JP2000327430A - Aluminum nitride sintered compact and its production - Google Patents

Aluminum nitride sintered compact and its production

Info

Publication number
JP2000327430A
JP2000327430A JP11137449A JP13744999A JP2000327430A JP 2000327430 A JP2000327430 A JP 2000327430A JP 11137449 A JP11137449 A JP 11137449A JP 13744999 A JP13744999 A JP 13744999A JP 2000327430 A JP2000327430 A JP 2000327430A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
crystal grains
grain boundary
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11137449A
Other languages
Japanese (ja)
Other versions
JP4859267B2 (en
JP2000327430A5 (en
Inventor
Hideki Sato
秀樹 佐藤
Shinji Oda
晋司 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP13744999A priority Critical patent/JP4859267B2/en
Publication of JP2000327430A publication Critical patent/JP2000327430A/en
Publication of JP2000327430A5 publication Critical patent/JP2000327430A5/ja
Application granted granted Critical
Publication of JP4859267B2 publication Critical patent/JP4859267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered compact, consisting of aluminum nitride and a sintering aid and having crystal grains in the grain boundary, high in mechanical strength by limiting to a specific value the ratio of the grain diameter of the crystal grains in the grain boundary when the accumulated value reaches 75% to that of aluminum nitride crystal grains when the accumulated value reaches 50% in an optional cross-section. SOLUTION: This aluminum nitride sintered compact has 0.5-1.5 ratio of the grain diameters above defined. The production method comprises mixing aluminum nitride and the sintering aid wetly so that the ratio of the average grain size of the aluminum nitride powder before mixed to that of the mixed powder is 1.1-2 to obtain the mixed slurry, drying and compacting the mixed slurry to obtain a green body and sintering the green body under a non-oxidizing atmosphere. The sintering aid is desirably yttrium oxide, which forms crystal grains in the grain boundary by reacting with oxygen contained in the aluminum nitride starting powder as an impurity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い機械的強度と
高い熱伝導率とを併せ有する窒化アルミニウム焼結体に
関する。
TECHNICAL FIELD The present invention relates to an aluminum nitride sintered body having both high mechanical strength and high thermal conductivity.

【0002】[0002]

【従来の技術】近年、半導体の高集積化に伴ない、従来
のアルミナに代わる放熱特性の優れた半導体実装用基板
用材料が求められている。その中でも窒化アルミニウム
焼結体は、優れた電気絶縁性と、アルミナと比較して十
数倍も高い熱伝導率を有する材料であることから、半導
体実装用基板をはじめ、各種放熱部品材料及び絶縁用基
板として利用範囲が広がっている。
2. Description of the Related Art In recent years, as semiconductors become more highly integrated, there has been a demand for a material for a substrate for mounting semiconductors having excellent heat radiation characteristics, which can replace conventional alumina. Among them, aluminum nitride sintered body is a material that has excellent electrical insulation and a thermal conductivity that is more than ten times higher than that of alumina. The range of use as a substrate for use is expanding.

【0003】このうち、特に高出力の半導体実装用基板
の用途では、半導体を実装するために窒化アルミニウム
焼結体基板に銅等の薄板を接合したり、実装基板を更に
別のヒートシンク材(放熱フィンなどの金属部材)に接
着するなど、窒化アルミニウム自身に種々の大きな応力
がかかる状態で使用される場合が多く、高熱伝導率に加
え、従来よりさらに高強度な窒化アルミニウム焼結体が
必要とされるようになった。
[0003] Of these, particularly in the use of a high-output semiconductor mounting substrate, a thin plate of copper or the like is bonded to an aluminum nitride sintered substrate in order to mount a semiconductor, or a further heat sink material (radiation) is used. Aluminum nitride itself is often used under various stresses such as bonding to metal members such as fins. In addition to high thermal conductivity, aluminum nitride sintered body with higher strength than before is required. It was started.

【0004】そこで、窒化アルミニウム焼結体の機械的
強度を向上させるために、例えば特開平4−50171
号公報には、焼成の昇温時の線収縮速度を制御する方法
が、特開平5−238830号公報には、焼成後の冷却
速度を制御する方法が提案されている。また、特開平7
−172921号公報には、Si成分、Al23などの
添加により焼結体の粒度分布を制御する方法が提案され
ている。
[0004] In order to improve the mechanical strength of the aluminum nitride sintered body, for example, Japanese Patent Application Laid-Open No. 4-50171 has been proposed.
Japanese Patent Application Laid-Open No. 5-238830 proposes a method for controlling a linear shrinkage rate at the time of raising the temperature of firing, and a method for controlling a cooling rate after firing. Also, Japanese Patent Application Laid-Open
Japanese Patent Application No. 172921 proposes a method of controlling the particle size distribution of a sintered body by adding a Si component, Al 2 O 3, or the like.

【0005】[0005]

【発明が解決しようとしている課題】しかし、上記した
特開平4−50171号公報に記載されている昇温時の
線収縮速度で制御する方法では、熱膨張計を内装した焼
結炉が必要である等、特殊な装置が必要であり、実際の
製造装置に適用するには困難が伴なう。また、特開平5
−238830号公報及び特開平7−172921号公
報に記載されている方法は、いずれも焼結体組織を精密
に制御しなければならず、特に特開平7−172921
号公報に記載されている方法では、焼結体の1μmごと
の粒度存在割合を厳密に制御しなければならず、大きい
焼結体や量産スケールでは制御するのが困難であるとい
う問題点を有していた。
However, the method of controlling the linear shrinkage rate at the time of temperature increase described in JP-A-4-50171 described above requires a sintering furnace equipped with a thermal dilatometer. For example, special equipment is required, and it is difficult to apply it to an actual manufacturing apparatus. In addition, Japanese Patent Application Laid-Open
In any of the methods described in JP-A-238830 and JP-A-7-172921, the structure of the sintered body must be precisely controlled.
However, the method described in Japanese Patent Application Laid-Open Publication No. H11-270699 has a problem in that it is necessary to strictly control the particle size existence ratio per 1 μm of the sintered body, and it is difficult to control the ratio in a large sintered body or a mass production scale. Was.

【0006】そこで、量産性に優れ、かつ量産品の機械
的強度とその信頼性が高く、高熱伝導率の窒化アルミニ
ウム焼結体及びその製造方法の開発が望まれていた。
Therefore, there has been a demand for the development of an aluminum nitride sintered body which is excellent in mass productivity, has high mechanical strength of mass-produced products and high reliability, and has a high thermal conductivity and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を行なってきた。その結果、焼結助
剤と窒化アルミニウム中の不純物酸素との反応により生
成する粒界相結晶粒子の大きさが、強度に影響すること
を突き止めた。
The present inventors have intensively studied to solve the above-mentioned problems. As a result, it has been found that the size of the grain boundary phase crystal particles generated by the reaction between the sintering aid and the impurity oxygen in the aluminum nitride affects the strength.

【0008】すなわち、セラミックスなどの脆性材料で
は、引っ張り応力が加わると材料中の大きな欠陥に応力
が集中し、そこから破壊が生じる。一般に、強度
(σf)と破壊靭性値(KIC)及び欠陥長さ(c)に
は、次式の関係が成り立つ。
That is, in a brittle material such as ceramics, when a tensile stress is applied, the stress concentrates on a large defect in the material, and breakage occurs therefrom. In general, the following relationship is established between the strength (σ f ), the fracture toughness value (K IC ), and the defect length (c).

【0009】σf=KIC/(πc)(1/2) 欠陥の無い理想的な焼結体では欠陥長さ(c)はマトリ
ックスすなわち窒化アルミニウム結晶粒子の最大粒子径
と考えることができる。そこで、既知の破壊靭性値と前
記最大粒子径から、欠陥のない理想的な窒化アルミニウ
ム焼結体の強度を見積った結果、60kgf/mm2
いう理想強度を得ることができる。しかしながら、従来
の窒化アルミニウム焼結体では30〜45kgf/mm
2程度での強度しか得られない。
Σ f = K IC / (πc) (1/2) In an ideal sintered body having no defects, the defect length (c) can be considered as the maximum particle diameter of the matrix, that is, the aluminum nitride crystal particles. Therefore, as a result of estimating the strength of an ideal aluminum nitride sintered body having no defect from the known fracture toughness value and the maximum particle size, an ideal strength of 60 kgf / mm 2 can be obtained. However, in a conventional aluminum nitride sintered body, 30 to 45 kgf / mm
Only about 2 strength is obtained.

【0010】発明者らは、曲げ試験を行なった試験片の
破壊面を数多く観察し、破壊が起こった起点(破壊源と
いう)を注意深く調べた結果、それらの多くは粒界相結
晶粒子が集まってできた、窒化アルミニウム結晶粒子よ
り大きな集合粒子であり、しかも、その大きさが大きく
なるにつれて強度が低下していくことを突き止めた。
The inventors have observed a large number of fractured surfaces of the test pieces subjected to the bending test, and carefully examined the starting point of fracture (referred to as a fracture source). As a result, many of them have gathered grain boundary phase crystal grains. It was found that the resulting aggregated particles were larger than the aluminum nitride crystal particles, and the strength decreased as the size increased.

【0011】これらの結果に基づき、焼結助剤と、窒化
アルミニウム粉末中の不純物酸素との反応により生成す
る粒界相結晶粒子の大きさを、窒化アルミニウム結晶粒
子の大きさと同程度に制御することにより、量産性に優
れ、かつ量産時の機械的強度が高く、高熱伝導率の窒化
アルミニウム焼結体を得ることを見出し、さらに研究を
進め、本発明を完成するに至った。
Based on these results, the size of the grain boundary phase crystal particles formed by the reaction between the sintering aid and the impurity oxygen in the aluminum nitride powder is controlled to be substantially the same as the size of the aluminum nitride crystal particles. As a result, they found that an aluminum nitride sintered body having excellent mass productivity, high mechanical strength during mass production, and high thermal conductivity was obtained, and further research was carried out, thereby completing the present invention.

【0012】即ち、本発明は、窒化アルミニウムと焼結
助剤とからなる焼結体において、粒界相結晶粒子を有
し、かつ、焼結体の任意の切断面における粒界相結晶粒
子の累積値75%粒子径と窒化アルミニウム結晶粒子の
累積値50%粒子径との比が0.5〜1.5であること
を特徴とする窒化アルミニウム焼結体である。
That is, the present invention provides a sintered body comprising aluminum nitride and a sintering aid, wherein the sintered body has grain boundary phase crystal grains, and the grain boundary phase crystal grains at an arbitrary cut surface of the sintered body. An aluminum nitride sintered body characterized in that a ratio of a cumulative value of 75% particle diameter to a cumulative value of 50% particle diameter of aluminum nitride crystal particles is 0.5 to 1.5.

【0013】[0013]

【発明の実施の形態】本発明の窒化アルミニウム焼結体
は、窒化アルミニウムと焼結助剤とからなる焼結体であ
り、かつ以下の性質を有していることが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION The aluminum nitride sintered body of the present invention is a sintered body composed of aluminum nitride and a sintering aid, and must have the following properties.

【0014】本発明の窒化アルミニウム焼結体は、粒界
相結晶粒子を有していることが必要である。
The aluminum nitride sintered body of the present invention needs to have grain boundary phase crystal grains.

【0015】上記粒界相は、窒化アルミニウム結晶粒子
の粒界に存在する相である。
The grain boundary phase is a phase present at the grain boundaries of the aluminum nitride crystal grains.

【0016】また、粒界相結晶粒子は、上記粒界相を構
成する、焼結助剤単独、焼結助剤同士の反応生成物、ま
たは焼結助剤と窒化アルミニウム中の不純物酸素との反
応生成物等よりなる結晶粒子である。例えば、焼結助剤
が酸化イットリウムの場合、一般的に窒化アルミニウム
原料粉末中に含まれる不純物酸素と反応して3Y23
5Al23(YAG)、Y23・Al23(YAL)、
2Y23・Al23(YAM)等からなる粒界相結晶粒
子を形成する。
Further, the grain boundary phase crystal particles may constitute the above-mentioned grain boundary phase, a sintering aid alone, a reaction product of the sintering aids, or a mixture of the sintering aid and impurity oxygen in aluminum nitride. It is a crystal particle composed of a reaction product or the like. For example, when the sintering aid is yttrium oxide, it generally reacts with impurity oxygen contained in the aluminum nitride raw material powder to produce 3Y 2 O 3.
5Al 2 O 3 (YAG), Y 2 O 3 · Al 2 O 3 (YAL),
Grain boundary phase crystal grains made of 2Y 2 O 3 .Al 2 O 3 (YAM) or the like are formed.

【0017】本発明において用いられる焼結助剤として
は、上記酸化イットリウムが最も好適であるが、これに
限定されず、他の公知の焼結助剤も使用することができ
る。例えば、Y23の他、LaO3、CeO2、Ho
3、Yb23、Gd23、Nb23、Sm23、Dy2
3等の希土類酸化物、CaO、SrOなどのアルカリ
土類金属酸化物などの、1種または2種以上の混合物が
挙げられる。
As the sintering aid used in the present invention, the above-mentioned yttrium oxide is most preferred, but is not limited thereto, and other known sintering aids can also be used. For example, in addition to Y 2 O 3 , LaO 3 , CeO 2 , Ho
O 3 , Yb 2 O 3 , Gd 2 O 3 , Nb 2 O 3 , Sm 2 O 3 , Dy 2
One or a mixture of two or more of rare earth oxides such as O 3 and alkaline earth metal oxides such as CaO and SrO can be mentioned.

【0018】本発明の窒化アルミニウム焼結体は、任意
の切断面において、粒界相結晶粒子の累積値75%の粒
子径と窒化アルミニウム結晶粒子の累積値50%の粒子
径との比が0.5〜1.5の範囲でなければならない。
In the aluminum nitride sintered body of the present invention, the ratio between the particle diameter of the cumulative value of 75% of the grain boundary phase crystal grains and the particle diameter of the cumulative value of 50% of the aluminum nitride crystal grains is 0 at an arbitrary cut surface. 0.5 to 1.5.

【0019】なお、ここで累積値の粒子径は、粒度分布
における最小の粒子から累積した値での粒子径であり、
本発明においては、焼結体の任意の断面の微構造を画像
解析して求めた一つ一つの結晶粒子を面積の小さい方か
ら累積した粒度分布を用いて粒子径を算出した。例え
ば、前記の窒化アルミニウム結晶粒子の累積値50%の
粒子径は、画像解析をして求めた窒化アルミニウム結晶
粒子全部の総面積の50%の累積面積に対応する結晶粒
子の粒子径を粒度分布より求めた値である。
Here, the particle size of the cumulative value is a particle size at a value accumulated from the smallest particle in the particle size distribution.
In the present invention, the particle diameter was calculated using a particle size distribution obtained by accumulating individual crystal grains obtained by image analysis of a microstructure of an arbitrary cross section of the sintered body from a smaller area. For example, the particle diameter of 50% of the cumulative value of the aluminum nitride crystal particles is determined by dividing the particle diameter of the crystal particles corresponding to the cumulative area of 50% of the total area of all the aluminum nitride crystal particles obtained by image analysis into the particle size distribution. It is a value obtained from the above.

【0020】前記粒子径の比が0.5〜1.5の範囲で
ある場合には、粒界相結晶粒子の大きさが、マトリック
スである窒化アルミニウム結晶粒子とほぼ同程度の大き
さであって、かつ、窒化アルミニウム結晶粒子より大き
いものが少ないので、焼結体中に均一に分散する微構造
となり、本発明の曲げ強度と熱伝導率を達成することが
できる。
When the ratio of the particle diameters is in the range of 0.5 to 1.5, the size of the grain boundary phase crystal grains is substantially the same as the size of the aluminum nitride crystal grains as the matrix. In addition, since there are few particles larger than the aluminum nitride crystal particles, a microstructure uniformly dispersed in the sintered body is obtained, and the bending strength and the thermal conductivity of the present invention can be achieved.

【0021】前記粒子径の比が1.5より大きい場合
は、窒化アルミニウム結晶粒子より大きな粒界相結晶粒
子の増加によって、強度は大きく低下するので好ましく
ない。
When the ratio of the particle diameters is larger than 1.5, the strength is greatly reduced due to the increase of grain boundary phase crystal grains larger than the aluminum nitride crystal grains, which is not preferable.

【0022】逆に、前記粒子径の比が0.5より小さい
場合は、焼結体中の窒化アルミニウム結晶粒子内の不純
物酸素が残存するため、熱伝導率を向上させる効果が小
さくなり好ましくない。
Conversely, if the ratio of the particle diameters is smaller than 0.5, impurity oxygen in the aluminum nitride crystal particles in the sintered body remains, so that the effect of improving the thermal conductivity is reduced, which is not preferable. .

【0023】本発明の窒化アルミニウム焼結体におい
て、該窒化アルミニウム結晶粒子の平均粒子径は、特に
制限されないが、焼結体の機械的強度等を勘案すると、
10μm以下、さらに7μm以下が好ましい。
In the aluminum nitride sintered body of the present invention, the average particle size of the aluminum nitride crystal grains is not particularly limited, but considering the mechanical strength of the sintered body,
It is preferably 10 μm or less, more preferably 7 μm or less.

【0024】また、上記窒化アルミニウム結晶粒子の粒
度分布に関しては、特に制限ないが、1μm未満の結晶
粒子が20%以下であることが、高い熱伝導率を持つ焼
結体を得ることを勘案すると好ましい。
The particle size distribution of the aluminum nitride crystal particles is not particularly limited. However, considering that the number of crystal particles having a size of less than 1 μm is 20% or less, considering that a sintered body having a high thermal conductivity is obtained. preferable.

【0025】上記粒界相結晶粒子の粒度分布に関して
も、特に制限ないが、1μm未満の結晶粒子が20%以
下であることが高い熱伝導率を持つ焼結体を得ることを
勘案すると好ましく、さらに10μmを超える結晶粒子
が1%以下、より好適には0.5%以下であることが高
強度の焼結体を得るために好ましい。
The grain size distribution of the grain boundary phase crystal grains is not particularly limited, but it is preferable that crystal grains having a size of less than 1 μm be 20% or less in view of obtaining a sintered body having a high thermal conductivity. Further, it is preferable that the crystal grains having a size exceeding 10 μm be 1% or less, more preferably 0.5% or less, in order to obtain a high-strength sintered body.

【0026】さらに、上記粒界相結晶粒子の累積値50
%の粒子径と、窒化アルミニウム結晶粒子の累積値50
%の粒子径とは、できるだけ等しいことが本発明の効果
を勘案すると好ましい。具体的には、粒界相結晶粒子の
累積値50%の粒子径と、窒化アルミニウム結晶粒子の
累積値50%の粒子径との比が、0.7〜1.2の範囲
であることが、より好適である。
Further, the cumulative value of the grain boundary phase crystal grains is 50
% And the cumulative value of aluminum nitride crystal particles of 50%
% Is preferably equal to the particle diameter in consideration of the effects of the present invention. Specifically, the ratio of the particle diameter of the cumulative value of 50% of the grain boundary phase crystal particles to the particle diameter of the cumulative value of 50% of the aluminum nitride crystal particles may be in the range of 0.7 to 1.2. Is more preferable.

【0027】また、本発明の窒化アルミニウム焼結体
は、粒界相結晶粒子が均一に分布していることが必要で
あり、とくに重心間距離法における分散度が、0.40
〜0.60の範囲である均一分布が好適である。
The aluminum nitride sintered body of the present invention needs to have grain boundary phase crystal grains uniformly distributed.
A uniform distribution in the range of 0.60.60 is preferred.

【0028】また、本発明の窒化アルミニウム焼結体
は、焼結助剤により生成する粒界相の濃度が4.5〜
9.0wt%であることが好ましい。焼結助剤により生
成する粒界相の濃度が4.5wt%未満の場合には、該
焼結体中の窒化アルミニウム結晶粒子に不純物酸素が残
存するため、高い熱伝導率を持つ焼結体が得られにくく
なるので好ましくなく、また、9.0wt%より多い場
合には、粒界相結晶粒子の集合体の生成などにより曲げ
強度が低下するとともに、該粒界相結晶粒子の焼結体中
に占める割合が多くなり過ぎるために高い熱伝導率を持
つ焼結体が得られにくくなるので好ましくない。
In the aluminum nitride sintered body of the present invention, the concentration of the grain boundary phase generated by the sintering aid is 4.5 to 4.5.
It is preferably 9.0 wt%. When the concentration of the grain boundary phase generated by the sintering aid is less than 4.5 wt%, impurity oxygen remains in the aluminum nitride crystal particles in the sintered body, and therefore, the sintered body having a high thermal conductivity. When the content is more than 9.0 wt%, the bending strength is lowered due to the formation of aggregates of the grain boundary phase crystal particles, and the sintered body of the grain boundary phase crystal particles is reduced. It is not preferable because a sintering ratio becomes too large to obtain a sintered body having a high thermal conductivity.

【0029】本発明の窒化アルミニウム焼結体は、上記
したように結晶粒子を制御することにより、焼結体の曲
げ強度が50kgf/mm2以上、熱伝導率が160W
/mK以上である焼結体を得ることができる。
The aluminum nitride sintered body of the present invention has a bending strength of 50 kgf / mm 2 or more and a thermal conductivity of 160 W by controlling the crystal grains as described above.
/ MK or more.

【0030】本発明の窒化アルミニウム焼結体の形状、
大きさは特に制限されないが、特に、厚み100mm以
下、好ましくは0.3〜10mmの厚みの板状物におい
て、効果が特に顕著である。
The shape of the aluminum nitride sintered body of the present invention,
Although the size is not particularly limited, the effect is particularly remarkable in a plate-like object having a thickness of 100 mm or less, preferably 0.3 to 10 mm.

【0031】本発明の窒化アルミニウム焼結体の一態様
例を図1に、従来公知の窒化アルミニウム焼結体の一態
様例を図2に示す。なお、黒色部分が窒化アルミニウム
結晶粒子、白色部分が粒界相結晶粒子を示す。
FIG. 1 shows an embodiment of the aluminum nitride sintered body of the present invention, and FIG. 2 shows an embodiment of a conventionally known aluminum nitride sintered body. The black portions indicate aluminum nitride crystal grains, and the white portions indicate grain boundary phase crystal particles.

【0032】図に示すとおり、従来の窒化アルミニウム
焼結体は、本発明の窒化アルミニウム焼結体と比較し
て、非常に大きい粒界相結晶粒子が多数存在するため、
本発明の規定を満足しない。
As shown in the figure, the conventional aluminum nitride sintered body has a large number of very large grain boundary phase crystal grains as compared with the aluminum nitride sintered body of the present invention.
Does not satisfy the requirements of the present invention.

【0033】本発明の窒化アルミニウム焼結体の製造方
法は、本発明で規定する性質を有するように製造すれ
ば、特に制限されないが、以下に示す方法により、好適
に本発明で規定する性質を達成することができる。
The method for producing the aluminum nitride sintered body of the present invention is not particularly limited as long as it has the properties specified in the present invention, but the properties specified in the present invention are preferably determined by the following method. Can be achieved.

【0034】すなわち、混合前の窒化アルミニウム粉末
の平均粒径と、窒化アルミニウム粉末と焼結助剤とより
なる混合粉末の平均粒径との比が、1.1〜2の範囲に
なるように湿式混合してスラリーを得、次いで該スラリ
ーを乾燥・成形してグリーン体を得、そして該グリーン
体を非酸化雰囲気中で焼成する方法である。
That is, the ratio of the average particle size of the aluminum nitride powder before mixing to the average particle size of the mixed powder composed of the aluminum nitride powder and the sintering aid is in the range of 1.1 to 2. In this method, a slurry is obtained by wet mixing, and then the slurry is dried and molded to obtain a green body, and the green body is fired in a non-oxidizing atmosphere.

【0035】以下、詳細に説明する。The details will be described below.

【0036】本発明において、上記窒化アルミニウム粉
末は、公知のものが特に制限なく使用できるが、緻密な
焼結体を得ることを勘案すると、混合前の平均粒径が5
μm以下であることが好ましく、3μm以下が更に好ま
しい。
In the present invention, as the above-mentioned aluminum nitride powder, known ones can be used without any particular limitation. However, in view of obtaining a dense sintered body, the average particle size before mixing is 5%.
It is preferably at most 3 μm, more preferably at most 3 μm.

【0037】また、高い熱伝導率を有する焼結体を得る
ことを勘案すると、上記窒化アルミニウム粉末の平均粒
径は0.8μm以上で、酸素濃度は1.0wt%以下で
あることが好ましい。前記平均粒径が0.8μmより小
さい窒化アルミニウム粉末は、表面積が大きい分、酸素
濃度が高くなる傾向があり、結果として、高熱伝導率の
窒化アルミニウム焼結体が得られにくくなるので好まし
くない。
In consideration of obtaining a sintered body having a high thermal conductivity, it is preferable that the average particle diameter of the aluminum nitride powder is 0.8 μm or more and the oxygen concentration is 1.0 wt% or less. The aluminum nitride powder having an average particle size smaller than 0.8 μm is not preferable because the surface area is large and the oxygen concentration tends to be high, and as a result, it is difficult to obtain an aluminum nitride sintered body having high thermal conductivity.

【0038】上記焼結助剤粉末は、公知のものが特に制
限なく使用できるが、緻密でかつ高熱伝導率を有する焼
結体を得ることを勘案すると、前記した希土類元素の酸
化物やアルカリ土類金属の酸化物が好ましく、その中で
も酸化イットリウムが好適である。また、その添加量
は、窒化アルミニウム粉末100重量部に対して3.0
〜8.0重量部にすることが好ましい。上記添加量にす
ることにより、粒界相結晶粒子の累積値75%粒子径と
窒化アルミニウム結晶粒子の累積値50%粒子径との比
を、本発明で規定する範囲に制御することが容易とな
る。
As the sintering aid powder, known powders can be used without any particular limitation. However, in view of obtaining a dense sintered body having a high thermal conductivity, oxides of the above-mentioned rare earth elements and alkaline earths are considered. Oxides of similar metals are preferred, and among them, yttrium oxide is preferred. The amount of addition was 3.0 per 100 parts by weight of aluminum nitride powder.
It is preferred that the amount be up to 8.0 parts by weight. With the above addition amount, it is easy to control the ratio of the cumulative value of 75% of the grain boundary phase crystal grains to the cumulative value of 50% of the aluminum nitride crystal grains within the range specified in the present invention. Become.

【0039】本発明において、上記グリーン体は、窒化
アルミニウム粉末、希土類化合物粉末からなる混合粉末
に有機バインダー等を添加してプレスまたはシート成形
する方法などによって得られる。
In the present invention, the green body is obtained by a method such as pressing or sheet forming by adding an organic binder or the like to a mixed powder comprising an aluminum nitride powder and a rare earth compound powder.

【0040】上記バインダーとしては、公知のものが特
に制限なく使用できる。具体的にはポリビニルブチラー
ル、エチルセルロース類やアクリル樹脂類などが使用で
き、その中でも、ポリビニルブチラール及びポリn−ブ
チルメタクリレートがグリーン体成形性に優れているの
で好適である。
As the binder, known binders can be used without any particular limitation. Specifically, polyvinyl butyral, ethyl celluloses, acrylic resins, and the like can be used. Among them, polyvinyl butyral and poly n-butyl methacrylate are preferable because of their excellent green formability.

【0041】また、上記混合粉末への有機バインダーの
混合割合は、混合粉末100重量部に対し、プレス成形
体を得る場合には、2〜15重量部、シート体を得る場
合には、5〜15重量部の添加が好ましく採用される。
The mixing ratio of the organic binder to the mixed powder is 2 to 15 parts by weight for obtaining a pressed product and 100 to 5 parts by weight for obtaining a sheet with respect to 100 parts by weight of the mixed powder. An addition of 15 parts by weight is preferably employed.

【0042】上記した有機バインダーを用いるグリーン
体の成形方法としては、上記混合粉及び有機バインダー
に、アルコール類やトルエンなどの有機溶媒、グリセリ
ン化合物類などの分散剤及びフタル酸エステル類などの
可塑剤を加えて、ボールミルで十分に混合してスラリー
状にしたものをドクターブレード法によりシート状のグ
リーン体にする方法や、スプレードライ法により顆粒状
にした後に金型プレスによりブロック状のグリーン体に
する方法が一般的である。
As a method of forming a green body using the above-mentioned organic binder, the mixed powder and the organic binder are added to an organic solvent such as alcohols and toluene, a dispersant such as glycerin compounds, and a plasticizer such as phthalic esters. Then, a slurry is formed by mixing well with a ball mill to form a sheet-like green body by a doctor blade method, or a granule is formed by a spray dry method, and then a block-like green body is formed by a die press. The method of doing is general.

【0043】本発明の製造方法における特徴の一つは、
混合前の窒化アルミニウム粉末の平均粒径と、窒化アル
ミニウム粉末と焼結助剤よりなる混合粉末の平均粒径と
の比が、1.1〜2の範囲になるように湿式混合するこ
とにある。
One of the features of the manufacturing method of the present invention is as follows.
The wet mixing is performed so that the ratio between the average particle diameter of the aluminum nitride powder before mixing and the average particle diameter of the mixed powder including the aluminum nitride powder and the sintering aid is in the range of 1.1 to 2. .

【0044】混合前の窒化アルミニウム粉末の平均粒径
と、窒化アルミニウム粉末と焼結助剤よりなる混合粉末
の平均粒径との比が、1.1〜2の範囲である場合に
は、窒化アルミニウム粉末と焼結助剤とがそれぞれ適度
に解砕されている状態となる。
If the ratio of the average particle size of the aluminum nitride powder before mixing to the average particle size of the mixed powder comprising the aluminum nitride powder and the sintering aid is in the range of 1.1 to 2, The aluminum powder and the sintering aid are each appropriately pulverized.

【0045】上記粉末の平均粒径の比が1.1より小さ
い場合には、窒化アルミニウム粉末や焼結助剤粉末はほ
とんど解砕されておらず、それぞれの粉末が均一に混合
されるのみである。この場合において、解砕されなかっ
た焼結助剤の粗大粒子が混合粉末中に存在するため、高
温焼成後の焼結体中にも粗大な粒界相結晶粒子の集合体
が多く存在し、本発明の焼結体が得られ難い。
When the ratio of the average particle diameters of the powders is smaller than 1.1, the aluminum nitride powder and the sintering aid powder are hardly pulverized, and only the respective powders are uniformly mixed. is there. In this case, since coarse particles of the sintering aid that have not been crushed are present in the mixed powder, there are also many aggregates of coarse grain boundary phase crystal particles in the sintered body after high-temperature firing, It is difficult to obtain the sintered body of the present invention.

【0046】一方、上記粉末の平均粒径の比が2より大
きい場合には、窒化アルミニウム粉末や焼結助剤粉末が
一次粒子の大きさまで解砕される。その結果、窒化アル
ミニウム粉末の比表面積が大きくなるため、粉末の酸素
濃度が高くなり、該粉末を高温焼成して得られた焼結体
は、本発明の目的である高熱伝導率を達成できない傾向
となる。
On the other hand, when the ratio of the average particle diameter of the powder is larger than 2, the aluminum nitride powder and the sintering aid powder are crushed to the size of the primary particles. As a result, the specific surface area of the aluminum nitride powder increases, so that the oxygen concentration of the powder increases, and the sintered body obtained by sintering the powder at a high temperature tends not to achieve the high thermal conductivity that is the object of the present invention. Becomes

【0047】解砕された焼結助剤の微粉末は、混合粉末
のスラリー、あるいは該スラリーの乾燥後のグリーン体
中で均一に分散することが好ましい。例えば、均一に分
散している状態は、前記スラリーをドクターブレード法
でシート状のグリーン体にして、焼結助剤のグリーン体
での状態を、SEM(走査型電子顕微鏡)の反射電子像
などで観察することにより、確認できる。
It is preferable that the crushed fine powder of the sintering aid is uniformly dispersed in a slurry of the mixed powder or a green body after the slurry is dried. For example, when the slurry is uniformly dispersed, the slurry is formed into a sheet-like green body by a doctor blade method, and the state of the green body of the sintering aid is represented by a reflection electron image of a scanning electron microscope (SEM). It can be confirmed by observing with.

【0048】本発明において、混合前の窒化アルミニウ
ム粉末の平均粒径と、窒化アルミニウム粉末と焼結助剤
よりなる混合粉末の平均粒径との比が、1.1〜2の範
囲になるように湿式混合する方法は、特に制限されない
が、ボールミルを用い、かつ、特定の硬度のボールを使
用する方法を用いることにより、前記範囲を容易に達成
することができる。
In the present invention, the ratio between the average particle size of the aluminum nitride powder before mixing and the average particle size of the mixed powder composed of the aluminum nitride powder and the sintering aid is in the range of 1.1 to 2. The method of wet mixing is not particularly limited, but the above range can be easily achieved by using a ball mill and a method using a ball of a specific hardness.

【0049】すなわち、混合時に使用するボール表面の
材質の硬度が900kgf/mm2(ビッカース硬度)
以上、ボール全体の密度が3〜6.5g/cm3、ボー
ル径が5〜20mmの範囲にあるボールが好適である。
That is, the hardness of the material of the ball surface used during mixing is 900 kgf / mm 2 (Vickers hardness).
As described above, a ball having a total ball density of 3 to 6.5 g / cm 3 and a ball diameter of 5 to 20 mm is preferable.

【0050】このような特性を持つボールについて、例
を挙げると、セラミック製の、具体的にはAl23,Z
rO2、Si34、SiAlON,AlN製のボールが
挙げられる。その中で、特にアルミナ製のボールが、本
発明の窒化アルミニウム焼結体を得ることを勘案する
と、好ましい。
With respect to a ball having such characteristics, for example, a ceramic ball, specifically, Al 2 O 3 , Z
balls made of rO 2 , Si 3 O 4 , SiAlON, and AlN. Among them, alumina balls are particularly preferable in consideration of obtaining the aluminum nitride sintered body of the present invention.

【0051】また、湿式混合の条件(容器への充填率、
回転数、使用する溶剤量、混合時間等)は、使用するボ
ールの硬度、密度、ボール径に応じて適宜決定すればよ
い。
The conditions of the wet mixing (filling rate into the container,
The number of rotations, the amount of solvent used, the mixing time, etc.) may be appropriately determined according to the hardness, density, and ball diameter of the ball used.

【0052】上記した有機バインダーを用いたグリーン
体は、通常、焼結を行う前に脱脂をおこない、脱脂体と
する。上記脱脂は、酸素や空気などの酸化性ガス、ある
いは水素などの還元性ガス、アルゴンや窒素などの不活
性ガス、二酸化炭素及びこれらの混合ガスあるいは水蒸
気を混合した加湿ガス雰囲気中での熱処理によって行な
う方法が一般的である。上記脱脂の温度は300℃〜1
200℃、また、脱脂時間は1分〜500分の範囲で、
上記有機バインダーの配合割合と脱脂方法に応じて適宜
選択すればよい。その際、雰囲気、温度、保持時間を調
節して脱脂体の酸素濃度を2.5wt%以下にしておく
ことが好ましい。酸素濃度を2.5wt%以下にするこ
とにより、窒化アルミニウム焼結体の熱伝導率を向上さ
せることが容易となる。
The green body using the above-mentioned organic binder is usually degreased before sintering to obtain a degreased body. The degreasing is performed by heat treatment in an oxidizing gas such as oxygen or air, or a reducing gas such as hydrogen, an inert gas such as argon or nitrogen, carbon dioxide and a mixed gas thereof, or a humidified gas atmosphere containing a mixture of steam. This is generally done. The degreasing temperature is 300 ° C ~ 1
200 ° C, and the degreasing time is in the range of 1 minute to 500 minutes,
What is necessary is just to select suitably according to the compounding ratio of the said organic binder, and a degreasing method. At that time, it is preferable that the oxygen concentration of the degreased body be adjusted to 2.5 wt% or less by adjusting the atmosphere, the temperature, and the holding time. By setting the oxygen concentration to 2.5 wt% or less, it becomes easy to improve the thermal conductivity of the aluminum nitride sintered body.

【0053】本発明において、前記グリーン体や上記脱
脂体は、非酸化性雰囲気中、その原料中に添加した焼結
助剤の量や、前記グリーン体や上記脱脂体の大きさや厚
みに応じた最適緻密化温度により焼成すればよい。な
お、ここで最適緻密化とは、焼結体の理論密度に対する
試料密度(相対密度という)が98%以上にすることを
いう。
In the present invention, the green body and the degreased body are determined in a non-oxidizing atmosphere in accordance with the amount of the sintering aid added to the raw material and the size and thickness of the green body and the degreased body. It may be fired at the optimum densification temperature. Here, the optimum densification means that the sample density (referred to as relative density) with respect to the theoretical density of the sintered body is 98% or more.

【0054】また、上記最適緻密化温度は、各試料であ
らかじめ緻密化曲線(収縮曲線)を調べることにより求
めることができ、一般的に1650〜1800℃の範囲
から選択すればよい。焼成温度が1650℃より低いと
緻密な焼結体が得られず、緻密でない部分の強度が低い
ために、焼結体の曲げ強度が低くなる。また、焼成温度
が1800℃より高い場合、焼結体の粒成長の促進によ
り焼結体の結晶粒径が10μmを超えてしまい、本発明
の曲げ強度を有する焼結体が得られにくくなる。
The optimum densification temperature can be determined by examining a densification curve (shrinkage curve) of each sample in advance, and may be generally selected from the range of 1650 to 1800 ° C. If the sintering temperature is lower than 1650 ° C., a dense sintered body cannot be obtained, and the bending strength of the sintered body becomes low because the strength of the non-dense part is low. When the firing temperature is higher than 1800 ° C., the crystal grain size of the sintered body exceeds 10 μm due to the promotion of the grain growth of the sintered body, and it becomes difficult to obtain the sintered body having the bending strength of the present invention.

【0055】また、上記非酸化性雰囲気としては、例え
ば窒素、アルゴン、ヘリウム、水素などのガス単独ある
いは混合ガスよりなる雰囲気又は真空(又は減圧)雰囲
気が使用される。
As the non-oxidizing atmosphere, for example, an atmosphere consisting of a gas such as nitrogen, argon, helium, hydrogen alone or a mixed gas, or a vacuum (or reduced pressure) atmosphere is used.

【0056】上記焼結は、通常、焼成容器に収容して行
われる。上記焼成容器としては、窒化アルミニウムの焼
成に使われる公知の容器が使用できる。具体的に例を上
げると、窒化アルミニウム製あるいは窒化ホウ素製の箱
型の密閉容器が挙げられる。
The above sintering is usually carried out in a firing container. As the firing container, a known container used for firing aluminum nitride can be used. To give a specific example, a box-shaped closed container made of aluminum nitride or boron nitride can be mentioned.

【0057】また、前記成形体や脱脂体同士、さらには
焼成容器との間には、焼成による融着を防ぐために一般
的に使用されている敷粉を介在させても良い。敷粉とし
ては、例えば窒化ホウ素粉末等が使用される。
In addition, bedding powder generally used for preventing fusion due to firing may be interposed between the compacts and degreased bodies, and further between the firing container. As the spreading powder, for example, boron nitride powder or the like is used.

【0058】上記焼成時間は、特に限定されないが、通
常1分〜20時間、更に好ましくは1時間〜10時間に
設定するのが好適である。
The calcination time is not particularly limited, but is preferably set to usually 1 minute to 20 hours, more preferably 1 hour to 10 hours.

【0059】このように、本発明の窒化アルミニウム焼
結体は、高い機械的強度と高い熱伝導率を有する。ま
た、絶縁抵抗、誘電率、その他の焼結体物性値ならびに
焼結体の外観も良好である。
As described above, the aluminum nitride sintered body of the present invention has high mechanical strength and high thermal conductivity. Also, the insulation resistance, the dielectric constant, other physical properties of the sintered body, and the appearance of the sintered body are good.

【0060】[0060]

【実施例】以下、本発明の方法を具体的に説明するため
の実施例を示すが、本発明はこれらの実施例に限定され
るものではない。
The present invention will be described in more detail with reference to the following Examples, which by no means limit the scope of the present invention.

【0061】なお、以下の実施例及び比較例における各
種の物性の測定は次の方法により行なった。 1)窒化アルミニウム粉末及び混合粉末の平均粒径 MICROTRAC II(LEED&NORTHRUP
社製)を用いて、レーザー回折法により求めた。窒化ア
ルミニウム粉末は水に分散させて測定した。また、混合
粉末は混合・脱溶媒後のスラリーから完全に有機溶媒成
分を加熱などにより除去した乾燥粉末を作製し、それを
エタノールに分散させて測定した。 2)窒化アルミニウム結晶粒子径及び粒界相結晶粒子径 焼結体微構造の写真から、画像解析システム(IP−1
000PC、旭化成工業製)を使用して以下の方法によ
り各粒子径を求めた。
The various physical properties in the following Examples and Comparative Examples were measured by the following methods. 1) Average particle size of aluminum nitride powder and mixed powder MICROTRAC II (LEED & NORTHRUUP)
(Manufactured by K.K.). The aluminum nitride powder was dispersed in water and measured. The mixed powder was measured by dispersing it in ethanol to prepare a dry powder in which the organic solvent component was completely removed from the slurry after mixing and desolvation by heating or the like. 2) Aluminum nitride crystal grain size and grain boundary phase crystal grain size An image analysis system (IP-1)
000PC, manufactured by Asahi Kasei Kogyo Co., Ltd.) and the respective particle sizes were determined by the following methods.

【0062】まず、評価する焼結体の任意の断面を鏡面
に研磨し、窒化アルミニウム結晶粒子の粒成長が起こら
ない温度である、1600〜1650℃で数分間熱処理
した。この処理により、結晶粒界でのエッチング速度が
他の部分に比べて大きいため結晶粒界部分のみがエッチ
ングされて、窒化アルミニウム結晶粒子及び粒界相結晶
粒子の一つ一つが識別できる表面を得ることができる。
First, an arbitrary cross section of the sintered body to be evaluated was polished to a mirror surface and heat-treated for several minutes at 1600 to 1650 ° C., which is a temperature at which aluminum nitride crystal grains do not grow. By this treatment, only the crystal grain boundary portion is etched because the etching rate at the crystal grain boundary is higher than other portions, and a surface is obtained in which each of the aluminum nitride crystal grains and the grain boundary phase crystal grains can be identified. be able to.

【0063】次いで、その表面を走査型電子顕微鏡(S
EM)を用いて観察し、なるべく平均的な組織であっ
て、観察粒子200〜300個が一つの視野に入るよう
な倍率で微構造の写真を得て、観察粒子数が1000〜
2000個になるように複数枚の写真を用意した。微構
造の写真では、図1および図2に示すように、窒化アル
ミニウム結晶粒子がグレー〜黒色、粒界相結晶粒子が白
色で表されるので、これらの粒子の識別は容易に行なう
ことができる。
Next, the surface is scanned with a scanning electron microscope (S
Observed using EM), a microstructure photograph was obtained at a magnification such that 200 to 300 observed particles were included in one field of view, and the average number of observed particles was 1000 to 100.
A plurality of photographs were prepared so as to have 2,000. In the microstructure photograph, as shown in FIGS. 1 and 2, the aluminum nitride crystal grains are shown in gray to black and the grain boundary phase crystal grains are shown in white, so that these grains can be easily identified. .

【0064】最後にこれらの微構造の写真を画像を、コ
ンピューターによる画像解析システムを使って窒化アル
ミニウム結晶粒子の1000〜2000の個々の粒子の
面積と円相当径を求めた。前記微構造の写真における粒
界相結晶粒子についても、窒化アルミニウム結晶粒子と
同様に、面積と円相当径を求めた。なお、窒化アルミニ
ウム結晶粒子や粒界相結晶粒子はほぼ等軸状であり、粒
子径は円相当径であらわすことができる。また、解析の
際、解析画像端部で粒子が切れている結晶粒子について
は評価の対象から外した。さらに、2つ以上の粒界相結
晶粒子が接触している場合、2つの結晶粒子の境界の長
さがそれら粒子の平均粒子径より大きい場合にはそれら
の結晶粒子を合わせた粒子を1粒子として扱った。 3)粒界相結晶粒子の分散度の測定 上記結晶粒子径の測定に使った微構造の写真を使い、上
記画像解析システムを使って、重心間距離法(近接する
粒子の重心間距離より分散度を求める方法)により粒界
相粒子の焼結体中の分散度を求めた。分散度は粒子間距
離の平均偏差と平均粒子間距離の比で表され、値が小さ
いほうが分散が良好である。 4)曲げ強度の測定 JIS R1601に従い、クロスヘッド速度0.5m
m/分、スパン30mmで3点曲げ試験を行なった。試
験片の幅は4mmで、焼結体を6mm幅に切り出し、両
端を1mm研削加工して所定の幅にした。また、厚みは
シート加工した試料は焼結体そのものの厚みとし、試験
片の上下面は研削及び研磨加工しない焼結体の表面とし
た。 4)熱伝導率の測定 理学電気(株)製の熱定数測定装置PS−7を使用し
て、レーザーフラッシュ法により測定した。厚み補正は
検量線により行なった。
Finally, the images of these microstructures were taken as images, and the areas and circle equivalent diameters of 1000 to 2000 individual aluminum nitride crystal grains were determined using a computer image analysis system. Regarding the grain boundary phase crystal grains in the microstructure photograph, the area and the circle equivalent diameter were determined in the same manner as the aluminum nitride crystal grains. The aluminum nitride crystal grains and the grain boundary phase crystal grains are substantially equiaxed, and the particle diameter can be represented by a circle equivalent diameter. Further, at the time of analysis, crystal particles whose particles were broken at the end of the analysis image were excluded from evaluation targets. Further, when two or more grain boundary phase crystal grains are in contact with each other, if the length of the boundary between the two crystal grains is larger than the average particle diameter of the grains, one grain of the crystal grains is combined into one grain. Treated as 3) Measurement of the degree of dispersion of grain boundary phase crystal particles Using the photograph of the microstructure used for the measurement of the crystal particle diameter, using the above-mentioned image analysis system, the distance between centers of gravity method (dispersion from the distance between centers of gravity of adjacent particles Of the grain boundary phase particles in the sintered body. The degree of dispersion is represented by the ratio between the average deviation of the distance between particles and the average distance between particles, and the smaller the value, the better the dispersion. 4) Measurement of bending strength According to JIS R1601, crosshead speed 0.5m
A three-point bending test was performed at m / min and a span of 30 mm. The width of the test piece was 4 mm, the sintered body was cut out to a width of 6 mm, and both ends were ground by 1 mm to obtain a predetermined width. The thickness of the sample subjected to sheet processing was the thickness of the sintered body itself, and the upper and lower surfaces of the test piece were the surfaces of the sintered body that were not ground and polished. 4) Measurement of thermal conductivity The thermal conductivity was measured by a laser flash method using a thermal constant measuring apparatus PS-7 manufactured by Rigaku Denki KK Thickness correction was performed using a calibration curve.

【0065】実施例1 内容積が2.4Lのナイロン製ポットに、直径10mm
のアルミナ製ボール(表面硬度1100kgf/m
2、密度3.6g/cm3)を入れ、次いで、平均粒径
が1.5μm、比表面積2.6m2/g、酸素濃度0.
8wt%の窒化アルミニウム粉末100重量部、焼結助
剤として比表面積12.5m2/gの酸化イットリウム
粉末を5重量部、表面活性剤として、ソルビタントリオ
レート2重量部及び溶媒としてトルエン、エタノール、
ブタノールを合わせて35重量部(それぞれの体積比が
75:20:5)を加えて湿式混合した。この時、前記
アルミナ製ボールはポットの内容積の40%(見かけの
体積)充填した。混合はポットの回転数70rpmで2
4時間行なった。さらに、得られたスラリーに、有機バ
インダーとしてポリビニルブチラールを11重量部、可
塑剤としてジ−n−ブチルフタレート3.5重量部及び
溶媒としてトルエン、エタノール、ブタノールを合わせ
て45重量部(それぞれの体積比が75:20:5)を
加えて、さらに2回目の湿式混合を18時間行ない、得
られたスラリーを10000〜25000cpsの粘度
になるまで脱溶媒し、ドクターブレード法によりシート
状の0.75mmの厚みのグリーン体を作製した。さら
に、シート状グリーン体を、打ち抜きプレス加工機によ
り、長辺63mm、短辺44mmのグリーン体に加工し
た。
Example 1 A nylon pot having an inner volume of 2.4 L was placed in a nylon pot having a diameter of 10 mm.
Alumina balls (surface hardness 1100kgf / m
m 2 , a density of 3.6 g / cm 3 ), then an average particle size of 1.5 μm, a specific surface area of 2.6 m 2 / g, and an oxygen concentration of 0.
100 parts by weight of 8 wt% aluminum nitride powder, 5 parts by weight of yttrium oxide powder having a specific surface area of 12.5 m 2 / g as a sintering aid, 2 parts by weight of sorbitan triolate as a surfactant, and toluene, ethanol as a solvent.
Butanol was added in an amount of 35 parts by weight (each volume ratio was 75: 20: 5) and wet-mixed. At this time, the alumina balls were filled with 40% (apparent volume) of the inner volume of the pot. Mixing is performed at 70 rpm and 2 rpm.
Performed for 4 hours. Further, the obtained slurry was combined with 11 parts by weight of polyvinyl butyral as an organic binder, 3.5 parts by weight of di-n-butyl phthalate as a plasticizer, and 45 parts by weight of toluene, ethanol, and butanol as a solvent (each volume). The ratio was 75: 20: 5), and a second wet mixing was performed for 18 hours. The resulting slurry was desolvated to a viscosity of 10,000 to 25,000 cps. To produce a green body having a thickness of Further, the sheet-like green body was processed into a green body having a long side of 63 mm and a short side of 44 mm by a punching press machine.

【0066】得られたグリーン体を乾燥空気中で600
℃の温度で240分間脱脂処理し、酸素濃度が2.2w
t%の脱脂体を得た。
The obtained green body was dried at 600
Degreasing treatment at a temperature of 240 ° C. for 240 minutes and an oxygen concentration of 2.2 w
A t% defatted body was obtained.

【0067】さらに、上記脱脂体を窒化ホウ素製の焼成
容器に入れ、窒素ガス雰囲気中で1740℃の温度で4
時間焼成し、密度3.28g/cm3以上の緻密で透光
性の焼結体を得た。焼結体の作製条件を表1に、焼結体
の微構造と特性を表2に示した。
Further, the degreased body was placed in a firing container made of boron nitride, and heated at a temperature of 1740 ° C. in a nitrogen gas atmosphere.
After firing for a long time, a dense and translucent sintered body having a density of 3.28 g / cm 3 or more was obtained. Table 1 shows the manufacturing conditions of the sintered body, and Table 2 shows the microstructure and characteristics of the sintered body.

【0068】実施例2 1770℃の温度で焼成すること以外は、実施例1と同
様の操作を行なった。焼結体の作製条件を表1に、焼結
体の微構造と特性を表2に示した。
Example 2 The same operation as in Example 1 was performed except that the firing was performed at a temperature of 1770 ° C. Table 1 shows the manufacturing conditions of the sintered body, and Table 2 shows the microstructure and characteristics of the sintered body.

【0069】実施例3 1回目の湿式混合時に添加する溶媒の量を30重量部、
2回目の湿式混合時に添加する溶媒の量を50重量部添
加する以外は、実施例1と同様の操作を行なった。焼結
体の作製条件を表1に、焼結体の微構造と特性を表2に
示した。
Example 3 The amount of the solvent added during the first wet mixing was 30 parts by weight,
The same operation as in Example 1 was performed, except that 50 parts by weight of the solvent to be added at the time of the second wet mixing was added. Table 1 shows the manufacturing conditions of the sintered body, and Table 2 shows the microstructure and characteristics of the sintered body.

【0070】実施例4 1回目の湿式混合時にアルミナ製ボールをポットの内容
積に対して33%充填し溶媒を40重量部添加したこ
と、2回目の湿式混合時に添加する溶媒の量を40重量
部添加すること、及び1760℃の温度で焼成すること
以外は、実施例1と同様の操作を行なった。焼結体の作
製条件を表1に、焼結体の微構造と特性を表2に示し
た。
Example 4 At the time of the first wet mixing, an alumina ball was filled to 33% of the inner volume of the pot and 40 parts by weight of the solvent was added. The amount of the solvent added at the time of the second wet mixing was 40% by weight. The same operation as in Example 1 was performed, except that the addition was carried out at a temperature of 1760 ° C. Table 1 shows the manufacturing conditions of the sintered body, and Table 2 shows the microstructure and characteristics of the sintered body.

【0071】実施例5 酸化イットリウム粉末を4.5重量部とすること以外
は、実施例1と同様の操作を行なった。焼結体の作製条
件を表1に、焼結体の微構造と特性を表2に示した。
Example 5 The same operation as in Example 1 was performed except that the amount of yttrium oxide powder was changed to 4.5 parts by weight. Table 1 shows the manufacturing conditions of the sintered body, and Table 2 shows the microstructure and characteristics of the sintered body.

【0072】実施例6 平均粒径が2.5μm、比表面積3.9m2/g、酸素
濃度0.98wt%の窒化アルミニウム粉末を使用した
こと、1790℃で焼成したこと以外は、実施例1と同
様の操作を行なった。焼結体の作製条件を表1に、焼結
体の微構造と特性を表2に示した。
Example 6 Example 1 was repeated except that aluminum nitride powder having an average particle size of 2.5 μm, a specific surface area of 3.9 m 2 / g, and an oxygen concentration of 0.98 wt% was used, and the powder was fired at 1790 ° C. The same operation as described above was performed. Table 1 shows the manufacturing conditions of the sintered body, and Table 2 shows the microstructure and characteristics of the sintered body.

【0073】比較例1 ミルボールに直径約25mmの鉄芯をナイロンで被覆し
たボール(表面硬度100kgf/mm2以下、密度
3.5g/cm3)を使用し、1770℃で焼成したこ
と以外は実施例1と同様の操作を行なった。焼結体の作
製条件を表1に、焼結体の微構造と特性を表2に示し
た。
Comparative Example 1 A ball (surface hardness: 100 kgf / mm 2 or less, density: 3.5 g / cm 3 ) in which an iron core having a diameter of about 25 mm was coated with nylon on a mill ball was used, except that it was fired at 1770 ° C. The same operation as in Example 1 was performed. Table 1 shows the manufacturing conditions of the sintered body, and Table 2 shows the microstructure and characteristics of the sintered body.

【0074】比較例2 平均粒径が2.5μm、比表面積3.9m2/g、酸素
濃度0.98wt%の窒化アルミニウム粉末を使用した
こと、ミルボールに直径約25mmの鉄芯をナイロンで
被覆したボール(表面硬度100kgf/mm2以下、
密度3.5g/cm3)を使用したこと、及び1800
℃の温度で焼成したこと以外は、実施例1と同様の操作
を行なった。焼結体の作製条件を表1に、焼結体の微構
造と特性を表2に示した。
Comparative Example 2 An aluminum nitride powder having an average particle size of 2.5 μm, a specific surface area of 3.9 m 2 / g and an oxygen concentration of 0.98 wt% was used, and an iron core having a diameter of about 25 mm was coated on a mill ball with nylon. Ball (surface hardness 100 kgf / mm 2 or less,
Density of 3.5 g / cm 3 ) and 1800
The same operation as in Example 1 was performed, except that the firing was performed at a temperature of ° C. Table 1 shows the manufacturing conditions of the sintered body, and Table 2 shows the microstructure and characteristics of the sintered body.

【0075】比較例3 平均粒径が2.5μm、比表面積3.9m2/g、酸素
濃度0.98wt%の窒化アルミニウム粉末を使用した
こと、酸化イットリウム粉末を2.5重量部添加したこ
と、ミルボールに直径約25mmの鉄芯をナイロンで被
覆したボール(表面硬度100kgf/mm2以下、密
度3.5g/cm3)を使用したこと、及び1800℃
で焼成したこと以外は実施例1と同様の操作を行なっ
た。焼結体の作製条件を表1に、焼結体の微構造と特性
を表2に示した。
Comparative Example 3 Aluminum nitride powder having an average particle size of 2.5 μm, a specific surface area of 3.9 m 2 / g and an oxygen concentration of 0.98 wt% was used, and 2.5 parts by weight of yttrium oxide powder was added. A ball (surface hardness: 100 kgf / mm 2 or less, density: 3.5 g / cm 3 ) in which a steel ball having a diameter of about 25 mm was coated with nylon on a mill ball, and 1800 ° C.
The same operation as in Example 1 was performed except that the firing was carried out. Table 1 shows the manufacturing conditions of the sintered body, and Table 2 shows the microstructure and characteristics of the sintered body.

【0076】[0076]

【表1】 [Table 1]

【表2】 [Table 2]

【発明の効果】本発明によれば、窒化アルミニウム結晶
粒子の大きさと同程度の大きさの粒界相結晶粒子が均一
に分散する微構造を有する焼結体は、高強度かつ高熱伝
導率であり、また、混合前の窒化アルミニウムの平均粒
径と、窒化アルミニウム粉末と焼結助剤よりなる混合粉
末の平均粒径との比が、一定範囲になるように湿式混合
し、該スラリーの成形体を焼成することによって容易に
得られるため、複雑または煩雑な製造工程を要さず高強
度かつ高熱伝導率の窒化アルミニウム焼結体の量産を可
能にし、かつ大型の焼結体にも適用可能であり、その工
業的価値は大である。
According to the present invention, a sintered body having a microstructure in which grain boundary phase crystal grains of the same size as aluminum nitride crystal grains are uniformly dispersed has high strength and high thermal conductivity. Also, wet mixing is performed so that the ratio of the average particle size of aluminum nitride before mixing to the average particle size of the mixed powder composed of aluminum nitride powder and the sintering aid is within a certain range, and the slurry is formed. Since it is easily obtained by firing the body, it enables mass production of high-strength, high-thermal-conductivity aluminum nitride sintered bodies without the need for complicated or complicated manufacturing processes, and is applicable to large-sized sintered bodies. And its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の窒化アルミニウム焼結体の微構造SE
M写真(倍率2000倍)である。
FIG. 1 shows a microstructure SE of an aluminum nitride sintered body of the present invention.
It is an M photograph (2000 times magnification).

【図2】従来の窒化アルミニウム焼結体の微構造SEM
写真(倍率2000倍)である。
FIG. 2 is a microstructure SEM of a conventional aluminum nitride sintered body.
It is a photograph (2000 times magnification).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウムと焼結助剤とからなる焼
結体において、粒界相結晶粒子が均一に分布し、かつ、
焼結体の任意の切断面における粒界相結晶粒子の累積値
75%粒子径と窒化アルミニウム結晶粒子の累積値50
%粒子径との比が0.5〜1.5であることを特徴とす
る窒化アルミニウム焼結体。
In a sintered body comprising aluminum nitride and a sintering aid, grain boundary phase crystal particles are uniformly distributed, and
Cumulative value of grain boundary phase crystal particles at an arbitrary cut surface of the sintered body 75% particle diameter and cumulative value of aluminum nitride crystal particles of 50%
% Aluminum particle sintered body, characterized by having a ratio of 0.5 to 1.5.
【請求項2】混合前の窒化アルミニウム粉末の平均粒径
と、窒化アルミニウム粉末と焼結助剤よりなる混合粉末
の平均粒径との比が、1.1〜2の範囲になるように湿
式混合してスラリーを得、次いで該スラリーを乾燥・成
形してグリーン体を得、そして該グリーン体を非酸化雰
囲気中で焼成することを特徴とする請求項1の窒化アル
ミニウムの製造方法。
2. A wet process is performed so that the ratio of the average particle size of the aluminum nitride powder before mixing to the average particle size of the mixed powder composed of the aluminum nitride powder and the sintering aid is in the range of 1.1 to 2. 2. The method for producing aluminum nitride according to claim 1, wherein the slurry is obtained by mixing, and then the slurry is dried and formed to obtain a green body, and the green body is fired in a non-oxidizing atmosphere.
JP13744999A 1999-05-18 1999-05-18 Aluminum nitride sintered body and manufacturing method thereof Expired - Lifetime JP4859267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13744999A JP4859267B2 (en) 1999-05-18 1999-05-18 Aluminum nitride sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13744999A JP4859267B2 (en) 1999-05-18 1999-05-18 Aluminum nitride sintered body and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2000327430A true JP2000327430A (en) 2000-11-28
JP2000327430A5 JP2000327430A5 (en) 2005-11-04
JP4859267B2 JP4859267B2 (en) 2012-01-25

Family

ID=15198881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13744999A Expired - Lifetime JP4859267B2 (en) 1999-05-18 1999-05-18 Aluminum nitride sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4859267B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241177A (en) * 2001-02-13 2002-08-28 Nihon Ceratec Co Ltd Aluminum nitride sintered body having excellent degassing property
JP2002249379A (en) * 2000-12-21 2002-09-06 Ngk Insulators Ltd Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
WO2004026790A1 (en) * 2002-09-20 2004-04-01 Tokuyama Corporation Aluminum nitride sintered compact
WO2015147194A1 (en) * 2014-03-26 2015-10-01 京セラ株式会社 Honeycomb structure and gas treatment device equipped therewith
KR101690753B1 (en) * 2015-07-28 2017-01-10 강릉원주대학교산학협력단 AlN heater shaft having low thermal conductivity property for semiconductor ultra high temperature thin membrane process
KR102573024B1 (en) * 2023-04-26 2023-08-31 주식회사 페코텍 Capillary for Wire Bonding and Method for Manufacturing the Same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249379A (en) * 2000-12-21 2002-09-06 Ngk Insulators Ltd Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
JP2002241177A (en) * 2001-02-13 2002-08-28 Nihon Ceratec Co Ltd Aluminum nitride sintered body having excellent degassing property
WO2004026790A1 (en) * 2002-09-20 2004-04-01 Tokuyama Corporation Aluminum nitride sintered compact
US7319080B2 (en) 2002-09-20 2008-01-15 Tokuyama Corporation Aluminum nitride sintered compact
WO2015147194A1 (en) * 2014-03-26 2015-10-01 京セラ株式会社 Honeycomb structure and gas treatment device equipped therewith
KR101690753B1 (en) * 2015-07-28 2017-01-10 강릉원주대학교산학협력단 AlN heater shaft having low thermal conductivity property for semiconductor ultra high temperature thin membrane process
KR102573024B1 (en) * 2023-04-26 2023-08-31 주식회사 페코텍 Capillary for Wire Bonding and Method for Manufacturing the Same

Also Published As

Publication number Publication date
JP4859267B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
KR101751531B1 (en) Method for producing silicon nitride substrate
JP5444387B2 (en) Semiconductor device heat sink
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP4386695B2 (en) Method for producing aluminum nitride sintered body
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP3002642B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board using the same
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
KR102139189B1 (en) Memufacturing method of conductivity AlN subtrate having thermal conductivity of 180 W/mk to 230 W/mk
JP4065589B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP3145519B2 (en) Aluminum nitride sintered body
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JP6721793B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2022094464A (en) Green sheet of silicon nitride and production method thereof
JP2000302542A (en) Jig used for sintering
JP2000239069A (en) Aluminum nitride sintered compact and its production
JPH08157262A (en) Aluminum nitride sintered compact and its production
JP2002220283A (en) Aluminum nitride sintered compact and method of manufacture
JP2003267784A (en) Method for producing aluminum nitride sintered compact
JP2004284832A (en) Silicon nitride sintered compact and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090316

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

EXPY Cancellation because of completion of term