JPS6374963A - Silicon nitride base sintered body for antiabrasive material - Google Patents

Silicon nitride base sintered body for antiabrasive material

Info

Publication number
JPS6374963A
JPS6374963A JP61218899A JP21889986A JPS6374963A JP S6374963 A JPS6374963 A JP S6374963A JP 61218899 A JP61218899 A JP 61218899A JP 21889986 A JP21889986 A JP 21889986A JP S6374963 A JPS6374963 A JP S6374963A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
pores
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61218899A
Other languages
Japanese (ja)
Inventor
神取 利男
茂樹 小林
重孝 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP61218899A priority Critical patent/JPS6374963A/en
Publication of JPS6374963A publication Critical patent/JPS6374963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軸受や各種メカニカルシール等に使用してすぐ
れた耐久性を示す耐摩耗材用窒化けい素質焼結体に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silicon nitride sintered body for wear-resistant materials that exhibits excellent durability when used in bearings, various mechanical seals, and the like.

〔従来技術〕[Prior art]

窒化けい素質焼結体は、高強度、高耐食性、高硬度、軽
量等の特性を有し、各種構造用セラミックスとして注目
されている。また窒化けい素質焼結体は、寸法安定性、
耐摩耗性にもすぐれ、高温、腐食性雰囲気用あるいは高
負荷用の摺動部材としても期待されている。
Silicon nitride sintered bodies have characteristics such as high strength, high corrosion resistance, high hardness, and light weight, and are attracting attention as ceramics for various structures. In addition, silicon nitride sintered bodies have excellent dimensional stability and
It also has excellent wear resistance and is expected to be used as a sliding member for use in high temperatures, corrosive atmospheres, and high loads.

しかし、突際に摺動部材として用いた場合、材料として
の信頼性が不充分で、必ずしも好ましい結果をもたらさ
ない場合が多い。例えば、軸受用のポール、ころ、レー
スとして使用すると、比較的短い寿命で破壊したシ、表
面のチッピング等が生じ、充分な特性が出ない。また他
の摺動部材として使用した場合にも、表面層のチッピン
グ等による摩耗量の増大が認められる。
However, when used as a sliding member in the event of an accident, the reliability of the material as a material is insufficient and often the result is not always favorable. For example, when used as poles, rollers, or races for bearings, breakage occurs within a relatively short life span, chipping of the surface, etc. occurs, and sufficient characteristics are not achieved. Furthermore, when used as other sliding members, an increase in the amount of wear due to chipping of the surface layer is observed.

添加助剤、焼結条件等の検討で、より高強度、高靭性の
窒化けい素質焼結体′t−得て、上記の問題を克服しよ
うとする試みがなされているが、その対策は必ずしも充
分とはいえない(特開昭59−269’74号、特開昭
59−21580号)。
Attempts have been made to overcome the above-mentioned problems by obtaining silicon nitride sintered bodies with higher strength and toughness through examination of additives, sintering conditions, etc.; It cannot be said to be sufficient (Japanese Patent Application Laid-Open No. 59-269'74, JP-A No. 59-21580).

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は上記の来情に鑑みてなされたもので、耐摩耗材
用窒化けい素質焼結体、特に耐チッピング性、接触疲労
寿命にすぐれ、摺動部材として好適な鼠化けい素質焼結
体を提供し、もって従来の問題点を解決することを目的
とするものである。
The present invention has been made in view of the above-mentioned circumstances, and provides a silicon nitride sintered body for wear-resistant materials, particularly a silicon nitride sintered body that has excellent chipping resistance and contact fatigue life and is suitable as a sliding member. The purpose of this project is to provide a solution to existing problems.

〔問題点を解決するための手段〕[Means for solving problems]

発明者らは先に、摺動部材として要求される上記特性と
焼結体組織との関連性について冥験研究を重ねた結果、
焼結体中の空孔体積率が3%以下で、かつ5μm以上の
空孔の平均分布が50個/mm3以下である窒化けい素
質焼結体は摺動部材としてすぐれた耐久性を発揮するこ
とを確認した(昭和61年8月26日付特許出願)。
The inventors previously conducted extensive research into the relationship between the above characteristics required for sliding members and the structure of the sintered body, and found that
A silicon nitride sintered body with a pore volume ratio of 3% or less and an average distribution of pores of 5 μm or more of 50/mm3 or less exhibits excellent durability as a sliding member. (Patent application dated August 26, 1986).

