粒子を含有せしめ、
窒化珪素粒子に圧縮応力を付加する技術(特開平3−1
93667号公報)、原料粉末にβ型窒化珪素粉末の核
となる成分を添加しておく技術(特開平3−29037
0号公報)、窒化珪素以外の非酸化物粉末を原料組成物
に含有させておく技術(特開平2−311366号公
報)、焼結体中の気孔径と気孔分布を制御する技術(特
開平4−26553号公報)等が知られている。
2. Description of the Related Art Although a silicon nitride sintered body is excellent in bending strength, especially high temperature strength, it has a problem that it is inferior in toughness to a zirconia sintered body. Therefore, various means for increasing the toughness have been proposed, for example, by including hard particles having a larger coefficient of thermal expansion than silicon nitride,
Technology for applying compressive stress to silicon nitride particles (Japanese Patent Laid-Open No. 3-1
No. 93667), a technique of adding a component serving as a nucleus of a β-type silicon nitride powder to a raw material powder (JP-A-3-29037).
No. 0), a technique in which a non-oxide powder other than silicon nitride is contained in the raw material composition (JP-A-2-31366), and a technique for controlling the pore diameter and pore distribution in a sintered body (JP-A-Hei. No. 4-26553) is known.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術のうち、
前三者は、いずれも原料組成または添加成分に着目した
ものであるが、靱性は、焼結体としての特性であるか
ら、原料等の如何にかかわらず焼結体の微視的構造を制
御することは、重要である。
SUMMARY OF THE INVENTION Among the above prior arts,
The former three focus on raw material composition or additive components, but since toughness is a characteristic of a sintered body, it controls the microscopic structure of the sintered body regardless of the raw material etc. It is important to do.

【0004】しかし、特開平4−26553号公報に開
示された窒化珪素焼結体は比較的大きなポアを焼結体中
に含んでおりかつそれらが集合体として存在するため材
料の信頼性を低下させたり、強度低下を引き起こすおそ
れがある。
However, the silicon nitride sintered body disclosed in Japanese Patent Application Laid-Open No. 4-26553 contains relatively large pores in the sintered body, and since they exist as aggregates, the reliability of the material is reduced. Or the strength may be reduced.

【0005】本発明の目的は、上述した課題を解消して
強度、靱性に優れ、且つ耐熱衝撃性に優れる窒化珪素質
焼結体を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and to provide a silicon nitride sintered body having excellent strength, toughness, and excellent thermal shock resistance.

【0006】[0006]

【課題を解決するための手段】その手段は、焼結助剤と
Si34もしくはサイアロン(Sialon)粒子とか
ら実質的になる窒化珪素質焼結体において、柱状窒化珪
素粒子と粒界相との界面に幅3μm以下、長さ0.5μ
m以上20μm以下であって、かつ0.5μm以下の曲
率半径を有するコ−ナ−を少なくとも1つ有する微小ク
ラック状空隙を5000個/mm2以上の割合で焼結体
中にほぼ均一に含有することを特徴とする窒化珪素質焼
結体にある。
Means for solving the problems are as follows. In a silicon nitride sintered body substantially consisting of a sintering aid and Si 3 N 4 or Sialon particles, a columnar silicon nitride particle and a grain boundary phase are formed. 3μm or less in width and 0.5μ in length
The sintered compact contains micro crack-like voids having at least one corner having a radius of curvature of not less than m and not more than 20 μm and not more than 0.5 μm in the sintered body at a rate of not less than 5000 / mm 2. A silicon nitride-based sintered body.

【0007】この手段において望ましい窒化珪素質焼結
体は、微小クラック状空隙の大多数が柱状窒化珪素粒子
の長軸の先端部分に位置して存在するものである。同じ
く望ましい窒化珪素質焼結体は、短径1μm以上、アス
ペクト比5以上の柱状窒化珪素粒子が1000個/mm
2以上存在するものである。
In this means, a desirable silicon nitride-based sintered body is one in which the majority of minute crack-like voids are located at the tip of the long axis of the columnar silicon nitride particles. Similarly, a desirable silicon nitride-based sintered body has a columnar silicon nitride particle having a minor axis of 1 μm or more and an aspect ratio of 5 or more is 1000 particles / mm.
There are two or more.

