JPH02124771A - Silicon nitride-base sintered body for rolling bearing material and its production - Google Patents
Silicon nitride-base sintered body for rolling bearing material and its productionInfo
- Publication number
- JPH02124771A JPH02124771A JP1175314A JP17531489A JPH02124771A JP H02124771 A JPH02124771 A JP H02124771A JP 1175314 A JP1175314 A JP 1175314A JP 17531489 A JP17531489 A JP 17531489A JP H02124771 A JPH02124771 A JP H02124771A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- bearing material
- pores
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 21
- 239000000463 material Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title abstract 2
- 229910052710 silicon Inorganic materials 0.000 title abstract 2
- 239000010703 silicon Substances 0.000 title abstract 2
- 238000005245 sintering Methods 0.000 claims abstract description 38
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 35
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000011148 porous material Substances 0.000 claims abstract description 28
- 239000007791 liquid phase Substances 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 12
- 239000012298 atmosphere Substances 0.000 claims abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000011812 mixed powder Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-NJFSPNSNSA-N silicon-30 atom Chemical compound [30Si] XUIMIQQOPSSXEZ-NJFSPNSNSA-N 0.000 claims description 2
- 238000005204 segregation Methods 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 abstract 2
- 238000001513 hot isostatic pressing Methods 0.000 abstract 1
- 230000007547 defect Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- 101150072353 CAPN3 gene Proteins 0.000 description 1
- 102100032539 Calpain-3 Human genes 0.000 description 1
- 241001663154 Electron Species 0.000 description 1
- 241000904504 Streblus tonkinensis Species 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- DTPSXFMGMQOVTG-UHFFFAOYSA-N n-[4-[3-(2-aminocyclopropyl)phenoxy]-1-(benzylamino)-1-oxobutan-2-yl]benzamide Chemical compound NC1CC1C1=CC=CC(OCCC(NC(=O)C=2C=CC=CC=2)C(=O)NCC=2C=CC=CC=2)=C1 DTPSXFMGMQOVTG-UHFFFAOYSA-N 0.000 description 1
- 101150022123 ncl-1 gene Proteins 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000010723 turbine oil Substances 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/593—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本第1発明は転がり軸受材料用窒化珪素基焼結体、本第
2発明はその製造方法に関し、更に詳しく言えば転がり
疲労寿命に優れた軸受材料用窒化珪素基焼結体及びその
製造方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The first invention relates to a silicon nitride-based sintered body for rolling bearing materials, and the second invention relates to a method for manufacturing the same. The present invention relates to a silicon nitride-based sintered body for bearing materials and a method for manufacturing the same.
従来、軸受材料としては大部分が軸受鋼が用いられてい
るが、軸受鋼は比重が大きいため、特に高速回転用軸受
に用いた場合には遠心力が大きく寿命が短くなる等の問
題があった。そのため近年、比重が小さく、しかも機械
的強度が高く耐熱性、耐摩耗性に優れる窒化珪素基焼結
体が用いられるようになってきた。Conventionally, bearing steel has mostly been used as a bearing material, but since bearing steel has a high specific gravity, there are problems such as large centrifugal force and shortened life, especially when used in high-speed rotation bearings. Ta. Therefore, in recent years, silicon nitride-based sintered bodies, which have low specific gravity, high mechanical strength, and excellent heat resistance and wear resistance, have come into use.
しかし従来の窒化珪素基焼結体は、軸受鋼に比して、転
がり疲労寿命のバラツキが大きく、信頼性に欠けるとい
う欠点があった。However, conventional silicon nitride-based sintered bodies have the drawback of having greater variation in rolling fatigue life and lack of reliability than bearing steel.
焼結体中に気孔があると、転がり疲労による破損の起点
となる。従ってこの窒化珪素基焼結体として、焼結体中
の気孔をつぶして消滅させるためにHIP処理を施した
焼結体が軸受材料として使われるようになってきている
。If there are pores in the sintered body, it becomes a starting point for failure due to rolling fatigue. Therefore, as the silicon nitride-based sintered body, a sintered body subjected to HIP treatment to collapse and eliminate the pores in the sintered body has come to be used as a bearing material.
しかし、HIP処理を施した焼結体は、気孔が多く残存
した焼結体に比して、転がり疲労寿命はある程度向上し
たがまだ十分といえず、寿命のバラツキに関しても十分
ではないので、より疲労寿命及び信頼性に優れた焼結体
及びその製造方法が望まれていた。However, the rolling fatigue life of sintered bodies subjected to HIP treatment is improved to some extent compared to sintered bodies with many remaining pores, but it is still not sufficient, and the variation in life is also not sufficient. A sintered body with excellent fatigue life and reliability and a method for manufacturing the same have been desired.
本発明は、上記観点に鑑みてなされたものであり、種々
実験の結果、HI P焼結体の転がり疲労寿命試験にお
いて短寿命であった試料の破損の起点となった欠陥の特
定、及びその生成機構の解明を新たに行って、完成され
たものである。The present invention has been made in view of the above points, and as a result of various experiments, it was possible to identify the defects that caused the failure of samples that had a short life in the rolling fatigue life test of HIP sintered bodies, and to identify the defects. It was completed by newly elucidating the generation mechanism.
即ち本発明は、転がり疲労寿命が漫れかつその寿命のバ
ラツキが少ない転がり軸受材料用窒化珪素基焼結体及び
その製造方法を提供することを目的とする。That is, an object of the present invention is to provide a silicon nitride-based sintered body for a rolling bearing material, which has a long rolling fatigue life and little variation in its life, and a method for manufacturing the same.
本発明の転がり軸受材料用窒化珪素基焼結体は70重量
%(以下、単に%という)以上の窒化珪素と30%以下
の焼結助剤とから構成され、この焼結体中には、気孔が
実質的になく、かつ主として焼結助剤から成る偏析部の
最大長が10μmを越えないことを特徴とする。The silicon nitride-based sintered body for rolling bearing materials of the present invention is composed of 70% by weight (hereinafter simply referred to as %) or more of silicon nitride and 30% or less of a sintering aid, and this sintered body contains: It is characterized in that it is substantially free of pores and that the maximum length of the segregated portion consisting mainly of the sintering aid does not exceed 10 μm.
この焼結体は、70%以上の窒化珪素粉末と30%以下
の焼結助剤粉末との混合粉末から成る予備成形体を、3
00気圧以下の窒素を含む非酸化雰囲気下で予備焼結す
る第1工程と、その後、300気圧以上の窒素を含む非
酸化雰囲気下かつ予備成形体中に液相が生じる温度より
200″C以上高い温度下でHIP処理を行う第2工程
と、を実施することにより製造することができる。This sintered body is a preformed body made of a mixed powder of 70% or more silicon nitride powder and 30% or less sintering aid powder.
The first step is pre-sintering in a non-oxidizing atmosphere containing nitrogen at 00 atm or less, and then 200"C or more above the temperature at which a liquid phase occurs in the preform under a non-oxidizing atmosphere containing nitrogen at 300 atm or more. It can be manufactured by performing the second step of performing HIP treatment under high temperature.
上記において、窒化珪素が70%未満の場合は、強度が
低下し、軸受材料として使用できなくなる。焼結助剤の
種類は問わず、目的、用途により種々選択されて使用さ
れるが、通常、アルミナ、イツトリア若しくはマグネシ
ア、更にはジルコニア、希土類元素酸化物若しくは酸化
クロム等が用し)られる。In the above, if the silicon nitride content is less than 70%, the strength decreases and the material cannot be used as a bearing material. The sintering aid may be selected from various types depending on the purpose and use, but usually alumina, ittria, magnesia, zirconia, rare earth element oxides, chromium oxide, etc. are used.
偏析部は、焼結助剤のみならず、通常、窒化珪素粉末に
含まれる不純物(例えば、通常音まれるシリカ等)の両
方で構成される。偏析部の最大長は10μmを越えない
。ここで、「長」とは、偏析部の最大長さを意味し、例
えばそれが楕球形状の場合はその長径、その他棒形状、
直方体形状等の場合はその最大対角長さを意味する。The segregated portion is composed of not only the sintering aid but also impurities normally contained in silicon nitride powder (for example, silica, etc., which is usually mentioned). The maximum length of the segregated portion does not exceed 10 μm. Here, "length" means the maximum length of the segregated part, for example, if it is an elliptical shape, its major axis, other rod shapes,
In the case of a rectangular parallelepiped shape, it means its maximum diagonal length.
この最大長が108mを越える場合には、ここを起源と
して破損が生じてその寿命が短くなるからである。具体
的に説明すれば、以下の通りである。即ち、軸受におい
ては、例えば、転動体は内外輪に接触しながら回転する
が、このとき荷重が加わっていると、接触部において接
触応力が働く。この応力の繰り返しにより材料中にクラ
ックが発生し最終的には部分的なハタ離脱落に至る。こ
のとき材料中に気孔や偏析部のような欠陥があると応力
が集中しやすく、転がり疲労寿命が短くなると考えられ
る。HIP焼結体中には気孔は実質的にないので、HI
P焼結体に生じゃすい偏析部が短寿命原因となる欠陥と
して認められるようになる。このとき、偏析部は欠陥と
は言え、物質の詰まったものであるため、気孔の場合に
比べて応力の集中が緩ろく、気孔程鋭敏には影響しない
ため、偏析部の最大長が10μm以下であれば、実際上
、寿命試験においてその影響がS忍約られない。焼結助
剤の他に、液相の生成に関与しない添加物を加えた場合
、あるいは焼結助剤の一部が焼結過程において反応又は
析出して第3相を形成する場合においても、それらの粒
径が細かい程、転がり寿命に与える影響が少ない。If this maximum length exceeds 108 m, damage will occur at this point and its life will be shortened. The specific explanation is as follows. That is, in a bearing, for example, the rolling elements rotate while contacting the inner and outer rings, and if a load is applied at this time, contact stress acts on the contact portion. The repetition of this stress causes cracks to occur in the material, eventually leading to partial break-off. At this time, if there are defects such as pores or segregated areas in the material, stress tends to concentrate, and it is thought that the rolling fatigue life will be shortened. Since there are virtually no pores in the HIP sintered body, the HIP
Segregated areas of green sintered P are recognized as defects that cause short life. At this time, although the segregated area is a defect, it is filled with substances, so the concentration of stress is slower than in the case of pores, and the effect is not as acute as in the case of pores, so the maximum length of the segregated area is 10 μm or less. In this case, in practice, the influence cannot be tolerated in the life test. In addition to the sintering aid, even when additives that do not participate in the formation of the liquid phase are added, or when a part of the sintering aid reacts or precipitates during the sintering process to form a third phase, The finer the particle size, the less influence it has on rolling life.
上記両工程の雰囲気は、窒素を含み酸素を含まない非酸
化雰囲気であれば良く、ヘリウム又はアルゴン等の不活
性ガスを含んでも良い。「窒素を含む」とするのは、窒
化珪素の熱分解を抑制するためである。通常、両工程と
もに窒素雰囲気が用いられる。予備焼結の雰囲気圧力は
300気圧以下で行えば良い。これが300気圧を越え
るとHIP処理によって気孔がつぶれにくくなるため焼
粘体中に気孔が残存し易くなるからである。この圧力は
、1〜10気圧が好ましい。これは、予備焼結時の圧力
が予備焼結体の密度ムラに影響し、圧力が高い程、焼結
体中央部の緻密化が悪くなるので気孔量が多くなり、そ
の点において、10気圧以下程度が好ましい。1気圧未
満では、窒化珪素の熱分解が生じやすくなるため好まし
くない。The atmosphere in both of the above steps may be a non-oxidizing atmosphere that contains nitrogen and does not contain oxygen, and may also contain an inert gas such as helium or argon. The reason for "containing nitrogen" is to suppress thermal decomposition of silicon nitride. Usually, a nitrogen atmosphere is used in both steps. The atmospheric pressure for preliminary sintering may be 300 atmospheres or less. This is because if the pressure exceeds 300 atm, the pores become difficult to collapse during the HIP treatment, making it easier for the pores to remain in the sintered viscous material. This pressure is preferably 1 to 10 atmospheres. This is because the pressure during pre-sintering affects the density unevenness of the pre-sintered body, and the higher the pressure, the worse the densification of the central part of the sintered body, which increases the amount of pores. The following degree is preferable. If the pressure is less than 1 atm, thermal decomposition of silicon nitride tends to occur, which is not preferable.
またHIP処理時の雲囲気圧力が300気圧未満の場合
には、気孔がつぶれにくくなり、気孔が残留し易くなる
。この処理温度としては、液相が生じる温度より200
℃以上、好ましくは250〜300℃程度高いものであ
る。液相が生じる温度とは、成形体の昇温過程において
、成形体の収縮率が急激に大きくなるか、又は成形体中
の窒化珪素のα型からβ型への転移量が急増する温度で
ある。この処理温度は、液相の組成によって異なるが、
アルミナとイツトリアを焼結助剤として用いた場合には
約1650℃以上であり、マグネシアを焼結助剤に用い
た場合には約1550℃以上である。In addition, if the ambient air pressure during the HIP treatment is less than 300 atm, the pores will be difficult to collapse and will tend to remain. The treatment temperature is 200° below the temperature at which the liquid phase occurs.
℃ or higher, preferably about 250 to 300℃ higher. The temperature at which a liquid phase occurs is the temperature at which the shrinkage rate of the molded body suddenly increases or the amount of transition from the α-type to the β-type of silicon nitride in the molded body rapidly increases during the heating process of the molded body. be. This treatment temperature varies depending on the composition of the liquid phase, but
When alumina and ittria are used as sintering aids, the temperature is about 1650°C or higher, and when magnesia is used as a sintering aid, the temperature is about 1550°C or higher.
軸受においては転動体は内外輪に接触しながら回転する
が、このとき荷重が加わっていると、接触部において接
触応力が働く。このとき材料中に気孔や偏析部のような
欠陥があると応力が集中し易い。本発明者等は、HIP
処理して気孔は実質的にない窒化珪素基焼結体について
、種々検討した所、以下の実施例でのべるように、10
μm以上の偏析部を起源として破損が生じるので寿命が
短くなることを新たに見出した。尚このとき、偏析部は
欠陥とは言え、物質の詰まったものであるた約、気孔の
場合に比べて応力の集中が緩るく、気孔程鋭敏には影響
しない。従って偏析部の最大径が10μm以下であると
、実際上、寿命試験においてその影響が認められない。In a bearing, the rolling elements rotate while contacting the inner and outer rings, and if a load is applied at this time, contact stress is exerted at the contact portion. At this time, if there are defects such as pores or segregation in the material, stress tends to concentrate. The inventors have discovered that H.I.P.
After conducting various studies on processed silicon nitride-based sintered bodies that are substantially free of pores, we found that 10
It has been newly discovered that the lifespan is shortened because damage originates from segregated parts larger than μm. At this time, although the segregated portion is a defect, the concentration of stress is less severe than in the case of pores, which are filled with substances, and it does not affect the stress as sharply as in the case of pores. Therefore, if the maximum diameter of the segregated portion is 10 μm or less, no effect is actually observed in the life test.
従って本第1発明の焼結体は上記観点より、気孔が実質
的になく、最大長が10μmを越える偏析部を具備しな
いものである。Therefore, from the above point of view, the sintered body of the first invention is substantially free of pores and does not have segregated portions with a maximum length exceeding 10 μm.
HIP焼結法は、300気圧以上、通常1000〜20
00気圧程度の高いガス圧力を被処理物に作用させ、被
処理物中の気孔を消滅せしめる方法である。−刃室化珪
素はそれ自体では焼結が困難であるため、通常、アルミ
ナ等の酸化物を焼結助剤として添加し、これらの焼結助
剤と、窒化珪素粉末に含まれる不純物であるシリカとが
反応して生成する液相を介して焼結される。そのため、
このような窒化珪素と液相成分とから成る焼結体をHI
P処理する場合には、流動性のある液相にも圧力が作用
するため、被処理物中に気孔がある場合には、その気孔
内に液相が圧入される形となり、液相組成の偏析部が生
成することになる。そしてHIP温度が低く焼結性が悪
い場合には、気孔はなくなるが、偏析部としてその影響
が残る。The HIP sintering method uses 300 atmospheres or more, usually 1000 to 20
This is a method in which a high gas pressure of about 1,000 atmospheres is applied to the object to be treated to eliminate pores in the object. - Since it is difficult to sinter the silicon nitride by itself, oxides such as alumina are usually added as sintering aids, and these sintering aids and impurities contained in the silicon nitride powder are combined. Sintering occurs through a liquid phase generated by reaction with silica. Therefore,
A sintered body made of such silicon nitride and a liquid phase component is HI
When performing P treatment, pressure also acts on the fluid liquid phase, so if there are pores in the material to be treated, the liquid phase is forced into the pores, changing the liquid phase composition. A segregated part will be generated. If the HIP temperature is low and the sinterability is poor, the pores will disappear, but their influence will remain as segregated areas.
一方、HIP処理温度が高く、窒化珪素の液相を介して
の焼結性が高い場合には、気孔内への窒化珪素の析出、
成長が起こるため偏析部は生じない。On the other hand, if the HIP treatment temperature is high and the sinterability of silicon nitride through the liquid phase is high, silicon nitride will precipitate into the pores,
Because growth occurs, no segregation occurs.
以上より、本第2発明においては、300気圧以下の雰
囲気で予備焼結するので後のHIP処理により気孔がつ
ぶれ易くなる。次いで実施されるHIP処理においては
、300気圧以上でしかもこの処理温度としては液相が
生じる温度より200℃以上の高い温度で処理するので
、液相が気孔内に圧入されて生成される偏析部の最大長
は10μm以下の小さなものとなる。From the above, in the second invention, since preliminary sintering is performed in an atmosphere of 300 atmospheres or less, the pores are easily crushed by the subsequent HIP treatment. In the subsequent HIP treatment, the treatment is carried out at a pressure of 300 atm or higher and at a temperature 200°C or higher higher than the temperature at which the liquid phase is generated, so that the liquid phase is forced into the pores and the segregated parts are generated. The maximum length is as small as 10 μm or less.
本第1発明の窒化珪素基焼結体には、気孔及び最大長が
10μmを越える助剤成分の偏析部がないので、それを
起源とする破損が生じなく、そのため転がり疲労寿命に
優れかつその寿命のバラツキが少ない転がり軸受材料と
なる。The silicon nitride-based sintered body of the first invention has no pores and no segregation of auxiliary components with a maximum length of more than 10 μm, so no breakage occurs due to pores, and therefore it has excellent rolling fatigue life and This is a rolling bearing material with less variation in service life.
本第2発明の製造方法によれば、上記〔作用〕で述べた
ように、この効果を具備する転がり軸受材料用窒化珪素
基焼結体を製造できる。According to the manufacturing method of the second aspect of the present invention, as described above in [Operation], a silicon nitride-based sintered body for a rolling bearing material having this effect can be manufactured.
以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.
実施例1
平均粒径0.6μmの窒化珪素粉末900重量部焼結助
剤としてアルミナとイツトリアを各々5重量部加えて、
ボールミルにて24時間混合した後、有機バインダー(
マイクロクリスタリンワックス)6重積部を加えて、ス
プレードライ法にて乾燥・市粒した。混合時及びバイン
ダーの溶媒としてはトリクロルエタンを用いた。この粉
末を用いて金型にて球形に予備焼結した後、圧力1 t
on/ cm 2下でラバープレスを行い、直径約11
市の球状成形体を得た。Example 1 900 parts by weight of silicon nitride powder with an average particle size of 0.6 μm Added 5 parts by weight each of alumina and ittria as sintering aids,
After mixing in a ball mill for 24 hours, an organic binder (
Microcrystalline wax) 6 stacked parts were added, and the mixture was dried and granulated using a spray drying method. Trichloroethane was used during mixing and as a solvent for the binder. After pre-sintering this powder into a spherical shape in a mold, the pressure was 1 t.
Rubber press under on/cm2, diameter approximately 11
A spherical molded body was obtained.
この成形体を脱脂後、1気圧の窒素雰囲気下で1700
℃、4時間の条件で予備焼結を行い、相対密度的95%
の予備焼結体を得た。この予備焼結体を第1表に示す条
件でHIP処理して、緻密な焼結体(Nα1〜4)を製
造した。なお、本組成において、液相が生じる温度は約
1450℃であり、本発明例の処理温度はその200℃
以上高い温度であり、比較例では150℃高い温度以下
である。After degreasing this molded body, it was heated to 1700 m
Pre-sintering was performed at ℃ for 4 hours, and the relative density was 95%.
A preliminary sintered body was obtained. This preliminary sintered body was subjected to HIP treatment under the conditions shown in Table 1 to produce dense sintered bodies (Nα1 to 4). In addition, in this composition, the temperature at which a liquid phase occurs is about 1450°C, and the processing temperature in the example of the present invention is 200°C.
In the comparative example, the temperature is 150° C. higher or lower.
HIP処理後の焼結体を研磨、加工し、直径が9.52
mm、表面粗さ0.OIAlmRaのボール試料を製作
した。この表面粗さは、触針式表面粗さ測定器によりボ
ールの赤道上を測定して求めた中心線平均粗さとして評
価した。この試料について、)」IP処理後の焼結体密
度、転がり疲労寿命及び破損の起源となった欠陥の観察
を実施し、その結果を第1表に示した。なお、この寿命
試験よ、スラスト式軸受寿命試験機を用いて、3個のボ
ールに荷重を加えながら、軸受鋼製の平板上を回転させ
る方法で行った。荷重は、1球当たり150kg、回転
数2000rpm、タービン油の油浴“潤滑条件であり
、最高300時間まで行った。The sintered body after HIP treatment is polished and processed to have a diameter of 9.52 mm.
mm, surface roughness 0. A ball sample of OIAlmRa was manufactured. The surface roughness was evaluated as the centerline average roughness obtained by measuring the ball on its equator using a stylus-type surface roughness measuring device. Regarding this sample, the density of the sintered body after the IP treatment, the rolling fatigue life, and the defects that caused the breakage were observed, and the results are shown in Table 1. This life test was conducted using a thrust type bearing life tester by rotating a flat plate made of bearing steel while applying a load to three balls. The load was 150 kg per ball, the rotation speed was 2000 rpm, and the lubrication conditions were a turbine oil bath, and the test was carried out for a maximum of 300 hours.
また、上記欠陥の観察はE P M A (Elect
ron Pr。In addition, observation of the above defects is performed using E PMA (Elect
ron Pr.
be Micro−analysis)を備えた電子顕
微鏡にて実施した。正常部分と欠陥である異常部分とは
、電子顕微鏡観察にて見え方が異なるのでその識別が可
能であり、この異状部分の元素分析をEPMΔにて行っ
たものである。It was carried out using an electron microscope equipped with a micro-analysis. A normal part and an abnormal part which is a defect can be distinguished from each other because they look different under electron microscope observation, and elemental analysis of this abnormal part was performed using EPMΔ.
この結果によれば、本発明例(NCLl、2)のボール
には300時間試験しても破損が生じず、寿命が著しく
長くなった。一方HIP処理温度が低い比較例(Nα3
.4)では、いずれも1個のボールに破損(剥離)が生
じ、その起点となった欠陥は、助剤成分のAi’、Y元
素の偏析したものであった。なお破損の起源となった偏
析部の最大長は各20μm、15μmであり、いずれも
15μm以上であった。特に偏析部が20μmの場合(
Nα3)には、たった58時間で剥離が生じ、偏析部の
大きなもの程寿命が短いことを明示している。According to the results, the ball of the invention example (NCL1, 2) did not break even after 300 hours of testing, and its lifespan was significantly extended. On the other hand, a comparative example with a low HIP treatment temperature (Nα3
.. In 4), damage (peeling) occurred in one ball in each case, and the defect that became the starting point was segregation of Ai' and Y elements, which are auxiliary components. The maximum lengths of the segregated portions that caused the damage were 20 μm and 15 μm, respectively, and both were 15 μm or more. Especially when the segregation part is 20 μm (
For Nα3), peeling occurred in just 58 hours, clearly indicating that the larger the segregation area, the shorter the life.
実施例2
本実施例は、焼結助剤の種類、その添加量、HIP処理
条件及び寿命試験条件等を変えて実験したものである。Example 2 In this example, experiments were conducted by changing the type of sintering aid, the amount added, HIP treatment conditions, life test conditions, etc.
窒化珪素92重量部と、アルミナ及びマグネ2762重
量部、更にイツトリア4重量部とから成る混合粉末を、
実施例1と同様にして得た。この混合粉末を用いて、ボ
ール状及び円板状の各成形体を製作し、それを脱脂し、
その後1気圧の窒素雰囲気下で1650℃、2時間の条
件で予備焼結した後、第1表に示す条件でHIP処理を
して、焼結体(Nα5〜8)を製造した。なお、本組成
において、液相が生じる温度は約1350℃であり、本
発明例の処理温度はその200℃以上であり、Lヒ較例
では150℃高いだけである。A mixed powder consisting of 92 parts by weight of silicon nitride, 2762 parts by weight of alumina and magnetite, and 4 parts by weight of ittria,
Obtained in the same manner as in Example 1. Using this mixed powder, ball-shaped and disc-shaped molded bodies are manufactured, which are degreased.
Thereafter, preliminary sintering was performed at 1650° C. for 2 hours in a nitrogen atmosphere of 1 atm, followed by HIP treatment under the conditions shown in Table 1 to produce sintered bodies (Nα5 to 8). In this composition, the temperature at which a liquid phase occurs is about 1350°C, and the processing temperature in the present invention example is 200°C or higher, and in the L comparative example, it is only 150°C higher.
この焼結体を加工し、直径9.52mmのボール及び直
径60mmの円板状試料を作成し、実施例1と同様にし
て、寿命評価を行い、その結果を第1表に示した。試験
は、最大接触応力が600kg/mm’、回転数110
00rpの条件で、最高1000時間まで行った。This sintered body was processed to create a ball with a diameter of 9.52 mm and a disk-shaped sample with a diameter of 60 mm, and life evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. The test was conducted at a maximum contact stress of 600 kg/mm' and a rotation speed of 110.
The test was carried out for up to 1000 hours under the condition of 00 rpm.
この結果によれば、本発明例の試料(k5〜7)は、い
ずれも1000時間という長時間の試験においても破損
しなかった。一方HIP処理温度の低い比較例Nα8で
は305時間でボール剥離を生じ、その起点は主として
焼結助剤成分からなり最大長30μmの偏析部であった
。According to the results, none of the samples of the present invention examples (k5 to k7) were damaged even during the long test of 1000 hours. On the other hand, in Comparative Example Nα8 in which the HIP treatment temperature was low, ball peeling occurred in 305 hours, and the starting point was a segregated part consisting mainly of the sintering aid component and having a maximum length of 30 μm.
実施例3
本実施例は、焼結助剤の種類、その添加量、予備焼結条
件及び)IIP処理条件を種々変えて、実験したもので
ある。Example 3 In this example, experiments were conducted by varying the type of sintering aid, the amount added, the preliminary sintering conditions, and the IIP treatment conditions.
平均粒径0.6μmの窒化珪素粉末と、第2表に示す割
合の焼結助剤とを前記実施例と同様の方法で混合し、そ
の後乾燥し、金型ブレスにより、6X10X30mmの
テストピース形状の成形体を得た。この成形体を第2表
に示した条件で、予備焼結及びHIP処理を行い、焼結
体試料を得た。この得られた焼結体の密度及び抗折強度
を測定し、この結果を第2表に示した。尚、これら発明
例Nα9〜12はいずれも偏析部がS忍められず、焼結
体組織は均質であった。この抗折強度の測定は、試料を
#160のダイアモンド砥石にて、幅8mm、厚さ4m
mに研削した後、スパン20mm、クロスヘツドスピー
ド0.5mm/分の3点曲げ法で行った。Silicon nitride powder with an average particle size of 0.6 μm and a sintering aid in the proportions shown in Table 2 were mixed in the same manner as in the previous example, dried, and molded into test pieces of 6 x 10 x 30 mm using a mold press. A molded body was obtained. This molded body was subjected to preliminary sintering and HIP treatment under the conditions shown in Table 2 to obtain a sintered body sample. The density and bending strength of the obtained sintered body were measured, and the results are shown in Table 2. Incidentally, in all of these invention examples Nα9 to Nα12, no segregation was observed, and the sintered body structure was homogeneous. This bending strength measurement was performed using a #160 diamond grindstone with a sample of 8 mm width and 4 m thickness.
After grinding to a diameter of m, three-point bending was performed with a span of 20 mm and a crosshead speed of 0.5 mm/min.
この結果によれば、発明例No、 9〜12はいずれも
相対密度が100%と太き(、また抗折強度も850〜
1350MPaと大きい。また、予備焼結の圧力は1気
圧でもlO気圧でも良好な結果を示した。According to this result, invention examples Nos. 9 to 12 all have a relative density of 100% (and a bending strength of 850 to 100%).
It is large at 1350MPa. Further, good results were obtained when the pre-sintering pressure was 1 atm or 10 atm.
一方、低圧力下で)(IP処理を行った比較例N。On the other hand, Comparative Example N was subjected to IP treatment (under low pressure).
13及び14はいずれも、相対密度が小さく、緻密化が
十分でなくピンホールが残存している。従ってこれらは
寿命が短いと考えられる。Both Nos. 13 and 14 have low relative densities, are not sufficiently densified, and pinholes remain. Therefore, these are considered to have a short lifespan.
また、比較例Nα13〜15は、いずれも抗折強度が小
さく、特に窒化珪素割合が65%と少ない比較例Nl1
l 5は、緻密化しているがその強度が600MPaと
大変小さい。以上より、この比較例Nα13〜15 (
特に15)は、破損し易いと考えられ、軸受材料として
好ましくないとみなされる特許出願人 日本特殊陶業
株式会社
代 理 人In addition, Comparative Examples Nα13 to Nα15 all have low bending strength, especially Comparative Example Nl1 with a low silicon nitride ratio of 65%.
Although 15 is densified, its strength is very low at 600 MPa. From the above, this comparative example Nα13 to 15 (
In particular, 15) is considered to be easily damaged and is considered undesirable as a bearing material.Patent applicant: NGK Spark Plug Co., Ltd. Agent
Claims (2)
結助剤とから構成される窒化珪素基焼結体であって、該
焼結体中には、気孔が実質的になく、かつ上記窒化珪素
中の不純物および焼結助剤のうちの少なくとも焼結助剤
から成り最大長が10μmを越える偏析部を具備しない
ことを特徴とする転がり軸受材料用窒化珪素基焼結体。(1) A silicon nitride-based sintered body composed of 70% by weight or more of silicon nitride and 30% by weight or less of a sintering aid, the sintered body having substantially no pores; A silicon nitride-based sintered body for a rolling bearing material, characterized in that the silicon nitride-based sintered body comprises at least the sintering aid of the impurities and sintering aid in the silicon nitride and does not have a segregated part having a maximum length exceeding 10 μm.
の焼結助剤粉末との混合粉末から成る予備成形体を、3
00気圧以下の窒素を含む非酸化雰囲気下で予備焼結す
る第1工程と、 その後、300気圧以上の窒素を含む非酸化雰囲気下か
つ予備成形体中に液相が生じる温度より200℃以上高
い温度下でHIP(ホットアイソスタティックプレス)
処理を行う第2工程と、を実施することを特徴とする転
がり軸受材料用窒化珪素基焼結体を製造する方法。(2) A preformed body made of a mixed powder of 70% by weight or more of silicon nitride powder and 30% by weight or less of sintering aid powder,
A first step of pre-sintering in a non-oxidizing atmosphere containing nitrogen at a pressure of 00 atm or less, followed by a step of pre-sintering in a non-oxidizing atmosphere containing nitrogen at a pressure of at least 300 atm and at a temperature at least 200°C higher than the temperature at which a liquid phase occurs in the preform. HIP (Hot Isostatic Press) under temperature
A method for producing a silicon nitride-based sintered body for a rolling bearing material, the method comprising: a second step of performing a treatment.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175314A JP2736387B2 (en) | 1988-07-27 | 1989-07-06 | Silicon nitride-based sintered body for rolling bearing material and method for producing the same |
GB8916608A GB2221922A (en) | 1988-07-27 | 1989-07-20 | Sintered silicon nitride-based materials suitable as roller bearing material, and method for producing the same |
DE19893924453 DE3924453A1 (en) | 1988-07-27 | 1989-07-24 | SINTER BODY BASED ON SILICON NITRIDE FOR USE AS AN ANTIFRICTION BEARING MATERIAL |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-187148 | 1988-07-27 | ||
JP18714888 | 1988-07-27 | ||
JP1175314A JP2736387B2 (en) | 1988-07-27 | 1989-07-06 | Silicon nitride-based sintered body for rolling bearing material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02124771A true JPH02124771A (en) | 1990-05-14 |
JP2736387B2 JP2736387B2 (en) | 1998-04-02 |
Family
ID=26496620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1175314A Expired - Lifetime JP2736387B2 (en) | 1988-07-27 | 1989-07-06 | Silicon nitride-based sintered body for rolling bearing material and method for producing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2736387B2 (en) |
DE (1) | DE3924453A1 (en) |
GB (1) | GB2221922A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0565809A (en) * | 1991-09-04 | 1993-03-19 | Sumitomo Electric Ind Ltd | Adjusting shim |
JP2007308368A (en) * | 2007-07-13 | 2007-11-29 | Toshiba Corp | Method for producing silicon nitride wear resistant member |
JP2010001929A (en) * | 2008-06-18 | 2010-01-07 | Nippon Steel Materials Co Ltd | Fluid static pressure guide bearing component, tool supporting component, and manufacturing method therefor |
WO2022210539A1 (en) * | 2021-03-30 | 2022-10-06 | 株式会社 東芝 | Silicon nitride sintered body, wear-resistant member, and method for producing silicon nitride sintered body |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4102531C2 (en) * | 1990-01-29 | 1997-12-18 | Ngk Spark Plug Co | Silicon nitride sintered body and process for its production |
DE19902414A1 (en) * | 1999-01-22 | 2000-08-17 | Fag Oem & Handel Ag | Bearings for spreader rolls |
CN113800919B (en) * | 2021-10-26 | 2023-01-03 | 中材高新氮化物陶瓷有限公司 | High-precision silicon nitride ceramic microsphere and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5575970A (en) * | 1978-11-30 | 1980-06-07 | Tokyo Shibaura Electric Co | Manufacture of ceramic turbine rotor |
JPS63101519A (en) * | 1986-10-17 | 1988-05-06 | Toshiba Corp | Rolling body made of ceramics |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4119690A (en) * | 1977-01-03 | 1978-10-10 | General Electric Company | Sintering of silicon nitride using Mg and Be additives |
SE440222B (en) * | 1978-05-02 | 1985-07-22 | Asea Ab | SET TO MAKE A FORM OF SILICON NITRIDE THROUGH ISOSTATIC COMPRESSION OF SILICON NITRIDE POWDER CONTAINING FREE SILICONE |
DE2910943A1 (en) * | 1979-03-20 | 1980-09-25 | Motoren Turbinen Union | METHOD FOR PRODUCING CERAMIC MOLDED PARTS FROM SILICON NITRIDE |
US4379110A (en) * | 1979-08-09 | 1983-04-05 | General Electric Company | Sintering of silicon nitride to high density |
DE3141590C2 (en) * | 1980-10-20 | 1985-01-03 | Kobe Steel, Ltd., Kobe, Hyogo | Process for the production of high density sintered silicon nitride |
DE3528934A1 (en) * | 1985-08-13 | 1987-02-26 | Feldmuehle Ag | SLIDING ELEMENT MADE OF CERAMIC MATERIAL |
IL79820A0 (en) * | 1985-09-26 | 1986-11-30 | Tektronix Inc | Wafer probe head,and method of assembling same |
JPH0774103B2 (en) * | 1986-12-27 | 1995-08-09 | 日本碍子株式会社 | High hardness silicon nitride sintered body |
-
1989
- 1989-07-06 JP JP1175314A patent/JP2736387B2/en not_active Expired - Lifetime
- 1989-07-20 GB GB8916608A patent/GB2221922A/en not_active Withdrawn
- 1989-07-24 DE DE19893924453 patent/DE3924453A1/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5575970A (en) * | 1978-11-30 | 1980-06-07 | Tokyo Shibaura Electric Co | Manufacture of ceramic turbine rotor |
JPS63101519A (en) * | 1986-10-17 | 1988-05-06 | Toshiba Corp | Rolling body made of ceramics |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0565809A (en) * | 1991-09-04 | 1993-03-19 | Sumitomo Electric Ind Ltd | Adjusting shim |
JP2007308368A (en) * | 2007-07-13 | 2007-11-29 | Toshiba Corp | Method for producing silicon nitride wear resistant member |
JP2010001929A (en) * | 2008-06-18 | 2010-01-07 | Nippon Steel Materials Co Ltd | Fluid static pressure guide bearing component, tool supporting component, and manufacturing method therefor |
WO2022210539A1 (en) * | 2021-03-30 | 2022-10-06 | 株式会社 東芝 | Silicon nitride sintered body, wear-resistant member, and method for producing silicon nitride sintered body |
JPWO2022210539A1 (en) * | 2021-03-30 | 2022-10-06 |
Also Published As
Publication number | Publication date |
---|---|
DE3924453A1 (en) | 1990-02-08 |
GB8916608D0 (en) | 1989-09-06 |
JP2736387B2 (en) | 1998-04-02 |
GB2221922A (en) | 1990-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4795588B2 (en) | Wear resistant parts made of silicon nitride | |
EP0626358B1 (en) | Electrically conductive high strength dense ceramic | |
US4879263A (en) | Sliding member of high strength and high abrasion resistance | |
KR950005502B1 (en) | Wear-resistant member | |
JPH01283479A (en) | Mechanical seal using pore dispersant and pore dispersed cemented carbide and manufacture thereof | |
JP2012500767A (en) | Large ceramic parts and manufacturing method | |
JP5002155B2 (en) | Wear-resistant member made of silicon nitride and method of manufacturing the same | |
JP2764589B2 (en) | Silicon nitride based sintered body for bearing | |
JP5486044B2 (en) | Silicon nitride body and method for producing the same | |
JPH09506155A (en) | High fatigue life silicon nitride bearing balls | |
JPH02124771A (en) | Silicon nitride-base sintered body for rolling bearing material and its production | |
JP2010241616A (en) | Impact resistant member and method for manufacturing the same | |
JP4129104B2 (en) | Silicon nitride sintered body and wear-resistant member using the same | |
JP4820840B2 (en) | Method for producing wear-resistant member made of silicon nitride | |
KR100613956B1 (en) | Silicon nitride anti-wear member and process for producing the same | |
JP2011132126A (en) | Wear-resistant member | |
JP2000256066A (en) | Silicon nitride-base sintered compact, its production and wear resistant member using same | |
US6136738A (en) | Silicon nitride sintered body with region varying microstructure and method for manufacture thereof | |
Lee et al. | Microstructural evolution and mechanical properties of gas-pressure-sintered Si3N4 with Yb2O3 as a sintering aid | |
JP2549636B2 (en) | Ceramics rolling elements | |
JP3538524B2 (en) | Ceramic rolling element and method of manufacturing the same | |
Zhang et al. | Effect of particle size of Y2O3-Al2O3 additives on microstructure and mechanical properties of Si3N4 ceramic balls for bearing applications | |
JP2000335976A (en) | Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same | |
Asada et al. | Sialons for Ultraprecision Equipment | |
JP2001130966A (en) | Silicon nitride-based sintered body, method for producing the same, and silicon nitride-based abrasion resistant member by using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100116 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100116 Year of fee payment: 12 |