発明者らは更に研究を重ねた結果、焼結体の靭性を6 
MPa、/i−以上とし、空孔O条件を、焼結体中の空
孔体積率が551以下、10μm以上の空孔の平均分布
が100個/霞3以下とすることで、摺動部材としてす
ぐれた耐久性を発揮し信頼性のある窒化けい素質焼結体
が得られることを確認した。
As a result of further research, the inventors found that the toughness of the sintered body was 6.
MPa, /i- or more, and the pore O conditions are such that the pore volume fraction in the sintered body is 551 or less, and the average distribution of pores of 10 μm or more is 100/haze 3 or less. It was confirmed that a reliable silicon nitride sintered body with excellent durability could be obtained.

この焼結体を得るための焼結法としては、常圧、焼結、
加圧焼結、ナツトプレス、熱間静水圧プレス等の手段が
用いられ得るが、焼結体のち密化促進のためにホットプ
レス、熱間静水圧プレスが望ましく、かつ窒化けい素が
1分解しない温度域での焼結が望ましい。
Sintering methods for obtaining this sintered body include normal pressure, sintering,
Pressure sintering, nut pressing, hot isostatic pressing, and other means may be used, but hot pressing and hot isostatic pressing are preferred in order to promote densification of the sintered body, and silicon nitride does not decompose even once. Sintering in a temperature range is desirable.

焼M助剤ト1.でハ、Mgo、Al5Os 1MgA4
0a %Ts Os 、Law Os、Cent、Zr
Ox 、AIN、 Ti、N。
Baking M aid 1. Deha, Mgo, Al5Os 1MgA4
0a %Ts Os , Law Os, Cent, Zr
Ox, AIN, Ti, N.

ZrN%YN等が用いられ得る。ZrN%YN, etc. may be used.

〔作用効果〕[Effect]

窒化けい素質焼結体を摺動部材として用いる場合、破損
はチッピングの形態が多く、部材全体として空孔体積率
が低くてもチッピングの発生がしばしば起る。
When a silicon nitride sintered body is used as a sliding member, damage often occurs in the form of chipping, and chipping often occurs even if the pore volume ratio of the member as a whole is low.

発明者らの実験によれば、空孔の大きさが50μm以上
であると接触圧によってそのまわりにチッピングが容易
に発生する傾向があるが、5μm程度の空孔であっても
、複数の空孔が近接して存在した場合は局所的にチッピ
ングの発生がみられる。
According to experiments conducted by the inventors, if the size of a hole is 50 μm or more, chipping tends to occur around it due to contact pressure, but even if the hole is about 5 μm, chipping tends to occur around it. If the holes are located close to each other, local chipping will occur.

しかして、空孔体積率を5%以下とするとともに10μ
m以上の空孔の平均分布を100個/mm8以下とし、
かつ靭性を6MF〜量以上に設定することで、チッピン
グの発生もなく冥用上充分な耐久性と信頼性を有する摺
動部材として使用することができる。
Therefore, the pore volume ratio is set to 5% or less and 10μ
The average distribution of pores of m or more is 100 pores/mm8 or less,
Moreover, by setting the toughness to 6 MF or more, it can be used as a sliding member having sufficient durability and reliability without causing chipping.

〔冥験例1〕 窒化けい素質焼結体の空孔の分布、靭性と圧砕荷重の関
係をみるため、空孔体積率の異る試料について圧砕試験
(J工S  B  l!501.2個の球状試料に荷重
をかけて破壊荷重を測定するもの)を行なった。
[Experience Example 1] In order to examine the relationship between pore distribution, toughness, and crushing load in silicon nitride sintered bodies, crushing tests were conducted on samples with different pore volume ratios (J Engineering S B l!501.2 pieces) The fracture load was measured by applying a load to a spherical sample.

