JPH037633B2 - - Google Patents

Info

Publication number
JPH037633B2
JPH037633B2 JP61013677A JP1367786A JPH037633B2 JP H037633 B2 JPH037633 B2 JP H037633B2 JP 61013677 A JP61013677 A JP 61013677A JP 1367786 A JP1367786 A JP 1367786A JP H037633 B2 JPH037633 B2 JP H037633B2
Authority
JP
Japan
Prior art keywords
silicon nitride
temperature
sintered body
nitride sintered
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61013677A
Other languages
Japanese (ja)
Other versions
JPS62171977A (en
Inventor
Shigeru Hanzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61013677A priority Critical patent/JPS62171977A/en
Publication of JPS62171977A publication Critical patent/JPS62171977A/en
Publication of JPH037633B2 publication Critical patent/JPH037633B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は、内燃機関等に用いられる燃焼部材、
シリンダーヘツド、過給機のタービンブレード等
に用いられる高温構造材料である窒化珪素焼結体
に高温下での機械的強度を向上させる方法に関す
るものである。 (従来の技術) 従来窒化珪素セラミツクスは、高温強度および
耐蝕性に優れているため、内燃機関等の高温構造
材料として注目されている。 例えば、内燃機関の燃焼室としては実開昭56−
157321号公報、過給機のタービンブレードとして
は特開昭57−91302号公報に記載されている。 これらの用途に用いられる窒化珪素セラミツク
スには特に機械的強度が大きいことが求められて
いる。機械的強度特性は、焼結体の密度(気孔
率)や欠陥に大きく影響される。 そのため、特公昭58−49509号公報に記載され
ているように、焼結雰囲気である窒素ガスを1.5
〜50気圧に加圧して、高温下で窒化珪素体
(Si3N4)の分解を抑制しながら焼成することに
より、焼結体密度を向上させて機械的強度を大き
くさせている。 また、焼結助剤を比較的に多い10%程度を主成
分に添加して、焼結性を良くして緻密な窒化珪素
焼結体を得ることが通常行われている。 一方、窒化珪素焼結体をダイアモンド砥石など
で機械加工した際セラミツク体の表面にできた加
工傷による機械強度の低下を防止するための手段
として、加工されたセラミツク体を酸化雰囲気下
で加熱することにより表面にSiO2被膜を形成し
てキズやクラツクなどを消失させる方法が特開昭
60−810762号公報に、非酸化性ガス雰囲気下に減
圧、常圧、高圧のいずれかでセラミツクス体を加
熱することにより、加工場を鈍化させる方法が、
特開昭60−122783号公報に記載されている。 (問題点) ところが、上記のような方法によつて得られた
窒化珪素体の強度特性は、いずれも焼結された時
点で決定されてしまうので、例え、加工によるク
ラツクやキズなどの欠陥を除去できても、それ以
上の機械的強度は望めない。又、高温強度につい
ては液相焼結法により得られる窒化珪素体の多く
の場合には、Si3N4結晶粒界に存在するガラス相
の成分と量に大きく影響され、特にアルカリ土類
元素を含むと比較的低い温度、例えば1000℃程度
で容易に軟化するので、1000℃前後の温度下での
高温強度は、常温下での強度と比較して、かなり
低下するという問題があつた。 (解決手段) 本発明は、このような問題点を解決するために
なされたもので、その目的とするところは、少な
くともMgOを含んだ粒界ガラス相を含有した窒
化珪素焼結体の高温下での機械的強度を向上させ
る方法であつて、窒化珪素焼結体を、50トール以
下の真空度にて、1100〜1500℃にて熱処理するこ
とを特徴とする窒化珪素焼結体の高温強度を改善
する方法である。 (実施例) 以下、本発明の詳細を具体的に説明する。 まず、本発明は少なくともMgOを含む粒界ガ
ラス相を含有した窒化珪素焼結体を、再度熱処理
し、高温下での機械的強度を向上させることにあ
る。そして、この熱処理は真空中で行う必要があ
る。 真空度は、50トール以下で行われる。50トール
を越えると高温での機械的強度が向上しないため
である。その理由は窒化珪素(Si3N4)粒界のガ
ラス相中の低温で軟化するガラス成分、特に
MgOの拡散と揮発量が少なくなり、粒界ガラス
相の高融点化が図れなくなるためと考えられる。 また、真空度の下限は、熱処理炉の性能に適合
させた経済的な観点によつて定めればよく、特に
規定されるものではない。 次に、熱処理温度は、1100℃〜1500℃の範囲で
行われる。この理由は1500℃を越えると、窒化珪
素焼結体を構成するSi3N4の針状結晶が分解を開
始し、そのため気孔率が増加し粗大な内部欠陥が
生じて、機械的強度が低下するからである。 また、1100℃未満であると、理由は明確でない
が、低融点ガラス相成分(MgO)の拡散と揮発
現象が乏しく、その結果高温での機械的強度向上
が僅かであるためである。 処理温度は、1200〜1300℃の範囲が好ましい。
この理由は、高温下での強度向上が最も期待で
き、しかも経済的であることによる。 処理時間は、処理物の大きさ、温度、真空度に
よつて、定めればよく、例えば、一辺20mmの立方
体で、処理温度1250℃、真空度0.5トールの場合、
120〜240分である。 処理される焼結体は、窒化珪素原料粉体と焼結
助剤との混合物を成形後焼成したものである。焼
結条件として、雰囲気ガスが常圧の場合のみなら
ず、雰囲気ガスを加圧して得られた焼結体にも適
用される。 また、窒化珪素焼結体を金属と接合させた組立
品にも適用できるが、この場合には、処理温度と
真空度とが金属体に悪影響をもたらさない温度を
選ぶ必要がある。 実施例 窒化珪素セラミツク粉体原料と焼結助剤とを混
合調合したのち、金型プレス法により、60×60×
5mmの試験片を成形し、成形品をそれぞれ、窒素
分圧P=10atm.,1800℃,1時間の条件の焼成
法(以下、加圧焼成法と記す)及び窒素分圧P=
1atm.,1700℃,1時間の条件の焼成法(以下、
常温焼結法と記す)で焼結した。 焼結物の特性の評価結果を、表1表に示す。
(Technical field) The present invention relates to a combustion member used in an internal combustion engine, etc.
The present invention relates to a method for improving the mechanical strength at high temperatures of silicon nitride sintered bodies, which are high-temperature structural materials used in cylinder heads, turbocharger turbine blades, etc. (Prior Art) Conventional silicon nitride ceramics have been attracting attention as high-temperature structural materials for internal combustion engines and the like because they have excellent high-temperature strength and corrosion resistance. For example, as a combustion chamber for an internal combustion engine,
No. 157321, and a turbine blade for a supercharger is described in Japanese Patent Application Laid-Open No. 57-91302. Silicon nitride ceramics used in these applications are particularly required to have high mechanical strength. Mechanical strength characteristics are greatly influenced by the density (porosity) and defects of the sintered body. Therefore, as described in Japanese Patent Publication No. 58-49509, the nitrogen gas used as the sintering atmosphere was
By pressurizing to ~50 atmospheres and firing at high temperatures while suppressing decomposition of the silicon nitride body (Si 3 N 4 ), the density of the sintered body is improved and the mechanical strength is increased. Furthermore, it is common practice to add a relatively large amount of a sintering aid, about 10%, to the main component to improve sinterability and obtain a dense silicon nitride sintered body. On the other hand, as a means to prevent a decrease in mechanical strength due to machining scratches created on the surface of a ceramic body when a silicon nitride sintered body is machined with a diamond grindstone, the processed ceramic body is heated in an oxidizing atmosphere. JP-A-Sho published a method to eliminate scratches and cracks by forming a SiO 2 film on the surface.
Publication No. 60-810762 discloses a method of slowing down the processing area by heating a ceramic body at reduced pressure, normal pressure, or high pressure in a non-oxidizing gas atmosphere.
It is described in Japanese Patent Application Laid-Open No. 122783/1983. (Problem) However, the strength characteristics of the silicon nitride body obtained by the above method are determined at the time of sintering, so even if defects such as cracks and scratches due to processing are Even if it can be removed, no further mechanical strength can be expected. In addition, in many cases of silicon nitride bodies obtained by liquid phase sintering, high-temperature strength is greatly affected by the composition and amount of the glass phase present at the Si 3 N 4 grain boundaries, and in particular by the content and amount of the glass phase present at the Si 3 N 4 grain boundaries. If it contains, it easily softens at a relatively low temperature, for example, about 1000°C, so there was a problem that the high temperature strength at a temperature of around 1000°C was considerably lower than the strength at room temperature. (Solution Means) The present invention has been made to solve these problems, and its purpose is to provide a silicon nitride sintered body containing a grain boundary glass phase containing at least MgO under high temperature conditions. A method for improving the mechanical strength of a silicon nitride sintered body, the method comprising heat treating the silicon nitride sintered body at 1100 to 1500°C in a vacuum of 50 torr or less. This is a way to improve. (Example) The details of the present invention will be specifically explained below. First, the present invention is to heat-treat a silicon nitride sintered body containing a grain boundary glass phase containing at least MgO again to improve its mechanical strength at high temperatures. This heat treatment must be performed in a vacuum. The degree of vacuum is 50 Torr or less. This is because if the temperature exceeds 50 Torr, the mechanical strength at high temperatures will not improve. The reason for this is that glass components that soften at low temperatures in the glass phase of silicon nitride (Si 3 N 4 ) grain boundaries, especially
This is thought to be because the diffusion and volatilization amount of MgO decreases, making it impossible to increase the melting point of the grain boundary glass phase. Further, the lower limit of the degree of vacuum may be determined from an economical point of view in accordance with the performance of the heat treatment furnace, and is not particularly defined. Next, the heat treatment temperature is in the range of 1100°C to 1500°C. The reason for this is that when the temperature exceeds 1500℃, the acicular crystals of Si 3 N 4 that make up the silicon nitride sintered body begin to decompose, which increases the porosity and creates coarse internal defects, which reduces the mechanical strength. Because it does. Further, if the temperature is lower than 1100°C, the reason is not clear, but the diffusion and volatilization phenomena of the low melting point glass phase component (MgO) are poor, and as a result, the mechanical strength at high temperatures is only slightly improved. The treatment temperature is preferably in the range of 1200 to 1300°C.
The reason for this is that strength improvement is most expected at high temperatures, and it is also economical. The processing time can be determined depending on the size, temperature, and degree of vacuum of the object to be processed. For example, if the object is a cube with sides of 20 mm, the processing temperature is 1250°C, and the degree of vacuum is 0.5 Torr,
It is 120-240 minutes. The sintered body to be treated is obtained by molding and firing a mixture of silicon nitride raw material powder and a sintering aid. The sintering conditions apply not only when the atmospheric gas is at normal pressure, but also to sintered bodies obtained by pressurizing the atmospheric gas. It can also be applied to an assembly in which a silicon nitride sintered body is joined to a metal, but in this case, it is necessary to select a processing temperature and a degree of vacuum that do not have an adverse effect on the metal body. Example After mixing and preparing silicon nitride ceramic powder raw material and sintering aid, a 60x60x
A 5 mm test piece was molded, and the molded product was fired using the following conditions: nitrogen partial pressure P = 10 atm., 1800°C, 1 hour (hereinafter referred to as pressure firing method) and nitrogen partial pressure P =
Firing method under the conditions of 1atm., 1700℃, 1 hour (hereinafter,
It was sintered using the cold sintering method. The evaluation results of the characteristics of the sintered product are shown in Table 1.

【表】 次いで、これらの焼結物の一部を第2表の条件
で熱処理をした。なお、処理時間は4時間処理し
た。 次に、熱処理試験片および未熱処理試験片を機
械加工して、断面が、3×4mm、長さ40mmの試験
片を作成した。 これらの試験片について、JIS R1601−1981に
よる曲げ強さ試験にて、4点曲げ強さを測定し
た。この測定結果を第2表に示す。
[Table] Next, some of these sintered products were heat treated under the conditions shown in Table 2. Note that the treatment time was 4 hours. Next, the heat-treated test piece and the unheat-treated test piece were machined to create a test piece with a cross section of 3 x 4 mm and a length of 40 mm. The four-point bending strength of these test pieces was measured in a bending strength test according to JIS R1601-1981. The measurement results are shown in Table 2.

【表】 注) 加圧焼結法
常圧焼結法
この結果から、本発明による熱処理を施したも
のは、熱処理などのものにくらべいずれも高温強
度が向上していることが明らかである。 (発明の効果) 以上の説明から明らかなように、本発明の方法
は、窒化珪素焼結体を単に真空中で熱処理するだ
けで高温強度の向上が達成され、窒化珪素セラミ
ツク材料の高温構造材料としての用途を拡大可能
とするものである。
[Table] Note) Pressure sintering method
Pressureless Sintering Method From these results, it is clear that the high-temperature strength of the materials subjected to the heat treatment according to the present invention is improved compared to those subjected to heat treatment. (Effects of the Invention) As is clear from the above explanation, the method of the present invention can improve high-temperature strength by simply heat-treating a silicon nitride sintered body in a vacuum, and can improve high-temperature structural materials of silicon nitride ceramic materials. This makes it possible to expand the range of applications.

Claims (1)

【特許請求の範囲】 1 少なくともMgOを含む粒界ガラス相を含有
する窒化珪素焼結体を真空度50トール以下で、
1100〜1500℃にて熱処理することにより粒界ガラ
ス相の一部を揮発させることを特徴とする窒化珪
素焼結体の高温強度の強化方法。 2 温度が1200〜1400である特許請求の範囲第1
項記載の窒化珪素焼結体の高温強度の強化方法。
[Claims] 1. A silicon nitride sintered body containing a grain boundary glass phase containing at least MgO is heated at a vacuum degree of 50 Torr or less,
A method for strengthening the high-temperature strength of a silicon nitride sintered body, which comprises volatilizing a part of the grain boundary glass phase by heat treating at 1100 to 1500°C. 2 Claim 1 in which the temperature is 1200 to 1400
A method for increasing the high-temperature strength of a silicon nitride sintered body as described in 2.
JP61013677A 1986-01-27 1986-01-27 Method of strengthening silicon nitride ceramic body Granted JPS62171977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61013677A JPS62171977A (en) 1986-01-27 1986-01-27 Method of strengthening silicon nitride ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61013677A JPS62171977A (en) 1986-01-27 1986-01-27 Method of strengthening silicon nitride ceramic body

Publications (2)

Publication Number Publication Date
JPS62171977A JPS62171977A (en) 1987-07-28
JPH037633B2 true JPH037633B2 (en) 1991-02-04

Family

ID=11839816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61013677A Granted JPS62171977A (en) 1986-01-27 1986-01-27 Method of strengthening silicon nitride ceramic body

Country Status (1)

Country Link
JP (1) JPS62171977A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451378A (en) * 1987-08-21 1989-02-27 Sumitomo Electric Industries Production of silicon nitride sintered body for cutting tool
JP5153030B2 (en) * 2000-05-09 2013-02-27 日本特殊陶業株式会社 Method for producing silicon nitride sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347415A (en) * 1976-10-14 1978-04-27 Toshiba Ceramics Co Surface treatment of light permeable alumina ceramics
JPS6081076A (en) * 1983-10-07 1985-05-09 株式会社日立製作所 Improvement of ceramic mechanical strength
JPS60122783A (en) * 1983-12-02 1985-07-01 工業技術院長 Manufacture of ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347415A (en) * 1976-10-14 1978-04-27 Toshiba Ceramics Co Surface treatment of light permeable alumina ceramics
JPS6081076A (en) * 1983-10-07 1985-05-09 株式会社日立製作所 Improvement of ceramic mechanical strength
JPS60122783A (en) * 1983-12-02 1985-07-01 工業技術院長 Manufacture of ceramics

Also Published As

Publication number Publication date
JPS62171977A (en) 1987-07-28

Similar Documents

Publication Publication Date Title
US4713302A (en) Sintered ceramic body
JPH0231648B2 (en)
US4376742A (en) Fugitive liquid phase densification of silicon nitride
US4346147A (en) Method of manufacturing nitrided silicon parts
JPH037633B2 (en)
US4550063A (en) Silicon nitride reinforced nickel alloy composite materials
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JP3810183B2 (en) Silicon nitride sintered body
JPH11147769A (en) Silicon nitride ceramic material and its production
JPH0624726A (en) Zirconia/molybdenum disilicide composition and its production
JPH08295569A (en) Silicon nitride-based sintered compact and its production
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JP3215625B2 (en) Method for producing silicon nitride based sintered body
JP2670222B2 (en) Silicon nitride sintered body and method for producing the same
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP2000128644A (en) Silicon nitride-based member and its production
JPS63242976A (en) Manufacture of ceramic sintered body
JPS6319473B2 (en)
JP3667064B2 (en) Silicon nitride-based sintered body and method for producing the same
JPH0579625B2 (en)
JPH05194060A (en) Silicon nitride ceramic part
JPS62207767A (en) High temperature high strength silicon nitride ceramics and manufacture
JPH06100376A (en) Sintered beta-sialon and its production
JPH055795B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees