JPS62207767A - High temperature high strength silicon nitride ceramics and manufacture - Google Patents

High temperature high strength silicon nitride ceramics and manufacture

Info

Publication number
JPS62207767A
JPS62207767A JP61047193A JP4719386A JPS62207767A JP S62207767 A JPS62207767 A JP S62207767A JP 61047193 A JP61047193 A JP 61047193A JP 4719386 A JP4719386 A JP 4719386A JP S62207767 A JPS62207767 A JP S62207767A
Authority
JP
Japan
Prior art keywords
temperature
silicon nitride
strength
strength silicon
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61047193A
Other languages
Japanese (ja)
Other versions
JPH0321502B2 (en
Inventor
岡田 広
隆男 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61047193A priority Critical patent/JPS62207767A/en
Publication of JPS62207767A publication Critical patent/JPS62207767A/en
Publication of JPH0321502B2 publication Critical patent/JPH0321502B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジニアリングセラミックス分野、詳しくは
高温構造材料としてエンジン部品、製鉄用耐熱治工具類
、ガスタービン用ブレード等の如き高温強度、耐酸化性
、耐食性を要求される部材に用いられる高温高強度窒化
ケイ素セラミックスおよびその製造方法に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention is in the field of engineering ceramics, and more specifically, it is used as a high-temperature structural material to provide high-temperature strength and oxidation resistance for use in engine parts, heat-resistant jigs and tools for steel manufacturing, blades for gas turbines, etc. The present invention relates to high-temperature, high-strength silicon nitride ceramics used in members requiring corrosion resistance, and a method for manufacturing the same.

(従来の技術) 近時、高温ガスタービンを始めディーゼルエンジン、M
HD発電など高温で稼動する機器の開発や、高硬度部材
としての工具や耐食材料としての用途を目的として高温
構造材料の重要性が認識されているが、なかでも高温下
で充分な強度を有し、化学的に安定で、かつ、熱衝撃に
も強い材料として窒化ケイ素(Si、1N4)は最も重
要なものの1つとして注目されている。
(Conventional technology) Recently, high-temperature gas turbines, diesel engines,
The importance of high-temperature structural materials is recognized for the purpose of developing equipment that operates at high temperatures, such as HD power generation, and for use as highly hard materials such as tools and corrosion-resistant materials. However, silicon nitride (Si, 1N4) is attracting attention as one of the most important materials as it is chemically stable and resistant to thermal shock.

ところで、上記5iJ4は上述の如き優れた物理的特性
を有するが、これは5iJaがケイ素(Si)と窒素(
N)との強固な共有結合よりなる化合物であることに由
来する。
By the way, 5iJ4 has excellent physical properties as mentioned above, but this is because 5iJa is composed of silicon (Si) and nitrogen (
This is due to the fact that it is a compound consisting of a strong covalent bond with N).

このことは同時に、反面においてSi、N、単独では難
焼結性で高密度、高強度の製品を製造することが困難で
あることを意味し、従って5iJ4の焼結には通常Yz
Os、  A l zOs 9Mg0等の焼結助剤の添
加が必要とされている。
At the same time, this also means that it is difficult to manufacture products with high density and high strength because they are difficult to sinter using Si or N alone. Therefore, Yz is usually used for sintering 5iJ4.
It is necessary to add a sintering aid such as Os, Al zOs 9Mg0.

しかし、これら焼結助剤は一般にSi、N4粉末粒子の
境界面でガラス賞を形成することによりSi3N。
However, these sintering aids generally bind Si3N by forming glass particles at the interface of Si, N4 powder particles.

粒子相互を結合する役目をもつものであることから焼結
助剤の添加による緻密な焼結体が得られるとしても、そ
の反面、1000℃以上の高温下では添加助剤が形成す
る焼結体粒界相(ガラス相)が軟化するため高温強度が
常温強度の1/2以下に低下する欠点がある。
Although it is possible to obtain a dense sintered body by adding a sintering aid because it has the role of bonding particles together, on the other hand, at high temperatures of 1000°C or higher, the sintered body formed by the additive auxiliary Since the grain boundary phase (glass phase) is softened, there is a drawback that the high-temperature strength decreases to 1/2 or less of the room-temperature strength.

また、比較的高温強度に優れるY2O,添加系Si3N
In addition, Y2O, which has relatively excellent high-temperature strength, and Si3N
.

材料では900〜1000℃の温度域で粒界を通しての
酸化が起こり、特性劣化が著しいという問題がある。
There is a problem in the material that oxidation occurs through grain boundaries in the temperature range of 900 to 1000°C, resulting in significant property deterioration.

そこで、焼結助剤無添加の焼結体を得ることが検討され
、焼結体の強度は一般にその密度に比例する傾向がある
ことから、最近、注目を浴びている熱間静水圧プレス(
以下、HIPと略記する)法を利用し、焼結助剤無添加
のSi、N、を高温、高圧の不活性ガス下で焼結させる
試みが行われた。
Therefore, it has been considered to obtain a sintered body without the addition of sintering aids, and since the strength of a sintered body generally tends to be proportional to its density, hot isostatic pressing (hot isostatic pressing), which has recently attracted attention, has been
An attempt was made to sinter Si and N without the addition of a sintering aid under an inert gas at high temperature and high pressure using a method (hereinafter abbreviated as HIP).

その結果はHIP焼結により得られた助剤無添加Si3
N、は1300℃までは強度低下なしであったが、14
00℃で低下傾向を示した。しかし、強度レベルは低く
、20〜40kg/mn+2であった。
The results show that additive-free Si3 obtained by HIP sintering
N, there was no decrease in strength up to 1300°C, but 14
It showed a decreasing tendency at 00°C. However, the intensity level was low, ranging from 20 to 40 kg/mn+2.

そのため、強度レベルの低い原因について追求を試みた
ところ、その理由は原料中に含まれるFe。
Therefore, when we tried to find the cause of the low strength level, we found that the reason was Fe contained in the raw material.

Ni、As、Sb等の不純物(〜200 ppm)が通
常の助剤添加系Si 2N4では全く問題とならない量
であるに拘らず、これがHIP処理中に凝集し破壊の起
点となる介在物粒子を形成するためであるこが判明し、
助剤無添加Si、N、に特有の現象であることが分かっ
た。
Although the amount of impurities such as Ni, As, and Sb (~200 ppm) is not a problem at all in the usual auxiliary-added Si 2N4, they aggregate during the HIP process and cause inclusion particles that become the starting point of fracture. It turns out that the purpose is to form
It was found that this phenomenon is unique to Si and N without additives.

又、1400℃での強度劣化は0□量が多い原料を使っ
たためであることが知見された。
In addition, it was found that the strength deterioration at 1400°C was due to the use of raw materials with a large amount of 0□.

(発明が解決しようとする問題点) 本発明は軟土の如き実状と助剤無添加SiJ、が高温で
の強度低下は1300℃までないものの強度レベルが低
い理由が原料中の不純物によるものであること(Fe、
Ni等がFeSi 、 Fe5iz NiSi等を形成
する)、又1400℃での強度劣化が02量の多い原料
使用によるとの知見にもとづくものであり、その解決の
ためにはFe、Ni、Cr等の鉄族金属やAs、Sb等
のVa族金属などの不純物元素を除去する必要があるこ
と、又、1400℃まで強度を保つために原料中の0□
量を規制する必要があることに看目し、超高純度5ix
Naを原料として用いることにより、理想的な高温高強
度Si3N4焼結体、殊に将来ガスタービン部材で必要
とされる実質的に1400℃まで強度低下のないSi3
N4焼結体を得んとするものである。
(Problems to be Solved by the Invention) The present invention solves the problem that SiJ in an actual state such as soft soil and with no additives shows that although the strength does not decrease at high temperatures up to 1300°C, the reason for the low strength level is due to impurities in the raw material. Something (Fe,
This is based on the knowledge that strength deterioration at 1400°C is due to the use of a large amount of raw materials such as Fe, Ni, Cr, etc.). It is necessary to remove impurity elements such as iron group metals and Va group metals such as As and Sb, and in order to maintain strength up to 1400°C, 0□
Considering the need to control the amount, ultra-high purity 5ix
By using Na as a raw material, we can create ideal high-temperature, high-strength Si3N4 sintered bodies, especially Si3 whose strength does not deteriorate substantially up to 1400°C, which will be required for future gas turbine components.
The purpose is to obtain an N4 sintered body.

(問題点を解決するための手段) 即ち、本発明の特徴とするところは、上記不純物元素の
除去ならびに原料中の02料の規制にあり、従って、そ
の1つは上記鉄族及びVa族族金属元金50ppm以下
、酸素量を2%以下にした焼結助剤無添加5IJn H
I P焼結体であり、他の1つは5i3Na原料又はそ
の成形体を乾燥塩素中で加熱処理し又は/及び真空加熱
処理して含有する不純物鉄族元素及びVaa金属元素を
50ppm以下。
(Means for Solving the Problems) That is, the features of the present invention are the removal of the impurity elements mentioned above and the regulation of 02 materials in the raw materials. Sintering aid-free 5IJn H with metal element 50ppm or less and oxygen content 2% or less
The other one is an IP sintered body, and the other one is a 5i3Na raw material or a molded body thereof that is heat-treated in dry chlorine and/or vacuum heat-treated to contain impurity iron group elements and Vaa metal elements of 50 ppm or less.

酸素量を2%以下に減少させた後、HIP処理すること
からなる高温高強度の焼結助剤無添加Si、N。
High-temperature, high-strength, sintering aid-free Si, N produced by HIP treatment after reducing the oxygen content to 2% or less.

セラミックスの製造方法にある。It is in the method of manufacturing ceramics.

以下、更に上記本発明の詳細な説明 先ず、本発明に用いるSisNa粉宋原料は金属Siの
窒化法により得られるものの外、Sin.還元粉あるい
は気相反応法,熱分解法によりSiCj!.やSi(N
H) zから製造されたもの等が使用される。
Below is a more detailed explanation of the present invention. First, the SisNa powder raw material used in the present invention is not only one obtained by the nitriding method of metal Si, but also a SisNa powder raw material used in the present invention. SiCj! by reduced powder, gas phase reaction method, or thermal decomposition method! .. or Si(N
H) Those manufactured from z are used.

しかし、この5iJa粉末原料には前述の如<Fe。However, this 5iJa powder raw material contains Fe as described above.

Ni、Cr等の鉄族元素やAs、Sb等のV’a族金属
元素などの不純物元素が含有されている。又酸素0□も
含まれている。
Impurity elements such as iron group elements such as Ni and Cr and V'a group metal elements such as As and Sb are contained. It also contains oxygen 0□.

そこで、これらの不純物元素を除去し、0□量を規制す
る必要があり、そのため前者に対し特に乾燥塩素中で加
熱処理又は/及び真空加熱処理が施される。
Therefore, it is necessary to remove these impurity elements and regulate the amount of 0□, and therefore the former is particularly subjected to heat treatment in dry chlorine and/or vacuum heat treatment.

この場合、不純物元素の含まれる量としては、最大限5
0ppm又、02の量を2%とし、それ以下にすること
が特に臨界的とは云えないにしても後述の実施例で示さ
れる各実験結果より好適であ机 かくして5iJ4原料粉末を高純度化した後、HIP処
理手段により焼結するが、HIP処理は既知の手段であ
り、Arガス、N2ガス等の不活性雰囲気下で通常、1
600℃以上、好ましくは1700〜2000℃の温度
で、かつ、500気圧以上、好ましくは700気圧以上
の圧力下で行われる。
In this case, the amount of impurity elements contained is up to 5
0 ppmAlso, although it is not particularly critical to set the amount of 02 to 2% or less, it is preferable from the experimental results shown in the examples below, and thus the 5iJ4 raw material powder can be highly purified. After that, sintering is performed by HIP processing, which is a known method, and is usually sintered under an inert atmosphere such as Ar gas or N2 gas.
It is carried out at a temperature of 600°C or higher, preferably 1700 to 2000°C, and under a pressure of 500 atmospheres or higher, preferably 700 atmospheres or higher.

以下、具体的な実施例を掲げ、各比較例に比し本発明が
いかに優れているかを明らかにする。
Hereinafter, specific examples will be given to clarify how superior the present invention is compared to each comparative example.

(実施例) 先ず総括的な表を示す。(Example) First, a general table is shown.

(以下、余白) 次いで、上記表にもとづき、各実施例毎に順次説明する
(Hereinafter, blank space) Next, each example will be explained in sequence based on the above table.

(実施例1) 上記表のA原料を50X50X201111にプレス成
形した後、不純物精製処理のため、該成形体を管状炉中
に入れ、乾燥した塩素を毎分2Il流しながら徐々に昇
温し、900℃にて2時間保持した。
(Example 1) After press-molding the raw material A in the above table into a size of 50 x 50 x 201111, the molded body was placed in a tube furnace for impurity purification treatment, and the temperature was gradually raised while flowing 2 Il of dry chlorine per minute. It was held at ℃ for 2 hours.

処理後の試料は分析の結果、前表のXとして示した通り
であり、不純物Feの減少が認められ、不純物元素量が
5oppm以下となった。
As a result of the analysis of the sample after treatment, it was as shown as X in the previous table, and a decrease in the impurity Fe was observed, and the amount of the impurity element became 5 oppm or less.

この試料を次いでバイコールガラス粉末を用いたプレス
シール法によりガラスシールし、2000℃、  15
0MPa 、  2hrの条件でHIP処理し、焼結し
た。
This sample was then glass-sealed using a press sealing method using Vycor glass powder, and heated at 2000°C for 15 minutes.
HIP treatment was performed under the conditions of 0 MPa and 2 hours, and sintering was performed.

得られた焼結体の曲げ強度は前表に示すように常温で6
6 kg/mm′、  1200℃で78 kg/mm
”、更には1400℃で75 kg/n++11”であ
り、5IJa焼結体としては画期的な高温強度を示した
The bending strength of the obtained sintered body is 6 at room temperature as shown in the previous table.
6 kg/mm', 78 kg/mm at 1200℃
", and furthermore, 75 kg/n++11" at 1400°C, demonstrating revolutionary high-temperature strength for a 5IJa sintered body.

また1、常温強度のワイブル係数(試料数15)m−1
2であった。
Also 1. Weibull coefficient of room temperature strength (number of samples 15) m-1
It was 2.

(比較例) 市販のシリコン窒化法によるSi3N、粉末である試料
Cをプレス成形し、これをそのまま不純物精製処理する
ことなく、バイコールガラス粉末を用いたブレスシール
法によりガラスシールし、2000℃、  150MP
a 、  2hrの条件下でHIP処理した。
(Comparative example) Sample C, which is a powder of Si3N produced by a commercially available silicon nitriding method, was press-molded, and without impurity purification treatment, it was glass-sealed by a breath-sealing method using Vycor glass powder, and heated at 2000°C and 150MP.
a, HIP treatment was performed under conditions of 2 hr.

得られた焼結体の曲げ強度は前表に示すように常温で2
3 kg/mm”、  1200℃で48 kg/mm
”、更に1400℃で32 kg/mm”で、前記実施
例1に比し感かに劣っていた。
The bending strength of the obtained sintered body is 2 at room temperature as shown in the previous table.
3 kg/mm”, 48 kg/mm at 1200℃
"and 32 kg/mm at 1400°C", which was considerably inferior to that of Example 1.

しかも、この比較例1の焼結体では曲げ試験片の破片観
察の結果、破壊はすべて焼結体中に分散した介在物を起
点としており、また介在物はX線分析によりFeのケイ
化物であることが判明した。
Moreover, in the sintered body of Comparative Example 1, as a result of observing the fragments of the bending test piece, all the fractures were found to originate from inclusions dispersed in the sintered body, and X-ray analysis revealed that the inclusions were Fe silicides. It turns out that there is something.

又、本比較例では見掛は上、ワイブル係数は高(なって
いるが、強度値自体は低く、実用に耐えないものであっ
た。又、1400℃で強度の低下を示した。
Further, although the appearance of this comparative example was good and the Weibull coefficient was high, the strength value itself was low and could not be put to practical use.Furthermore, the strength decreased at 1400°C.

添付図面は上記実施例1及び比較例1を対照のため比較
した図表であり、両者の差が顕著に看取される。
The attached drawing is a chart comparing the above-mentioned Example 1 and Comparative Example 1 for the purpose of comparison, and the difference between the two can be clearly seen.

(比較例2) 次にシリコンジイミド熱分解法により合成された前記実
施例と同じ組成の5iSN4原料Aを用いてプレス成形
し、そのまま不純物精製処理をせずにバイコールガラス
粉末を用いたプレスシール法によりガラスシールし、2
000℃、150MPa。
(Comparative Example 2) Next, 5iSN4 raw material A having the same composition as in the above example synthesized by the silicon diimide pyrolysis method was press-molded, and then press-sealed using Vycor glass powder without any impurity purification treatment. Seal the glass with
000℃, 150MPa.

2hrの条件下でHIP焼結した。得られた焼結体の曲
げ強度は前記比較例1のものより改善されたものの焼結
体中にまれに介在物の凝集体が存在し、特に介在物が試
験片の引張応力側表面近傍に存在して、これが破壊の起
点となった場合には極端に低い値を示すため、全体の平
均値は比較的低く、又、強度のバラツキも大きく、些か
信頼性に乏しい材料であった。
HIP sintering was performed under conditions of 2 hours. Although the bending strength of the obtained sintered body was improved compared to that of Comparative Example 1, aggregates of inclusions were occasionally present in the sintered body, and inclusions were especially present near the surface on the tensile stress side of the test piece. If it exists and becomes the starting point of fracture, it will show an extremely low value, so the overall average value will be relatively low, and the strength will also vary widely, making it a somewhat unreliable material.

(実施例2) 前記表に示すB原料を実施例1と同様、50×50X2
0tmにプレス成形した後、不純物精製処理のため成形
体を管状炉中に入れ、乾燥した塩素を毎分21流しなが
ら徐々に昇温し、900℃にて2時間保持した。処理後
の試料は分析したところ、前記表のBとして示した通り
であり、不純物、特にA S I  S b不純物元素
の減少が多く認められた。
(Example 2) As in Example 1, the B raw material shown in the table above was prepared in a 50×50×2
After press molding to 0 tm, the molded body was placed in a tube furnace for impurity purification treatment, the temperature was gradually raised while dry chlorine was flowed at 21 per minute, and the temperature was held at 900° C. for 2 hours. When the sample after treatment was analyzed, it was as shown as B in the above table, and a significant decrease in impurities, especially the ASI S b impurity element, was observed.

次に上記試料体をバイコールガラス粉末を用いたプレス
シール法によりガラスシールした後、2000℃、  
150MPa 、  2hrの条件でHIP焼結したと
ころ、得られた焼結体の曲げ強度は常温で70 kg/
mm”、  1200℃で72 kg/vm”でSi3
N、焼結体として優れた高温強度を示した。
Next, the sample was glass-sealed using a press sealing method using Vycor glass powder, and then heated to 2000°C.
When HIP sintered under the conditions of 150 MPa and 2 hr, the bending strength of the obtained sintered body was 70 kg/kg at room temperature.
mm”, Si3 at 72 kg/vm” at 1200℃
N showed excellent high-temperature strength as a sintered body.

また、常温強度値のワイブル係数は8であった。Further, the Weibull coefficient of the room temperature strength value was 8.

(実施例3) 次に前記実施例2におけるB原料を実施例1と同様の方
法により成形、不純物精製処理し、更に一度を1200
℃に上げ、10−3Trooに真空引き1、lhr保持
した。
(Example 3) Next, the B raw material in Example 2 was molded and impurity purified in the same manner as in Example 1, and once again
The temperature was raised to 0.degree. C., and the vacuum was evacuated to 10-3 Trouble and maintained for 1 hour.

処理後の試料は分析したところ、前記表のばに示す如(
で、前記実施例2の場合より一層高純度化が進んでおり
、特にVa族元素が効果的に除かれた。
When the sample after treatment was analyzed, the results were as shown in the table above.
In this case, the purification was further improved than in the case of Example 2, and in particular, Va group elements were effectively removed.

この試料をその後、前記実施例、2と同様な条件下でH
IP焼結した結果、HIP焼結体の曲げ強度は前記表で
示すように実施例2より更に改善され、ワイブル係数も
向上した。
This sample was then heated under the same conditions as in Example 2 above.
As a result of IP sintering, the bending strength of the HIP sintered body was further improved compared to Example 2 as shown in the table above, and the Weibull coefficient was also improved.

(比較例3) SiJn気相反応法により合成された前記5iJa原料
Bを用いて比較例2と同様に不純物精製処理をせず、H
IP焼結した。得られたものは前記実施例2,3の場合
に比し焼結体の曲げ強度において一段の劣りが見られた
(Comparative Example 3) Using the 5iJa raw material B synthesized by the SiJn gas phase reaction method, H
IP sintered. The obtained sintered body was found to be much worse in bending strength than those of Examples 2 and 3.

(比較例4) 前記表の原料Xを大気中800度で処理し、Si3N4
粉体の表面酸化を促し、酸素含量2.7%の原料りを作
り、前記実施例1と同様の方法によってHIP焼結体を
得た。
(Comparative Example 4) Raw material
Surface oxidation of the powder was promoted to prepare a raw material with an oxygen content of 2.7%, and a HIP sintered body was obtained in the same manner as in Example 1 above.

この焼結体について曲げ強度を測定したところ、常温で
82 kg/mm”、ワイブル係数13と原料A′(1
実施例1)よりも良い結果を得たが、1200℃。
When the bending strength of this sintered body was measured, it was found to be 82 kg/mm'' at room temperature, with a Weibull coefficient of 13 and raw material A' (1
Although better results were obtained than in Example 1), the temperature was 1200°C.

1400℃では急激な強度の低下を示しており、高温構
造材としては好ましくないものであった。
At 1400° C., the strength showed a sudden decrease, which was not preferable as a high-temperature structural material.

(発明の効果) 不発明は以上のように不純物元素を除去し、鉄族元素、
Va族元素を50ppm以下、酸素量2%以下とした高
純度Si+Naよりなるものであり、前記不純物元素の
減少により破壊原因となる介在物は形成されず、焼結助
剤無添加5iJa材料としてこれまでに報告例のない高
温高強度材料を実現することができる格段の効果を有し
、しかも焼結助剤無添加でHIP処理して高温高圧下で
焼結させることにより5iiN4粒子のからみ合いをよ
り強固になし、5iJa自体の有する耐熱性並びに強度
をそのまま発現させる特長を有し、開発が期待されるエ
ンジニアリングセラミックス材として理想的な焼結体を
提供することができる。
(Effect of the invention) As described above, the invention removes impurity elements and produces iron group elements,
It is made of high-purity Si+Na with a Va group element of 50 ppm or less and an oxygen content of 2% or less, and due to the reduction of the impurity elements, no inclusions that cause destruction are formed, making it a 5iJa material without the addition of sintering aids. It has the remarkable effect of being able to create a high-temperature, high-strength material that has never been reported before. Furthermore, by performing HIP treatment without adding a sintering aid and sintering at high temperature and high pressure, the entanglement of 5iiN4 particles is reduced. It is possible to provide a sintered body that is stronger and exhibits the heat resistance and strength of 5iJa itself, and is ideal as an engineering ceramic material that is expected to be developed.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明と従来法による焼結助剤無添加5i3Naの
曲げ強度の温度変化の比較図表である。
The figure is a comparison chart of temperature changes in bending strength of 5i3Na without sintering aid added according to the present invention and the conventional method.

Claims (1)

【特許請求の範囲】 1、焼結助剤無添加Si_3N_4を熱間静水圧プレス
処理してなる焼結体であって、鉄族およびVa族金属元
素の含有不純物元素量が50ppm以下、酸素量が2%
以下であることを特徴とする高温高強度窒化ケイ素セラ
ミックス。 2、焼結助剤無添加のSi_3N_4原料又はその成形
体を乾燥塩素中で加熱処理又は/及び真空加熱処理し、
当該原料又は成形体中に含まれる鉄属元素およびVa属
金属の不純物元素量を50ppm以下、酸素量を2%以
下に減少させた後、熱間静水圧プレス処理を行い焼結す
ることを特徴とする高温高強度窒化ケイ素セラミックス
の製造方法。 3、焼結助剤無添加のSi_3N_4成形体を管状炉中
に入れ、乾燥塩素を流しながら徐々に昇温し、900℃
で2時間保持して不純物元素を減少させる特許請求の範
囲第2項記載の高温高強度窒化ケイ素セラミックスの製
造方法。 4、焼結助剤無添加のSi_3N_4成形体を管状炉中
に入れ、乾燥塩素を流しながら徐々に昇温し、900℃
で2時間保持させた後、更に温度を1200℃に上げ1
0^−^3Torrに真空引きし1時間保持して不純物
元素を減少させる特許請求の範囲第2項記載の高温高強
度窒化ケイ素セラミックスの製造方法。
[Claims] 1. A sintered body obtained by hot isostatic pressing Si_3N_4 without the addition of sintering aids, which contains impurity elements of iron group and Va group metal elements of 50 ppm or less and an oxygen amount. is 2%
A high-temperature, high-strength silicon nitride ceramic characterized by: 2. Heat treatment and/or vacuum heat treatment of Si_3N_4 raw material without sintering aid additive or its molded body in dry chlorine,
After reducing the amount of impurity elements of iron group metal and Va group metal contained in the raw material or compact to 50 ppm or less and the amount of oxygen to 2% or less, hot isostatic pressing treatment is performed and sintering is performed. A method for producing high-temperature, high-strength silicon nitride ceramics. 3. Place the Si_3N_4 compact with no sintering aid added into a tube furnace and gradually raise the temperature to 900°C while flowing dry chlorine.
3. The method for producing high-temperature, high-strength silicon nitride ceramics according to claim 2, wherein impurity elements are reduced by holding the ceramic for 2 hours. 4. Place the Si_3N_4 compact with no sintering aid added into a tube furnace and gradually raise the temperature to 900°C while flowing dry chlorine.
After holding the temperature for 2 hours, the temperature was further increased to 1200℃.
3. The method for producing high-temperature, high-strength silicon nitride ceramics according to claim 2, wherein impurity elements are reduced by evacuation to 0^-^3 Torr and holding for 1 hour.
JP61047193A 1986-03-06 1986-03-06 High temperature high strength silicon nitride ceramics and manufacture Granted JPS62207767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61047193A JPS62207767A (en) 1986-03-06 1986-03-06 High temperature high strength silicon nitride ceramics and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61047193A JPS62207767A (en) 1986-03-06 1986-03-06 High temperature high strength silicon nitride ceramics and manufacture

Publications (2)

Publication Number Publication Date
JPS62207767A true JPS62207767A (en) 1987-09-12
JPH0321502B2 JPH0321502B2 (en) 1991-03-22

Family

ID=12768275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61047193A Granted JPS62207767A (en) 1986-03-06 1986-03-06 High temperature high strength silicon nitride ceramics and manufacture

Country Status (1)

Country Link
JP (1) JPS62207767A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248468A (en) * 1988-08-09 1990-02-19 Nissan Motor Co Ltd Calcined siliceous nitride compact and production thereof
JPH02116657A (en) * 1988-10-25 1990-05-01 Toshiba Corp Ceramic sliding member
JPH07330443A (en) * 1995-03-27 1995-12-19 Toshiba Corp Ceramic sliding part and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874570A (en) * 1981-10-23 1983-05-06 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substantially pore-free formed body comprising polycrystal silicon nitride and silicon carbide and manufacture of same by equilibrium thermal compression

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874570A (en) * 1981-10-23 1983-05-06 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substantially pore-free formed body comprising polycrystal silicon nitride and silicon carbide and manufacture of same by equilibrium thermal compression

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248468A (en) * 1988-08-09 1990-02-19 Nissan Motor Co Ltd Calcined siliceous nitride compact and production thereof
JPH02116657A (en) * 1988-10-25 1990-05-01 Toshiba Corp Ceramic sliding member
JPH07330443A (en) * 1995-03-27 1995-12-19 Toshiba Corp Ceramic sliding part and its production

Also Published As

Publication number Publication date
JPH0321502B2 (en) 1991-03-22

Similar Documents

Publication Publication Date Title
JPH11246271A (en) Cubic boron nitride sintered body and its production
JPS62207767A (en) High temperature high strength silicon nitride ceramics and manufacture
JP3223275B2 (en) Method for producing cubic boron nitride sintered body
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JP4458692B2 (en) Composite material
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP2742619B2 (en) Silicon nitride sintered body
JPH025711B2 (en)
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP3328280B2 (en) Sintered silicon nitride with high toughness, strength and reliability
JPS60161383A (en) Ceramic part
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JPH0585506B2 (en)
JPH08508458A (en) Heat treatment of nitrogen ceramics
JPH06100376A (en) Sintered beta-sialon and its production
JPH0568428B2 (en)
JPH07223863A (en) Silicon nitride sintered compact
JPS62171977A (en) Method of strengthening silicon nitride ceramic body
JPH0513905B2 (en)
JPH05330916A (en) Heat-resistant mechanical part for gas turbine
JPS5884184A (en) Manufacture of high strength silicon nitride sintered body
JPH05306172A (en) Silicon nitride sintered compact excellent in strength at high temperature and oxidation resistance and its production
JPH06287063A (en) Silicon nitride ceramic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term