空孔の分布は、自動研摩盤で鏡面研磨後、ダイヤモンド
ペーストでパフ研磨し九試料を用い、100倍以上の光
学顕微鏡写真の実面積換算で1■8以上の部分での平均
!1にとった。
The distribution of pores was determined by mirror-polishing with an automatic polishing machine, then puff-polishing with diamond paste, using 9 samples.The average of the areas of 1*8 or more in terms of the actual area of optical micrographs taken at a magnification of 100 times or more! I took it to 1.

靭性f!は、鏡面研磨された試料表面に荷重2゜19(
30秒負荷)でビッカース圧こんを打ち、第2図に示す
ように圧こんの長さ2aおよび発生したクラックの長さ
lを光学粛微鏡で200倍以上の倍率で観察し測定する
。そして各試料につき測定値を次の2式に代入し、計算
値の小さい方を靭性値(KXc )とし、少くとも5点
以上の圧こんについて平均値をとった。
Toughness f! is a load of 2°19 (
A Vickers indentation is made under a load of 30 seconds), and the length 2a of the indentation and the length l of the generated crack are observed and measured with an optical microscope at a magnification of 200 times or more, as shown in FIG. Then, the measured values for each sample were substituted into the following two equations, the smaller of the calculated values was taken as the toughness value (KXc), and the average value was taken for at least five indentations.

KIc−0,018(T)  Tip (−4−)−”
’  −a4 Kra−0,203HJT″(4閂)−” ’(H:硬
さ 、 E:ヤング率) 第1図に示すように、空孔量と圧砕荷重との間には相関
が認められ、圧砕荷重は空孔量が大きい程、高くなる傾
向を有する。しかしながら、バラツキ幅は可成シ大きい
。特に焼結助剤、焼結条件を変化させると相関度は著し
く悪くなる。
KIc-0,018(T) Tip (-4-)-”
' -a4 Kra-0,203HJT'' (4 bars) -'' (H: hardness, E: Young's modulus) As shown in Figure 1, there is a correlation between the amount of pores and the crushing load. The crushing load tends to increase as the amount of pores increases. However, the variation width is quite large. In particular, when the sintering aid and sintering conditions are changed, the correlation becomes significantly worse.

そこで試料の靭性についてみると、図中、点線上VC靭
性値(KIO) 6 MPa、/”;  がある。こレ
ヨ勺、10μm以上の空孔が100個/11112以下
で、靭、性値が6MPa、/’;i  以上にすれば圧
砕荷重が充分く高く、寿命の長いもの(図中O印)が得
られることがわかる。このことは、空孔量および分布を
制御することにより接触疲労てよるチッピングの発生起
点数が減少し、かつ靭性を6MPa、/”’;i  以
上とすることでチッピングの成長が抑制され、また母材
強度自体も高くなることによるものと認められた。
Therefore, looking at the toughness of the sample, the VC toughness value (KIO) shown on the dotted line in the figure is 6 MPa, /''. This specimen has 100 pores/11112 or less with a diameter of 10 μm or more, and the toughness and toughness values are It can be seen that if the crushing load is set to 6 MPa, /'; It was recognized that this is due to the fact that the number of starting points for chipping due to mechanical strength is reduced, the growth of chipping is suppressed by setting the toughness to 6 MPa, /'';i or more, and the strength of the base material itself is increased.

〔実験例2〕 各種窒化けい素質焼結体を添加助剤、焼結方法、条件を
変化させて作製し、その摺動特性を、(a)J工S  
B  1501に準じ表面を残留応力が残らないように
研磨した約10gImφの球状試料を用いた圧砕試験、
(1))鏡面研磨した板材を用い相手材約10■φの鋼
球で荷重200神の回転試験(llil波動試験)の2
種類の方法で評価した。
[Experimental Example 2] Various types of silicon nitride sintered bodies were prepared by changing additives, sintering methods, and conditions, and their sliding properties were evaluated by (a) J Engineering S
Crushing test using a spherical sample of approximately 10 g Imφ whose surface was polished so that no residual stress remained according to B 1501,
(1)) 2 of the rotation test (llil wave test) using a mirror-polished plate material and a steel ball of approximately 10 mm diameter under a load of 200 cm.
It was evaluated using different methods.

(1)  平均粒径0.7 p m OS i3N 4
粉末にY2O2、MgA l倉04を各・95wt%添
加し、エタノール中で混合後、乾燥、解砕して原料粉末
とした。
(1) Average particle size 0.7 pm OS i3N 4
95 wt% each of Y2O2 and MgAl 04 were added to the powder, mixed in ethanol, dried and crushed to obtain a raw material powder.

ボー1vおよび平板を金型プレスにより成形した後、1
500〜1700°C%lO気圧ON雪中で焼結した。
After forming the bow 1v and the flat plate with a mold press, 1
Sintering was carried out in snow at 500-1700°C and %lO atmospheric pressure ON.

その一部を更に各種パッド材中に埋め込んで1500〜
l ” OO”0%200気圧、で熱間静圧プレス(H
工P)を行なった。焼結後、真球度を出すとともに表面
の残留応力をなくすためSiC砥粒で研磨した。結果を
第1表に示す。なおすべての試料の空孔体−積率Ir!
、5%以下である。
A part of it is further embedded in various pad materials for 1,500~
l ” OO” 0% 200 atm, hot isostatic press (H
Engineering P) was carried out. After sintering, it was polished with SiC abrasive grains to achieve sphericity and eliminate residual stress on the surface. The results are shown in Table 1. In addition, the pore volume fraction Ir of all samples!
, 5% or less.

本発明のものは比較材に比べ圧砕荷重が高く、回転試験
の寿命も長い。なお、比較材Ago〜ユ5は空孔数が多
く、KIcが低い。
The material of the present invention has a higher crushing load and a longer rotation test life than the comparative materials. Note that the comparative materials Ago to Yu5 have a large number of pores and a low KIc.

(2)第2表に示す焼結助剤1に添加した各種組成の混
合粉末を粒径0.6μm以下のSis N4粉末を用い
て湿式混合で準備し、ボールおよび平板を金型プレスで
成形し各種条件でホットプレス(HP)した。焼結後、
SiO砥粒で研磨して試験に供した。すべての試料は充
分にち密化しておシ、空孔体積率は5%以下であった。
(2) Mixed powders of various compositions added to sintering aid 1 shown in Table 2 were prepared by wet mixing using Sis N4 powder with a particle size of 0.6 μm or less, and balls and flat plates were formed using a mold press. and hot pressed (HP) under various conditions. After sintering,
It was polished with SiO abrasive grains and used for testing. All samples were sufficiently densified and the pore volume fraction was less than 5%.

第2表に示すように、本発明のものは圧砕荷重、回転試
験の寿命に高い値を示し、摺動特性にすぐれていること
がわかる。比較例はいずれも空孔数が多すぎ、&8は靭
性も不足する。
As shown in Table 2, the products of the present invention show high values for crushing load and rotation test life, and are found to have excellent sliding properties. All of the comparative examples have too many pores, and &8 also lacks toughness.

以上より明かなように、本発明の窒化けい素質焼結体は
耐摩耗材、特に摺動部材としてすぐれた耐久性を発揮す
るものである。
As is clear from the above, the silicon nitride sintered body of the present invention exhibits excellent durability as a wear-resistant material, especially as a sliding member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、セラミック焼結体の空孔量と圧砕荷重の関係
についての実験結果を示す図、第2図は焼結体表面の庄
こんおよび発生クラックの模式図である。 第1図
FIG. 1 is a diagram showing experimental results regarding the relationship between the amount of pores in a ceramic sintered body and crushing load, and FIG. 2 is a schematic diagram of cracks and generated cracks on the surface of the sintered body. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  窒化けい素を主成分とし、焼結体中の空孔体積率が5
%以下で、10μm以上の空孔の平均分布が100個/
mm^2以下であり、かつ焼結体の靭性値が6MPa√
m以上であることを特徴とする耐摩耗材用窒化けい素質
焼結体。
The main component is silicon nitride, and the pore volume ratio in the sintered body is 5.
% or less, and the average distribution of pores of 10 μm or more is 100/
mm^2 or less, and the toughness value of the sintered body is 6MPa√
A silicon nitride sintered body for use in wear-resistant materials, characterized in that it has a diameter of at least m.
JP61218899A 1986-09-16 1986-09-16 Silicon nitride base sintered body for antiabrasive material Pending JPS6374963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218899A JPS6374963A (en) 1986-09-16 1986-09-16 Silicon nitride base sintered body for antiabrasive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218899A JPS6374963A (en) 1986-09-16 1986-09-16 Silicon nitride base sintered body for antiabrasive material

Publications (1)

Publication Number Publication Date
JPS6374963A true JPS6374963A (en) 1988-04-05

Family

ID=16727053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218899A Pending JPS6374963A (en) 1986-09-16 1986-09-16 Silicon nitride base sintered body for antiabrasive material

Country Status (1)

Country Link
JP (1) JPS6374963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120057A (en) * 1988-10-31 1990-05-08 Toshiba Corp Thermal head
DE3938644A1 (en) * 1988-11-21 1990-05-23 Ngk Spark Plug Co Sintered body of silicon nitride used in roller bearings - nitride particles are elongated with specific width and length dimensions to improve fracture strength
US5395807A (en) * 1992-07-08 1995-03-07 The Carborundum Company Process for making silicon carbide with controlled porosity

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120057A (en) * 1988-10-31 1990-05-08 Toshiba Corp Thermal head
DE3938644A1 (en) * 1988-11-21 1990-05-23 Ngk Spark Plug Co Sintered body of silicon nitride used in roller bearings - nitride particles are elongated with specific width and length dimensions to improve fracture strength
JPH02141474A (en) * 1988-11-21 1990-05-30 Ngk Spark Plug Co Ltd Silicon nitride-based sintered body for bearing
US5395807A (en) * 1992-07-08 1995-03-07 The Carborundum Company Process for making silicon carbide with controlled porosity
US5589428A (en) * 1992-07-08 1996-12-31 The Carborundum Company Silicon carbide with controlled porosity
US5635430A (en) * 1992-07-08 1997-06-03 The Carborundum Company Intermediate for producing porous silicon carbide
US5834387A (en) * 1992-07-08 1998-11-10 The Carborundum Company Ceramic comprising silicon carbide with controlled porosity

Similar Documents

Publication Publication Date Title
JP3092800B2 (en) Dense silicon nitride ceramics containing fine-grained carbides
KR20010090450A (en) Abrasion resistance materials and preparation method therefor
Lee et al. Crack-healing behaviour of mullite/SiC/Y2O3 composites and its application to the structural integrity of machined components
JPS60200863A (en) Silicon nitride base ceramics
JP5486044B2 (en) Silicon nitride body and method for producing the same
JPH0680470A (en) Production of silicon nitride sintered compact
Strecker et al. Influence of microstructural variation on fracture toughness of LPS-SiC ceramics
JP2764589B2 (en) Silicon nitride based sintered body for bearing
JPS6374963A (en) Silicon nitride base sintered body for antiabrasive material
JP2518630B2 (en) Silicon nitride sintered body and method for producing the same
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JPH07138067A (en) Ceramic spring material and ceramic spring and its production
JP2736387B2 (en) Silicon nitride-based sintered body for rolling bearing material and method for producing the same
JP2004002067A (en) Wear-resistant member and its production process
JP3538524B2 (en) Ceramic rolling element and method of manufacturing the same
US6136738A (en) Silicon nitride sintered body with region varying microstructure and method for manufacture thereof
JP2004026513A (en) Aluminum oxide wear resistant member and its production process
JP2773976B2 (en) Super tough monolithic silicon nitride
Kudyba-Jansen et al. The influence of green processing on the sintering and mechanical properties of β-sialon
An et al. Alumina platelet reinforced reaction bonded aluminum oxide composites: Textured and random
JPS6355163A (en) Silicon nitride base sintered body for antiabrasive material
JP2000072553A (en) Silicon nitride wear resistance member and its production
Liu et al. Effect of residual porosity and pore structure on the mechanical strength of SiC Al2O3 Y2O3
Maiti et al. Preparation of rare earth oxide doped alumina ceramics, their hardness and fracture toughness determinations
Bitterlich et al. SiAlON-SiC-composites for cutting tools