【0008】本発明の焼結体は、例えば窒化珪素粉末に
焼結助剤として希土類酸化物、酸化マグネシウム、アル
ミナ等の粉末を混合、成形して成形体を得た後、170
0℃を越える高温且つ窒素雰囲気10気圧以下で第一次
焼成を行い、さらに、10気圧以上の窒素雰囲気下16
00℃以上で第二次焼成を行うことによって得ることが
できる。この製造工程の一次、二次焼成の冷却過程で、
柱状粒子のa軸長さとc軸長さとの熱膨張差から該クラ
ックを柱状粒子と粒界相の間に形成することができる。
好ましくは、冷却工程を最高温度から900℃までの間
を10℃/min.以上の冷却速度で行う方がよい。さ
らに好ましくは、一次焼成においては昇温速度を5℃/
min.以上で焼成する方がよい。昇温速度を速くする
ことにより成長した柱状粒子をより多く生じさせること
ができる。
The sintered body of the present invention is obtained, for example, by mixing a silicon nitride powder with a powder of a rare earth oxide, magnesium oxide, alumina or the like as a sintering aid and molding the mixture to obtain a compact.
The primary baking is performed at a high temperature exceeding 0 ° C. and a nitrogen atmosphere of 10 atm or less, and further under a nitrogen atmosphere of 10 atm or more.
It can be obtained by performing secondary firing at a temperature of 00 ° C. or higher. In the cooling process of primary and secondary firing of this manufacturing process,
The crack can be formed between the columnar particle and the grain boundary phase from the difference in thermal expansion between the a-axis length and the c-axis length of the columnar particle.
Preferably, the cooling step is performed at a rate of 10 ° C./min. It is better to perform at the above cooling rate. More preferably, in the primary firing, the heating rate is 5 ° C. /
min. It is better to bake it. By increasing the heating rate, more columnar particles can be generated.

【0009】[0009]

【作用】[Action]

(1)クラックの必要性とその限定理由 本発明において微小クラック状空隙が必要である理由
は、柱状粒子と粒界相との界面にクラックが存在する
と、応力負荷時にこれら微小クラック状空隙を核として
多くのマイクロクラックが発生し高靱化が起こり、さら
に応力によって誘起されたクラック同士の相互作用によ
り亀裂の偏向、粒子架橋効果を容易に生じさせ、高靱化
するためである。また、これら微小クラック状空隙は熱
衝撃時に発生する応力も緩和し、耐熱衝撃性をも向上さ
せる。
(1) Necessity of Cracks and Reasons for Limiting the Cracks The reason why the fine crack-like voids are necessary in the present invention is that when cracks exist at the interface between the columnar particles and the grain boundary phase, these fine crack-like voids are nucleated during stress loading. As a result, many microcracks are generated and toughness occurs, and furthermore, the interaction between the cracks induced by the stress easily causes crack deflection and particle bridging effect to increase the toughness. Further, these minute crack-like voids also reduce stress generated at the time of thermal shock and improve thermal shock resistance.

【0010】そして、この微小クラック状空隙の存在位
置は柱状粒子の長軸の先端部分に存在する方がより好ま
しい。その理由は、β型窒化珪素結晶は焼成時にc軸方
向に粒成長し柱状化するため粒子の熱膨張量に異方性が
生じているからである。すなわち、β型窒化珪素粒子の
熱膨張係数はc軸方向が2.4×10-6/℃、a軸方向
が3.4×10ー6/℃であり、例えばアスペクト比(c
軸方向長さ/a軸方向長さ)が10の場合にはc軸方向
の熱膨張量はa軸方向の約7倍となる。このため、熱応
力はc軸方向に大きく発生するためクラックは柱状粒子
の長軸の先端部に位置する方が熱応力の緩和効果が高
い。
[0010] More preferably, the location of the minute crack-like voids is located at the tip of the major axis of the columnar particles. The reason is that the β-type silicon nitride crystal grows in the c-axis direction during firing and becomes columnar, which causes anisotropy in the thermal expansion of the particles. That is, the thermal expansion coefficient of the β-silicon nitride particles c-axis direction is 2.4 × 10 -6 / ℃, a a-axis direction is 3.4 × 10 over 6 / ° C., for example an aspect ratio (c
When (length in the axial direction / length in the a-axis direction) is 10, the amount of thermal expansion in the c-axis direction is about seven times that in the a-axis direction. For this reason, the thermal stress is large in the c-axis direction, so that the crack is located at the tip of the long axis of the columnar particle, and the effect of relaxing the thermal stress is higher.

【0011】クラックの形状の限定理由は、クラックが
球状であるポアとなった場合には、かえって破壊時の欠
陥となり強度劣化を引き起こし強度信頼性の低下を招く
ためだけでなく、クラックの周りにマイクロクラックを
誘発することができない。従って、クラックは0.5μ
m以下の曲率半径を有するコ−ナ−を少なくとも1つは
有していることが必要である。また、クラックの分布は
焼結体中で均一である方が好ましい。集合体として存在
する場合はクラックの合体が生じて破壊時の大きな欠陥
として作用するため強度劣化を引き起こす。
[0011] The reason for limiting the shape of the cracks is that when the cracks become spherical pores, they become defects at the time of destruction and cause deterioration in strength and decrease in strength reliability. Inability to induce microcracks. Therefore, the crack is 0.5μ.
It is necessary to have at least one corner having a radius of curvature of not more than m. Further, it is preferable that the distribution of cracks is uniform in the sintered body. When present as an aggregate, cracks are coalesced and act as a large defect at the time of destruction, causing deterioration in strength.

【0012】クラックの長さを制限する理由は、0.5
μm以下では効果が得られず、20μm以上では欠陥と
して作用し、強度低下を生じさせるためである。また、
幅が3μmを越えると、前記ポアの弊害的性質を備える
からである。尚、クラックは、楕円形、三日月形、くの
字形等、種々の形状のものが存在するが、ここで、クラ
ックの長さとは、最大径ないし最大対角線長さをいう。
一方、微小クラック状空隙の存在量を限定する理由は、
5000個/mm2以下ではクラックの効果が少ないか
らである。
The reason for limiting the crack length is 0.5
If the thickness is less than μm, no effect can be obtained, and if it is more than 20 μm, it acts as a defect and causes a decrease in strength. Also,
If the width exceeds 3 μm, the pores have a detrimental property. The cracks have various shapes such as an elliptical shape, a crescent shape, and a U-shape. Here, the crack length means a maximum diameter or a maximum diagonal length.
On the other hand, the reason for limiting the abundance of minute crack-like voids is
If the number is less than 5000 / mm 2 , the effect of cracks is small.

【0013】(2)柱状粒子の必要性 上記焼結体中に短径が1μm以上で且つアスペクト比が
5以上の柱状窒化珪素粒子が1000個/mm2以上有
すると窒化珪素焼結体の破壊靱性値はさらに向上され好
ましい。この理由は粒成長した柱状粒子が存在すると微
小クラック状空隙から誘発されたマイクロクラックが粒
成長した窒化珪素粒子と相互作用を及ぼし亀裂の偏向、
粒子架橋等の高靱化機構がより有効に働くためである。
柱状粒子の存在数が1000個/mm2以上である理由
はそれ未満では上記効果が得られないためである。
[0013] (2) destruction of necessity the sintered and an aspect ratio in the minor axis is 1μm or more in the body of 5 or more columnar silicon nitride particles 1000 / mm 2 or more with the silicon nitride sintered body of the columnar particles The toughness value is further improved and is preferred. The reason is that the presence of the columnar grains grown by the grains causes the microcracks induced from the microcrack-like voids to interact with the silicon nitride grains grown by the grains, deflecting the cracks,
This is because a toughening mechanism such as particle crosslinking works more effectively.
The reason that the number of the columnar particles is 1,000 or more per mm 2 is that if the number is less than 1,000, the above effect cannot be obtained.

【実施例】表1及び表2に示す焼結助剤をBET比表面
積10m2/gのα型窒化珪素粉末に添加しエタノ−ル
で湿式混合した。乾燥した配合粉末を1.5ton/c
2の静水圧でプレス成形し、表1及び表2に示す条件
で焼結を行ない窒化珪素質焼結体を得た。
EXAMPLES The sintering aids shown in Tables 1 and 2 were added to α-type silicon nitride powder having a BET specific surface area of 10 m 2 / g and wet-mixed with ethanol. 1.5ton / c dried compound powder
Press molding was performed at a hydrostatic pressure of m 2 and sintering was performed under the conditions shown in Tables 1 and 2 to obtain a silicon nitride sintered body.

【0014】得られた焼結体につき、焼結体の一般特性
及び微構造特性を次の方法により、求めた。まず、材料
強度はJIS R1601に準じ3点曲げ試験により抗
折強度を測定した。破壊靱性値はJIS R1607の
SEPB法によって測定した。耐熱衝撃試験は、4mm
×3mm×40mmの試験片を所定の温度に加熱したの
ち水中に投下、急冷後に室温温度にて抗折試験を行う水
中冷却法により測定した。熱衝撃により強度劣化を生じ
た温度から耐熱衝撃温度を求めた。
With respect to the obtained sintered body, general characteristics and microstructure characteristics of the sintered body were determined by the following methods. First, as for the material strength, the bending strength was measured by a three-point bending test according to JIS R1601. The fracture toughness value was measured by the SEPB method of JIS R1607. Thermal shock test is 4mm
A test piece of 3 mm x 40 mm was heated to a predetermined temperature, dropped into water, quenched, and then subjected to a bending test at room temperature. The thermal shock temperature was determined from the temperature at which the strength deteriorated due to the thermal shock.

【0015】微小クラック状空隙の存在の確認及びクラ
ック密度、幅、長さ及びコ−ナ−の曲率半径は焼結体を
ラップ研磨により鏡面とした後、SEMにて観察しその
写真を画像解析することにより測定した。解析した面積
は1000μm2である。以上の測定結果を表1及び表
2に記載した。
Confirmation of existence of minute crack-like voids, crack density, width, length and radius of curvature of corners were obtained by mirror-polishing the sintered body by lap polishing, followed by SEM observation and photograph analysis of the photograph. It measured by doing. The analyzed area is 1000 μm 2 . The above measurement results are shown in Tables 1 and 2.

【0016】[0016]

【表1】 [Table 1]

【表2】 表から判るように、微構造特性が本発明の範囲に属する
ものは、破壊靱性値が10MPam0.5以上、耐熱衝撃
温度1100℃以上を満足するものであった。これに対
し、本発明の範囲に属さないNo.8〜11の焼結体
は、抗折強度こそ本発明焼結体と変わらない値を示すも
のの、破壊靱性値が10MPam0.5に達せず、耐熱衝
撃温度も1000℃以下であった。
[Table 2] As can be seen from the table, those having microstructure characteristics falling within the range of the present invention satisfied a fracture toughness value of 10 MPam 0.5 or more and a thermal shock temperature of 1100 ° C. or more. On the other hand, No. 3 which does not belong to the scope of the present invention. The sintered bodies of Nos. 8 to 11 exhibited the same bending strength as the sintered body of the present invention, but the fracture toughness did not reach 10 MPam 0.5 , and the thermal shock temperature was 1000 ° C. or lower.

【0017】[0017]

【発明の効果】以上説明したように、本発明の窒化珪素
焼結体は、実施例に示されるように他の焼結体に比べ破
壊靱性値が高くかつ熱衝撃性に優れ、切削工具、圧延ロ
−ラ−等の構造用耐熱材料として信頼性や寿命を大幅に
向上させることができる。
As described above, the silicon nitride sintered body of the present invention has a high fracture toughness value and excellent thermal shock resistance as compared with other sintered bodies as shown in the examples, As a structural heat-resistant material such as a rolling roller, reliability and life can be greatly improved.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/584 - 35/596 C04B 35/599 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C04B 35/584-35/596 C04B 35/599

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 焼結助剤とSi34もしくはサイアロン
(Sialon)粒子とから実質的になる窒化珪素質焼
結体において、柱状窒化珪素粒子と粒界相との界面に幅
3μm以下、長さ0.5μm以上20μm以下であっ
て、かつ0.5μm以下の曲率半径を有するコ−ナ−を
少なくとも1つ有する微小クラック状空隙を5000個
/mm2以上の割合で焼結体中にほぼ均一に含有するこ
とを特徴とする窒化珪素質焼結体。
1. A silicon nitride sintered body consisting essentially of a sintering aid and Si 3 N 4 or Sialon (Sialon) particles, wherein the width of the interface between the columnar silicon nitride particles and the grain boundary phase is 3 μm or less. In the sintered body, micro-crack-shaped voids having a length of 0.5 μm or more and 20 μm or less and having at least one corner having a radius of curvature of 0.5 μm or less are provided at a rate of 5000 / mm 2 or more. A silicon nitride-based sintered body characterized in that it is substantially uniformly contained.
【請求項2】 微小クラック状空隙の大多数が柱状窒化
珪素粒子の長軸の先端部分に位置して存在する請求項1
に記載の窒化珪素質焼結体。
2. The majority of the minute crack-like voids are located at the tip of the major axis of the columnar silicon nitride particles.
3. The silicon nitride based sintered body according to 1.).
【請求項3】 短径1μm以上、アスペクト比5以上の
柱状窒化珪素粒子が1000個/mm2以上存在する請
求項1に記載の窒化珪素質焼結体。
3. A minor 1μm or more, the silicon nitride sintered body of claim 1, an aspect ratio of 5 or more columnar silicon nitride particles are present 1000 / mm 2 or more.
JP29795292A 1992-10-09 1992-10-09 Silicon nitride sintered body Expired - Fee Related JP3207940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29795292A JP3207940B2 (en) 1992-10-09 1992-10-09 Silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29795292A JP3207940B2 (en) 1992-10-09 1992-10-09 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH06122560A JPH06122560A (en) 1994-05-06
JP3207940B2 true JP3207940B2 (en) 2001-09-10

Family

ID=17853216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29795292A Expired - Fee Related JP3207940B2 (en) 1992-10-09 1992-10-09 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP3207940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004208B1 (en) 2017-10-30 2019-07-29 주식회사 애니테이프 Manufacturing method for a hydro colloid based hotmelt dressing tape protecting uv light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004208B1 (en) 2017-10-30 2019-07-29 주식회사 애니테이프 Manufacturing method for a hydro colloid based hotmelt dressing tape protecting uv light

Also Published As

Publication number Publication date
JPH06122560A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
KR100417967B1 (en) Abrasion resistance materials and preparation method therefor
JP3092800B2 (en) Dense silicon nitride ceramics containing fine-grained carbides
JPH07299708A (en) Manufacture of silicon nitride system ceramics part
Kim et al. High‐temperature strength of liquid‐phase‐sintered SiC with AlN and RE2O3 (RE= Y, Yb)
JPH04130049A (en) Ceramic composite material and its production
JP3207940B2 (en) Silicon nitride sintered body
JP3538524B2 (en) Ceramic rolling element and method of manufacturing the same
KR100356736B1 (en) Silicon carbide (SiC) quality urinary ware and its manufacturing method
JP2955917B2 (en) Silicon nitride sintered body having high fracture toughness by addition of foreign particles and method for producing the same
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JP3616790B2 (en) Highly resistant particle oriented porous silicon nitride and method for producing the same
JP3328280B2 (en) Sintered silicon nitride with high toughness, strength and reliability
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JPH10279360A (en) Silicon nitride structural parts and its production
JPH1149571A (en) Silicon nitride sintered compact and its production
JPH0782047A (en) Sintered ceramic composite
JPH11147774A (en) Ceramic material and its production
JP2002173366A (en) Cordierite based ceramic material
Watanabe et al. Strength and Microstructure Evaluation of Si3N4/SiC Composites
JPH0971470A (en) Silicon nitride sintered compact having high reliability and toughness by adding different grain and its production
JPS6319473B2 (en)
JPH06116072A (en) Heat treatment of silicon nitride-silicon carbide composite sintered compact
JPH06172047A (en) Composite ceramic material
JP3143992B2 (en) Silicon nitride based sintered body
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees