JPH10331857A - Ceramic rolling element and manufacture thereof - Google Patents

Ceramic rolling element and manufacture thereof

Info

Publication number
JPH10331857A
JPH10331857A JP9142677A JP14267797A JPH10331857A JP H10331857 A JPH10331857 A JP H10331857A JP 9142677 A JP9142677 A JP 9142677A JP 14267797 A JP14267797 A JP 14267797A JP H10331857 A JPH10331857 A JP H10331857A
Authority
JP
Japan
Prior art keywords
rolling element
vicinity
voids
rolling
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9142677A
Other languages
Japanese (ja)
Other versions
JP3538524B2 (en
Inventor
Kazuto Matsugami
和人 松上
Takeshi Kato
剛 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14267797A priority Critical patent/JP3538524B2/en
Publication of JPH10331857A publication Critical patent/JPH10331857A/en
Application granted granted Critical
Publication of JP3538524B2 publication Critical patent/JP3538524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase compressive strength so as to improve a rolling life by forming a rolling element such as a bearing into a sphere, a cylinder, or a cone made of ceramic and performing the formation so that substantially no void exits in the vicinity of the surface in the cross section while voids with specific diameters exist in the vicinity of the center. SOLUTION: A rolling element such as a ball 1 and a cylindrical roller is used for a rolling bearing such as a bearing. The ball 1 is formed of ceramic so as to be constructed of a surface peripheral part 11 possessing no void substantially and a center peripheral part 12 possessing voids 13 with maximum diameter of 1 μm or more. In this way, a compression stress of 1 kg/mm<2> or more can remain in the surface peripheral part 11, so that compressive strength can be increased, and a rolling life can be prolonged. In the production of this kind of rolling body 1, the ceramic material is molded and burnt under a pressurization condition so that its surface periphery is compacted with the voids 13 left in the vicinity of the center, and subsequently, a hot static pressure pressurizing processing is applied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、セラミックス製の
転動体に関し、特に静的圧縮荷重に対する優れた抵抗力
を有し、なおかつ高負荷時に優れた転がり寿命が得られ
るセラミックス製転動体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic rolling element, and more particularly to a ceramic rolling element having excellent resistance to a static compressive load and excellent rolling life under a high load.

【0002】[0002]

【従来の技術】近年、セラミックス部材はその特徴であ
る耐摩耗性、耐食性、耐熱性、軽量性などを生かして機
械部品用材料に使用されている。特に窒化ケイ素質セラ
ミックスはその優れた特性のため、自動車用構造部品材
料やベアリングの転動体であるボールの材質として期待
されている。
2. Description of the Related Art In recent years, ceramic members have been used as materials for machine parts by taking advantage of their characteristics such as wear resistance, corrosion resistance, heat resistance and light weight. In particular, silicon nitride ceramics are expected to be used as materials for structural parts for automobiles and as balls for rolling elements of bearings due to their excellent properties.

【0003】ベアリングの転動体として用いる場合は、
耐圧強度を高くするため、窒化ケイ素質セラミックスを
製造する際に、常圧焼成や雰囲気加圧焼成した後、HI
P(熱間静水圧加圧)処理を併用することによって、ボ
イドを小さくすることが行われている。例えば、特許第
2549636号では、HIP処理を施すことによっ
て、ボイドを3μm以下とした窒化ケイ素質セラミック
ス製の転動体が示されている。
When used as a rolling element of a bearing,
In order to increase the pressure resistance, when producing silicon nitride ceramics, after firing under normal pressure or under atmospheric pressure, the HI
It has been practiced to reduce voids by using P (hot isostatic pressing) treatment in combination. For example, Japanese Patent No. 2549636 discloses a rolling element made of silicon nitride ceramics having a void of 3 μm or less by performing HIP processing.

【0004】また、特開平6−48813号公報によれ
ば、セラミックス転動体の表面を特殊な方法で研磨する
ことによって、その表面に引っ張り応力からなる残留応
力を発生させ、これによって転動体の転がり寿命を向上
させることが提案されている。
According to Japanese Patent Application Laid-Open No. Hei 6-48813, the surface of a ceramic rolling element is polished by a special method to generate a residual stress consisting of a tensile stress on the surface, thereby rolling the rolling element. It has been proposed to improve the life.

【0005】[0005]

【発明が解決しようとする課題】ところが、特開平6−
48813号公報に示されたセラミックス転動体では、
研磨されたごく表面にしか残留応力を残すことができ
ず、静的圧縮荷重に対する効果はほとんど無い。また、
実際のところ、セラミックス転動体に残留引っ張り応力
を発生させたところで転がり寿命を向上させることはで
きず、転動体として何の効果もないものであった。
SUMMARY OF THE INVENTION However, Japanese Patent Laid-Open No.
In the ceramic rolling element disclosed in Japanese Patent No. 48813,
Residual stress can only be left on the polished surface and has little effect on static compressive loads. Also,
As a matter of fact, when a residual tensile stress was generated in the ceramic rolling element, the rolling life could not be improved, and the rolling element had no effect.

【0006】一方、特許第2549636号に示される
ボイドを小さくしたセラミックス転動体では、耐圧強度
をある程度高めることができるものの、安定的に高い耐
圧強度を得ることができず、そのため、製品の安定性か
らさらに高い耐圧強度が望まれている。
On the other hand, in a ceramic rolling element having a reduced void as disclosed in Japanese Patent No. 2549636, although the pressure resistance can be increased to some extent, a high pressure resistance cannot be obtained in a stable manner. Therefore, higher pressure resistance is desired.

【0007】そこで本発明は、セラミックス転動体にお
いて、耐圧強度を高め、なおかつ高負荷領域における転
がり寿命の向上を行い、特性バラツキを少なくして信頼
性を高めることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a ceramic rolling element with increased pressure resistance, improved rolling life in a high-load region, reduced variation in characteristics, and improved reliability.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者等が種
々検討を行った結果、セラミックス転動体の表面近傍
に、引っ張り応力ではなく、圧縮応力からなる残留応力
を発生させれば、上記目的を達成できることを見出し
た。また、残留圧縮応力を安定して発生させることは困
難であるが、転動体の中心近傍に積極的にボイドを存在
させることで、安定して表面近傍に所定の残留圧縮応力
を発生できることを見出して本発明を成すに至った。
The inventors of the present invention have conducted various studies. As a result, if a residual stress consisting of not a tensile stress but a compressive stress is generated in the vicinity of the surface of a ceramic rolling element, the above object is achieved. Can be achieved. In addition, it is difficult to stably generate the residual compressive stress, but it has been found that a predetermined residual compressive stress can be stably generated near the surface by positively providing a void near the center of the rolling element. Thus, the present invention has been accomplished.

【0009】まず、本発明は、セラミックスからなる球
状、円筒状または円錐状の転動体であって、断面におけ
る表面近傍は実質的にボイドが存在せず、中心近傍には
最大径1μm以上のボイドが存在することを特徴とす
る。
First, the present invention relates to a spherical, cylindrical or conical rolling element made of ceramics, wherein substantially no void exists in the vicinity of the surface in cross section, and a void having a maximum diameter of 1 μm or more is present in the vicinity of the center. Is present.

【0010】即ち、中心近傍にボイドが存在するように
作製することで、詳細を後述するように、表面近傍に残
留圧縮応力を安定して発生させることができ、転動体の
耐圧強度や転がり寿命を向上できるようにしたものであ
る。
[0010] That is, by manufacturing so that a void exists near the center, a residual compressive stress can be stably generated near the surface, as will be described in detail later. Can be improved.

【0011】また、本発明は、セラミックスからなる球
状、円筒状または円錐状の転動体であって、表面近傍に
1kg/mm2 以上の残留圧縮応力が存在することを特
徴とする。
Further, the present invention is a spherical, cylindrical or conical rolling element made of ceramics, characterized in that a residual compressive stress of 1 kg / mm 2 or more exists near the surface.

【0012】即ち、セラミックス転動体に静的圧縮荷重
が加わった時、これにより発生する最大引っ張り応力
は、負荷接点の直下の表面近傍に位置する。そのため、
セラミックス転動体の表面近傍に、いくらかの厚みを持
った層に圧縮応力を残留させることにより、上記引っ張
り応力が緩和され、耐圧強度を高めることができる。さ
らに高負荷回転時においても、同様に表面に加わる引っ
張り応力を緩和し、転がり寿命を向上することができる
のである。
That is, when a static compressive load is applied to the ceramic rolling element, the maximum tensile stress generated thereby is located near the surface immediately below the load contact. for that reason,
By leaving compressive stress in a layer having a certain thickness near the surface of the ceramic rolling element, the tensile stress is reduced, and the pressure resistance can be increased. Further, even at the time of high-load rotation, the tensile stress applied to the surface can be similarly reduced, and the rolling life can be improved.

【0013】さらに、本発明は、セラミックス原料を球
状又は円筒状に成形した後、加圧条件下で、中心近傍に
ボイドを残したまま表面近傍を緻密化するように焼成
し、次に熱間静水圧加圧処理を施す工程からなるセラミ
ックス転動体の製造方法を特徴とする。
Further, the present invention provides a method of forming a ceramic raw material into a spherical or cylindrical shape, and then firing under pressure conditions to densify the vicinity of the surface while leaving voids near the center, and then hot working. The present invention is characterized by a method for manufacturing a ceramic rolling element, which comprises a step of applying a hydrostatic pressure treatment.

【0014】即ち、セラミックスの焼成工程で、緻密化
の前から加圧条件下で焼成することにより、焼結体の中
心近傍に雰囲気ガスをトラップしてボイドが残った状態
とし、この後HIP処理を施すことによって、内部のボ
イドの作用により、表面近傍に所定量の圧縮応力を残留
させるようにしたものである。
That is, in the firing step of ceramics, by firing under pressure conditions before densification, an atmosphere gas is trapped in the vicinity of the center of the sintered body so that voids remain, and thereafter, HIP processing is performed. Is applied, a predetermined amount of compressive stress is left near the surface by the action of the internal voids.

【0015】[0015]

【発明の実施の形態】以下本発明の実施形態を図によっ
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0016】本発明の転動体としては、図1(a)に示
すボール1や図1(b)に示す円筒ころ2、あるいは図
示していないが円錐形状のものもあり、いずれもベアリ
ング等の転がり軸受に用いられる。また、これらのボー
ル1、円筒ころ2は全体がセラミックスから成り、その
中心近傍にボイドを有している。
As the rolling element of the present invention, there are a ball 1 shown in FIG. 1A, a cylindrical roller 2 shown in FIG. 1B, or a conical shape (not shown). Used for rolling bearings. The ball 1 and the cylindrical roller 2 are entirely made of ceramics and have a void near the center thereof.

【0017】即ち、図2にボール1の中心を通る断面を
示すように、このボール1は、実質的にボイドの存在し
ない表面近傍部11と、ボイド13の存在する中心近傍
部12から構成されている。そのため、詳細を後述する
ように、表面近傍部11には圧縮応力を残留させること
ができ、その結果、耐圧強度を高め、転がり寿命を向上
することができる。
That is, as shown in FIG. 2 which shows a cross section passing through the center of the ball 1, the ball 1 is composed of a portion 11 near the surface where substantially no void exists and a portion 12 near the center where a void 13 exists. ing. Therefore, as will be described in detail later, a compressive stress can be left in the surface vicinity portion 11, and as a result, the pressure resistance can be increased and the rolling life can be improved.

【0018】上記表面近傍部11において、実質的にボ
イドが存在しないとは、ボイドが全く存在しないか、又
はボイドが存在しても最大径が1μm未満であることを
言う。これは、表面近傍部11に1μm以上のボイドが
存在すると、このボイドが起点となってクラックが発生
しやすく、耐圧強度が低下するためである。
The phrase "substantially free of voids" in the vicinity of the surface 11 means that no voids exist or the maximum diameter is less than 1 μm even if voids exist. This is because if a void having a size of 1 μm or more exists in the vicinity 11 of the surface, the void tends to be a starting point to easily generate a crack, and the pressure resistance decreases.

【0019】一方、中心近傍部12においては、1個以
上のボイド13が存在しており、ボイド13の最大径は
1μm以上、好ましくは最大径3μm以上とする。これ
は、中心近傍部12のボイド13が1μm未満である
と、表面近傍部11に圧縮応力を残留させる効果に乏し
いためである。ただし、ボイド13が大きすぎると、機
械的特性が低下する恐れがあるため、最大径20μm以
下としておくことが好ましい。
On the other hand, in the vicinity 12 of the center, one or more voids 13 are present, and the maximum diameter of the voids 13 is 1 μm or more, preferably 3 μm or more. This is because if the void 13 in the central portion 12 is less than 1 μm, the effect of leaving a compressive stress in the surface near portion 11 is poor. However, if the voids 13 are too large, the mechanical properties may be degraded. Therefore, the maximum diameter is preferably set to 20 μm or less.

【0020】また、実質的にボイドの存在しない表面近
傍部11の厚みTは、転動体1の半径Rに対して、T/
Rを10〜90%としておくことが好ましい。これは、
T/Rが10%未満ではボイド13の影響によりボール
1の強度が低下する恐れがあり、一方90%を超えると
残留圧縮応力により耐圧強度を向上させる効果に乏しく
なるためである。なお、T/Rの範囲は15〜80%が
好ましく、特に15〜50%の範囲が最適である。
The thickness T of the portion 11 near the surface where substantially no voids exist is expressed by T / T with respect to the radius R of the rolling element 1.
It is preferable to set R to 10 to 90%. this is,
If the T / R is less than 10%, the strength of the ball 1 may be reduced due to the influence of the voids 13. On the other hand, if the T / R exceeds 90%, the effect of improving the pressure resistance due to the residual compressive stress is poor. The T / R range is preferably from 15 to 80%, and particularly preferably from 15 to 50%.

【0021】なお、図2ではボール1の断面について説
明したが、円筒ころ2やその他の形状のものについて
も、その中心軸と垂直な円形断面において、図2と同様
な構造となっていれば良い。
Although the cross section of the ball 1 has been described with reference to FIG. 2, the cylindrical roller 2 and other shapes may have the same structure as that of FIG. 2 in a circular cross section perpendicular to the central axis. good.

【0022】一般に、転動体に限らず、セラミックス全
般において、機械的特性を向上させるためには、ボイド
を小さく、少なくすることが常識である。これに対し本
発明では、逆に中心近傍部12に積極的にボイド13を
存在させることによって、表面近傍部11に圧縮応力を
残留させ、転動体としての耐圧強度を高くでき、転がり
寿命を向上できることを見出したのである。
Generally, it is common sense to reduce the number of voids in order to improve the mechanical properties of ceramics in general, not limited to rolling elements. On the other hand, in the present invention, by virtue of the presence of the voids 13 in the central portion 12, the compressive stress remains in the surface near portion 11, the pressure resistance as a rolling element can be increased, and the rolling life is improved. They found what they could do.

【0023】なお、転動体の表面近傍部11に圧縮応力
を残留させることによって、耐圧強度等を向上できる理
由は以下の通りである。
The reason why the compressive strength can be improved by leaving a compressive stress in the vicinity of the surface 11 of the rolling element is as follows.

【0024】即ち、ボール1等の転動体に静的圧縮荷重
が加わった時、これにより発生する最大引っ張り応力
は、負荷接点の直下の表面近傍部11に位置する。その
ため、表面近傍部11に圧縮応力を残留させることによ
り、上記引っ張り応力が緩和され、耐圧強度を高めるこ
とができると考えられる。さらに高負荷回転時において
も、同様に表面近傍部11にかかる引っ張り応力を緩和
し、転がり寿命を向上することができると考えられる。
That is, when a static compressive load is applied to a rolling element such as the ball 1, the maximum tensile stress generated by the static compressive load is located in the vicinity of the surface 11 immediately below the load contact. Therefore, it is considered that, by leaving the compressive stress in the vicinity 11 of the surface, the above-described tensile stress is reduced, and the pressure resistance can be increased. Further, it is considered that even at the time of high-load rotation, the tensile stress applied to the surface vicinity portion 11 can be similarly reduced, and the rolling life can be improved.

【0025】なお、このような効果を奏するためには、
転動体の表面近傍部における残留圧縮応力は1kg/m
2 以上とし、好ましくは2kg/mm2 以上とする。
In order to obtain such an effect,
The residual compressive stress in the vicinity of the surface of the rolling element is 1 kg / m
m 2 or more, preferably 2 kg / mm 2 or more.

【0026】また、本発明は、このように転動体の表面
近傍部11に残留圧縮応力を存在させれば良いことを見
出したものであり、上述した中心近傍部12にボイド1
3を存在させる以外の方法を用いることもできる。
Further, the present invention has been found that it is sufficient that residual compressive stress is present in the vicinity 11 of the surface of the rolling element as described above.
Methods other than the presence of 3 can also be used.

【0027】例えば、転動体を成すセラミックスの内部
から表面にかけて、粒界相として高融点の結晶が次第に
高密度に分布するようにして、表面近傍部11に残留圧
縮応力を存在させたり、あるいは、セラミックスの焼成
後に急速降温させることによって表面近傍部11に残留
圧縮応力を存在させることもできる。これらの方法を用
いても、表面近傍部11に1kg/mm2 以上の残留圧
縮応力を存在させれば、転動体として優れた効果を奏す
ることができる。
For example, from the inside to the surface of the ceramics forming the rolling elements, crystals having a high melting point are gradually distributed at a high density as a grain boundary phase, so that residual compressive stress exists in the vicinity 11 of the surface, or By rapidly lowering the temperature after firing the ceramics, residual compressive stress can also be present in the vicinity 11 of the surface. Even if these methods are used, if a residual compressive stress of 1 kg / mm 2 or more is present in the vicinity 11 of the surface, an excellent effect as a rolling element can be obtained.

【0028】また、本発明において、ボイド13の径
は、転動体の断面を画像解析によって処理し、存在する
ボイド13の円相当径を算出することによって求める。
In the present invention, the diameter of the void 13 is determined by processing the cross section of the rolling element by image analysis and calculating the equivalent circle diameter of the existing void 13.

【0029】具体的には、ボール1の場合は中心を通る
断面、円筒ころ2の場合は中心軸に垂直な円形断面にお
いて、この断面を鏡面研磨した後、1000倍程度の顕
微鏡写真を撮り、この写真を用いて、ルーゼックス等の
画像解析装置により、円相当径が1μm以上のボイドを
検出できる条件で分析する。そして、図2に示すような
断面において、1μm以上のボイド13の分布状況を調
べ、最も外側に存在する1μm以上のボイド13よりも
外側が表面近傍部11となる。
Specifically, in the case of the ball 1, a cross section passing through the center, and in the case of the cylindrical roller 2, a circular cross section perpendicular to the central axis is mirror-polished, and a micrograph of about 1000 times is taken. Using this photograph, an image is analyzed by an image analysis device such as Luzex under the condition that a void having an equivalent circle diameter of 1 μm or more can be detected. Then, in the cross section as shown in FIG. 2, the distribution state of the voids 13 of 1 μm or more is examined.

【0030】さらに、転動体の表面近傍部における残留
圧縮応力の存在及びその大きさは、応力による結晶の歪
みを以下の方法によりX線回折で測定することから求め
ることができる。
Further, the existence and magnitude of the residual compressive stress in the vicinity of the surface of the rolling element can be determined by measuring the crystal distortion due to the stress by X-ray diffraction by the following method.

【0031】即ち、結晶の格子面間隔dがΔdだけ変化
すると、X線の回折角θはΔθだけ変化する。この回折
角の変化Δθは直接知ることができないため、いくつか
の入射角ψについて回折角2θを求め、それをsin2
ψに対してプロットし、その勾配∂2θ/∂sin2 ψ
(tanα)を求めることにより、残留応力α(kg/
mm2 )を α=−E/2(1+ν)・cotθ・∂2θ/∂sin
2 ψ ただし、Eは弾性定数(kg/mm2 ) νはポアソン比 から算出できる。
That is, when the lattice spacing d of the crystal changes by Δd, the X-ray diffraction angle θ changes by Δθ. Since the change Δθ of the diffraction angle cannot be directly known, the diffraction angle 2θ is obtained for some incident angles ψ, and is calculated as sin 2
plotted against 、 and its gradient {2θ / {sin 2 }
(Tan α), the residual stress α (kg /
mm 2 ) is given by α = -E / 2 (1 + ν) · cot θ · ∂2θ / ∂sin
2 ψ where E is the elastic constant (kg / mm 2 ) and ν can be calculated from Poisson's ratio.

【0032】また、本発明の転動体を成すセラミックス
としては、アルミナ(Al2 3 )、ジルコニア(Zr
2 )、炭化ケイ素(SiC)、窒化ケイ素(Si3
4 )、窒化アルミニウム(AlN)等を主成分とし、そ
れぞれ公知の焼結助剤等を含むものを用いる。
The ceramics forming the rolling element of the present invention include alumina (Al 2 O 3 ), zirconia (Zr
O 2 ), silicon carbide (SiC), silicon nitride (Si 3 N)
4 ) A material containing aluminum nitride (AlN) or the like as a main component and a known sintering aid or the like is used.

【0033】これらの中でも、特に、Si3 4 を主成
分とし、焼結助剤としてAl2 3、Y2 3 、Yb2
3 、MgO等の金属酸化物を1〜20重量%含有する
窒化ケイ素質セラミックスが好適である。
Of these, Si 3 N 4 is the main component, and Al 2 O 3 , Y 2 O 3 , and Yb 2 are used as sintering aids.
Silicon nitride ceramics containing 1 to 20% by weight of metal oxides such as O 3 and MgO are preferred.

【0034】次に、本発明のセラミックス転動体の製造
方法を説明する。
Next, a method of manufacturing a ceramic rolling element according to the present invention will be described.

【0035】まず、上述した各種セラミックスの原料粉
末を所定のバインダー成分と混合し、これをプレス成
形、押出成形等の公知の成形方法にて図1に示すような
所定の形状に成形する。
First, the above-mentioned various ceramic raw material powders are mixed with a predetermined binder component, and the mixture is formed into a predetermined shape as shown in FIG. 1 by a known molding method such as press molding or extrusion molding.

【0036】次に、この成形体を焼成するが、この時、
加圧条件下で焼成することが重要である。具体的には、
焼成の開始時に、又は少なくともセラミックスが緻密化
する前に、窒素やアルゴン等のガスを10〜100気圧
の条件で供給しながら焼成する。このようにすると、セ
ラミックスの表面近傍部は緻密化が進むが、内部の中心
近傍部には雰囲気ガスがトラップされて緻密化が阻害さ
れ、ボイドが残った状態となる。
Next, the molded body is fired.
It is important to fire under pressure conditions. In particular,
At the start of firing, or at least before the ceramic is densified, firing is performed while supplying a gas such as nitrogen or argon at 10 to 100 atm. By doing so, the densification proceeds in the vicinity of the surface of the ceramics, but the atmospheric gas is trapped in the vicinity of the center of the inside, the densification is hindered, and a void remains.

【0037】この状態のままで焼成を終了し、次にHI
P処理を行う。この時の条件は、1000〜2000気
圧、1500〜2000℃とすることが好ましい。する
と、転動体の表面近傍部にはHIP(熱間静水圧加圧)
処理により表面から加圧されるとともに、中心近傍部に
存在するボイド内のガスの圧力によって内部からも加圧
され、その結果、表面近傍部には所定量の圧縮強度が残
留した状態となるのである。
The sintering is completed in this state, and then HI
P processing is performed. The conditions at this time are preferably 1000 to 2000 atm and 1500 to 2000 ° C. Then, HIP (hot isostatic pressing) is applied near the surface of the rolling element.
During the process, pressure is applied from the surface and also from the inside by the pressure of the gas in the void existing near the center. is there.

【0038】そして、上記焼成工程やHIP処理工程の
条件を変化させることによって、存在するボイドの径
や、ボイドが実質的に存在しない表面近傍部の厚みT等
を調整することができる。
By changing the conditions of the firing step and the HIP processing step, it is possible to adjust the diameter of the existing voids, the thickness T near the surface where the voids do not substantially exist, and the like.

【0039】また、本発明の転動体とは、他部材を支持
しながら転がり運動を行うような部材の総称であり、前
述したベアリングのボール1や円筒ころ2の他に、例え
ばボールねじのボールなどさまざまな用途に使用するこ
とができる。
The rolling element of the present invention is a general term for a member that performs a rolling motion while supporting another member. In addition to the above-described bearing ball 1 and cylindrical roller 2, for example, a ball screw ball is used. It can be used for various purposes.

【0040】[0040]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0041】まず、Si3 4 粉末に、焼結助剤として
Yb2 3 粉末10重量%およびAl2 3 粉末3重量
%をそれぞれ添加し、水を使い十分に混合して原料スラ
リーを調整した。ついで上記スラリーに有機バインダー
を加え、スプレードライにより原料顆粒を得た。次に、
上記原料顆粒を用いて、プレス成形により、球状成形体
を作製し、この成形体を窒素雰囲気中で加熱し、有機バ
インダーを分解脱脂した。
First, 10% by weight of Yb 2 O 3 powder and 3% by weight of Al 2 O 3 powder were added to Si 3 N 4 powder as sintering aids, respectively, and thoroughly mixed with water to obtain a raw material slurry. It was adjusted. Next, an organic binder was added to the slurry, and raw material granules were obtained by spray drying. next,
Using the raw material granules, a spherical molded body was produced by press molding, and the molded body was heated in a nitrogen atmosphere to decompose and degrease the organic binder.

【0042】次いで上記成形体を窒素ガス中にて雰囲気
加圧焼成した。この時、表1に示すように加圧圧力や、
加圧を開始する温度、焼成温度をそれぞれ変化させた。
Next, the compact was fired in a nitrogen gas atmosphere under pressure. At this time, as shown in Table 1, pressurized pressure,
The temperature at which pressurization was started and the firing temperature were each changed.

【0043】この後、1000〜2000気圧の加圧
下、1700℃にてHIP処理を施して、直径9.5m
mのボール1を得た。
Thereafter, HIP treatment is performed at 1700 ° C. under a pressure of 1000 to 2000 atm, and the diameter is 9.5 m.
m ball 1 was obtained.

【0044】なお、比較例として、雰囲気加圧焼成時
に、加圧を行わないもの(No.1)や、焼結温度に達
して緻密化した後で加圧を行い焼成したもの(No.
2)を、HIP処理して、同様のボールを作製した。
As a comparative example, a sample which was not pressurized at the time of sintering under an atmospheric pressure (No. 1) or a sample which was densified after reaching a sintering temperature and fired by applying a pressure (No. 1).
2) was subjected to HIP treatment to produce a similar ball.

【0045】得られたボール1の表面近傍部11の残留
応力は、上述したように残留応力の大きさに比例して変
化する結晶の格子面間隔をX線回折によって測定した
(sin2 ψ法)。
The residual stress in the vicinity 11 of the surface of the obtained ball 1 was measured by X-ray diffraction at the lattice spacing of the crystal which changes in proportion to the magnitude of the residual stress as described above (sin 2 ψ method). ).

【0046】また、ボイド13の径は、ボール1の中心
を通る断面を4000番のダイヤモンドペーストを用い
て研磨した後、走査型顕微鏡で1000倍の拡大写真を
撮り、画像解析装置(ルーゼックス)を用いて評価し
た。そして、中心近傍部12に存在するボイド13の最
大径と、1μm以上のボイド13が存在しない表面近傍
部11の厚みTを測定した。
The diameter of the void 13 was determined by polishing a cross section passing through the center of the ball 1 using a 4000-diameter diamond paste, taking a 1000-times enlarged photograph with a scanning microscope, and using an image analyzer (Luzex). And evaluated. Then, the maximum diameter of the void 13 existing in the vicinity 12 of the center and the thickness T of the surface vicinity 11 where no void 13 of 1 μm or more was present were measured.

【0047】さらに、ボール1の圧砕強度は、同じ寸法
の2個のボール1を重ねて圧縮荷重を加えて破壊させた
時の荷重で評価した。
Further, the crushing strength of the ball 1 was evaluated by a load when two balls 1 having the same size were stacked and subjected to a compressive load to break.

【0048】これらの評価結果は表2に示す通りであ
る。この結果より、焼成時に加圧しなかったもの(N
o.1)や、緻密化した後で加圧開始したもの(No.
2)等の比較例では、中心近傍部12に1μmを超える
ボイド13が存在せず、その結果、表面近傍部11に残
留圧縮応力が存在しなかった。そのため、圧砕強度も
2.0tonfと低いものであった。
The results of these evaluations are as shown in Table 2. From these results, it was found that the sample that was not pressurized during firing (N
o. 1) and those that started pressurizing after densification (No.
In Comparative Examples 2) and the like, no void 13 exceeding 1 μm was present in the vicinity 12 of the center, and as a result, no residual compressive stress was present in the vicinity 11 of the surface. Therefore, the crushing strength was as low as 2.0 tonf.

【0049】これに対し、焼成時に、緻密化する前に加
圧を開始した本発明実施例(No.3〜8)では、中心
近傍部12に1μm以上のボイド13を発生させること
ができた。その結果、表面近傍部11に1kg/mm2
以上の残留圧縮応力を発生させることができ、圧砕強度
も2.7〜3.4tonfと高くできることがわかっ
た。
On the other hand, in the examples of the present invention (Nos. 3 to 8) in which the pressing was started before densification during firing, voids 13 of 1 μm or more could be generated in the vicinity 12 of the center. . As a result, 1 kg / mm 2
It was found that the above residual compressive stress can be generated, and the crushing strength can be as high as 2.7 to 3.4 tonf.

【0050】なお、No.3〜8の本発明実施例では、
焼成温度を変化させることによって、ボイド13の最大
径や1μm以上のボイドが存在しない表面近傍部11の
厚みTを変化させることができた。そして、ボイド13
の最大径を大きくし、かつ表面近傍部11の厚みTを小
さくするほど、残留圧縮応力を大きくし、圧砕強度を高
くできることがわかる。
No. In Examples 3 to 8 of the present invention,
By changing the firing temperature, it was possible to change the maximum diameter of the voids 13 and the thickness T of the portion 11 near the surface where no voids of 1 μm or more exist. And void 13
It can be seen that the larger the maximum diameter of the steel and the smaller the thickness T of the surface vicinity 11, the larger the residual compressive stress and the higher the crushing strength.

【0051】特に、ボイド13の最大径を3μm以上と
すれば(No.3〜7)、残留圧縮応力を2kg/mm
2 以上とすることができ、またボイドの存在しない表面
近傍部11の厚みTと半径Rの比T/Rを15〜50%
の範囲とすれば(No.3〜6)、残留圧縮応力を3k
g/mm2 以上として、圧砕強度を3tonf以上とす
ることができ、好適であった。
In particular, when the maximum diameter of the void 13 is 3 μm or more (Nos. 3 to 7), the residual compressive stress is 2 kg / mm.
2 or more, and the ratio T / R between the thickness T and the radius R of the surface vicinity portion 11 where no voids exist is 15 to 50%.
(No. 3 to 6), the residual compressive stress is 3 k
g / mm 2 or more, the crushing strength could be 3 tonf or more, which was preferable.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】次に、表1に示す各試料を用いて、ボール
の転がり寿命を評価した。具体的には、スラスト試験器
を用いて、各ボールに印加されるヘルツ応力が5.88
GPaとなるような条件で、ボールを400時間連続試
験し、表面が損傷して試験の続行不能となるまでの時間
(転がり寿命)を測定した。
Next, the rolling life of the ball was evaluated using each of the samples shown in Table 1. Specifically, using a thrust tester, the Hertz stress applied to each ball is 5.88.
The ball was continuously tested for 400 hours under the condition of GPa, and the time (rolling life) until the surface was damaged and the test could not be continued was measured.

【0055】結果は図3に示すように、残留圧縮応力の
ない比較例では100時間程度の転がり寿命であるのに
対し、1kg/mm2 以上の残留圧縮応力を有する本発
明実施例では、転がり寿命を300時間以上と長くでき
ることがわかる。
As shown in FIG. 3, the rolling life of the comparative example having no residual compressive stress was about 100 hours, whereas the rolling life was about 100 hours in the embodiment of the present invention having the residual compressive stress of 1 kg / mm 2 or more. It can be seen that the life can be extended to 300 hours or more.

【0056】なお、以上の実施例では、窒化ケイ素質セ
ラミックス製の転動体についてのみ述べたが、この他の
各種セラミックスからなる転動体についても同様の結果
であった。
Although only the rolling elements made of silicon nitride ceramics have been described in the above embodiments, similar results were obtained with rolling elements made of other various ceramics.

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
セラミックスからなる球状、円筒状または円錐状の転動
体において、断面における表面近傍は実質的にボイドが
存在せず、中心近傍には最大径1μm以上のボイドを存
在させることによって、表面近傍に1kg/mm2 以上
の圧縮応力を残留させることができ、その結果、耐圧強
度を高くし、転がり寿命を向上することができる。
As described above, according to the present invention,
In a spherical, cylindrical or conical rolling element made of ceramics, substantially no voids exist near the surface in the cross section, and a void having a maximum diameter of 1 μm or more exists near the center, so that 1 kg / mm 2 or more of compressive stress can be left, and as a result, the pressure resistance can be increased and the rolling life can be improved.

【0058】また、本発明によれば、セラミックス原料
を球状、円筒状または円錐状に成形した後、加圧条件下
で、中心近傍にボイドを残したまま表面近傍を緻密化す
るように焼成を行い、次に熱間静水圧加圧処理を施す工
程からセラミックス転動体を製造することによって、簡
単な工程で、安定して残留圧縮応力を有する転動体を製
造することができる。
According to the present invention, the ceramic raw material is formed into a spherical, cylindrical or conical shape, and then fired under a pressurizing condition so as to densify the vicinity of the surface while leaving a void near the center. Then, by manufacturing the ceramic rolling element from the step of performing the hot isostatic pressing, a rolling element having a residual compressive stress can be stably manufactured by a simple process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)(b)は本発明のセラミックス転動体の
実施形態を示す斜視図である。
FIGS. 1A and 1B are perspective views showing an embodiment of a ceramic rolling element according to the present invention.

【図2】図1(a)中のX−X線断面図である。FIG. 2 is a sectional view taken along line XX in FIG.

【図3】セラミックス転動体の残留圧縮応力と転がり寿
命の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a residual compressive stress of a ceramic rolling element and a rolling life.

【符号の説明】[Explanation of symbols]

1:ボール 2:円筒ころ 11:表面近傍部 12:中心近傍部 13:ボイド 1: ball 2: cylindrical roller 11: near surface 12: near center 13: void

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】セラミックスからなる球状、円筒状または
円錐状等の転動体であって、断面における表面近傍は実
質的にボイドが存在せず、中心近傍には最大径1μm以
上のボイドが存在することを特徴とするセラミックス転
動体。
A spherical, cylindrical or conical rolling element made of ceramics, wherein substantially no voids exist near the surface in the cross section, and voids having a maximum diameter of 1 μm or more exist near the center. A ceramic rolling element characterized in that:
【請求項2】セラミックスからなる球状、円筒状または
円錐状等の転動体であって、表面近傍に1kg/mm2
以上の残留圧縮応力が存在することを特徴とするセラミ
ックス転動体。
2. A spherical, cylindrical or conical rolling element made of ceramics, wherein 1 kg / mm 2
A ceramic rolling element characterized by having the above residual compressive stress.
【請求項3】セラミックス原料を球状又は円筒状に成形
した後、加圧条件下で、中心近傍にボイドを残したまま
表面近傍を緻密化するように焼成し、次に熱間静水圧加
圧処理を施す工程からなるセラミックス転動体の製造方
法。
3. A ceramic raw material is formed into a spherical or cylindrical shape, and then fired under a pressurizing condition so as to densify the vicinity of the surface while leaving a void near the center. A method for manufacturing a ceramic rolling element comprising a step of performing a treatment.
JP14267797A 1997-05-30 1997-05-30 Ceramic rolling element and method of manufacturing the same Expired - Fee Related JP3538524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14267797A JP3538524B2 (en) 1997-05-30 1997-05-30 Ceramic rolling element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14267797A JP3538524B2 (en) 1997-05-30 1997-05-30 Ceramic rolling element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10331857A true JPH10331857A (en) 1998-12-15
JP3538524B2 JP3538524B2 (en) 2004-06-14

Family

ID=15320953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14267797A Expired - Fee Related JP3538524B2 (en) 1997-05-30 1997-05-30 Ceramic rolling element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3538524B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016285A1 (en) * 2004-04-02 2005-10-20 Fag Kugelfischer Ag Ceramic rolling element for a roller bearing and method for its production
DE102005048971A1 (en) * 2005-10-13 2007-04-19 Fag Kugelfischer Ag Cylinder roller bearing for radial and axial suspension of shafts, has cylindrical roller bodies arranged between outer and inner rings and including respective eccentric borehole that extends parallel to longitudinal axis of roller bodies
JP2020117419A (en) * 2019-01-24 2020-08-06 Ntn株式会社 Ceramic body and rolling element
WO2020195967A1 (en) * 2019-03-22 2020-10-01 Ntn株式会社 Rolling bearing
CN113185302A (en) * 2021-06-10 2021-07-30 灵石鸿润和新材料有限公司 Large-size silicon nitride ceramic ball for wind power generation and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016285A1 (en) * 2004-04-02 2005-10-20 Fag Kugelfischer Ag Ceramic rolling element for a roller bearing and method for its production
DE102005048971A1 (en) * 2005-10-13 2007-04-19 Fag Kugelfischer Ag Cylinder roller bearing for radial and axial suspension of shafts, has cylindrical roller bodies arranged between outer and inner rings and including respective eccentric borehole that extends parallel to longitudinal axis of roller bodies
JP2020117419A (en) * 2019-01-24 2020-08-06 Ntn株式会社 Ceramic body and rolling element
WO2020195967A1 (en) * 2019-03-22 2020-10-01 Ntn株式会社 Rolling bearing
CN113185302A (en) * 2021-06-10 2021-07-30 灵石鸿润和新材料有限公司 Large-size silicon nitride ceramic ball for wind power generation and preparation method and application thereof

Also Published As

Publication number Publication date
JP3538524B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP5487099B2 (en) Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
JPH07299708A (en) Manufacture of silicon nitride system ceramics part
JP2002326875A (en) Abrasion resistant member of silicon nitride and its manufacturing method
US20110028301A1 (en) SiC BODIES AND PROCESS FOR THE FABRICATION OF SiC BODIES
JPH0987037A (en) Silicon nitride-base sintered compact and its production
JPH09506155A (en) High fatigue life silicon nitride bearing balls
US5472919A (en) β-silicon nitride sintered body
JP3538524B2 (en) Ceramic rolling element and method of manufacturing the same
Meschke et al. Failure behavior of alumina and alumina/silicon carbide nanocomposites with natural and artificial flaws
JPH0212918B2 (en)
JP2736387B2 (en) Silicon nitride-based sintered body for rolling bearing material and method for producing the same
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
Ritter et al. High-strength reaction-bonded silicon nitride
US6136738A (en) Silicon nitride sintered body with region varying microstructure and method for manufacture thereof
JP4820840B2 (en) Method for producing wear-resistant member made of silicon nitride
JP2920482B2 (en) Silicon carbide sintered body excellent in toughness and manufacturing method
JP2549636B2 (en) Ceramics rolling elements
JPH0648813A (en) Ceramic rolling body
JP2000154058A (en) High strength ceramics and method for evaluating defect in ceramics
JP2000072553A (en) Silicon nitride wear resistance member and its production
JP2001172085A (en) Silicon nitride sintered compact, production process therefor, and silicon nitride abrasion-resistant material using the same
JP2600116B2 (en) Superplastic silicon nitride sintered body and its manufacturing method
JP2000335976A (en) Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same
JPS6374963A (en) Silicon nitride base sintered body for antiabrasive material
JPH1121163A (en) Ceramic made rolling part and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees