JP2920482B2 - Silicon carbide sintered body excellent in toughness and manufacturing method - Google Patents

Silicon carbide sintered body excellent in toughness and manufacturing method

Info

Publication number
JP2920482B2
JP2920482B2 JP7270505A JP27050595A JP2920482B2 JP 2920482 B2 JP2920482 B2 JP 2920482B2 JP 7270505 A JP7270505 A JP 7270505A JP 27050595 A JP27050595 A JP 27050595A JP 2920482 B2 JP2920482 B2 JP 2920482B2
Authority
JP
Japan
Prior art keywords
silicon carbide
particles
weight
sintered body
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7270505A
Other languages
Japanese (ja)
Other versions
JPH0987027A (en
Inventor
護 三友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP7270505A priority Critical patent/JP2920482B2/en
Publication of JPH0987027A publication Critical patent/JPH0987027A/en
Application granted granted Critical
Publication of JP2920482B2 publication Critical patent/JP2920482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、化学プラント,液体輸
送ポンプ,エンジン部品等の分野で使用される耐食性,
耐摩耗性及び靭性に優れた炭化ケイ素焼結体及びその及
び製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to corrosion resistance used in the fields of chemical plants, liquid transport pumps, engine parts, etc.
The present invention relates to a silicon carbide sintered body having excellent wear resistance and toughness, and a method for producing the same.

【0002】[0002]

【従来の技術】セラミックスは、低温及び高温で高強
度,高硬度等において他の材料にはない優れた特性をも
つ。なかでも、炭化ケイ素系セラミックスは、過酷な条
件下で使用される耐食・耐摩耗性機械部品として実用化
が進展している。炭化ケイ素は、通常の常圧焼結で20
00℃の高温が必要とされている難焼結材であり、焼結
性を改善するため種々の提案がされている。最もよく知
られた方法としては、B,C又はそれらを含む化合物を
焼結助剤として使用し、低温安定型のβ粉末を焼結する
方法がある。この方法では、焼結の際にβからαへの相
転移が抑制されるように条件制御されるので、得られる
焼結製品はβ型が主成分の焼結体になる。焼結中に原料
粒子が柱状に成長するので、焼結体はほとんど柱状粒子
からなる組織をもったものとなる。また、焼結助剤は、
粒界に残留することなく粒子内に固溶する。そのため、
粒内を亀裂が進行する現象によって破壊が進行し易くな
る。このようなことから、炭化ケイ素焼結体は、150
0℃程度まで強度が低下しない長所をもつものの、破壊
靭性が2−4MPa・m1/2 程度の低い値をもつことが
欠点である。同じ系の焼結助剤をα粉末の焼結に使用
し、同様な機械的特性をもつ焼結体を製造することも知
られている。この場合も、粒子は柱状になり、そのアス
ペクト比(長さ/直径の比)は、β粉末か得られた焼結
体の組織中にあるものよりも小さくなる。また、高温で
焼結する必要があり、破壊靭性が低いことも実用上での
欠点である。
2. Description of the Related Art Ceramics have excellent properties such as high strength and high hardness at low and high temperatures unlike other materials. Above all, silicon carbide-based ceramics have been put into practical use as corrosion-resistant and wear-resistant mechanical parts used under severe conditions. Silicon carbide can be obtained by ordinary normal pressure sintering.
It is a difficult-to-sinter material requiring a high temperature of 00 ° C., and various proposals have been made to improve sinterability. The best known method is to use B, C or a compound containing them as a sintering aid, and to sinter a low-temperature stable β powder. In this method, conditions are controlled such that the phase transition from β to α is suppressed during sintering, and the resulting sintered product is a sintered body mainly composed of β type. Since the raw material particles grow into columns during sintering, the sintered body has a structure almost composed of columnar particles. Also, the sintering aid
Solid solution in the particles without remaining at the grain boundaries. for that reason,
The phenomenon in which cracks progress in the grains facilitates the destruction. For this reason, the silicon carbide sintered body has a
Although it has the advantage that the strength does not decrease to about 0 ° C., it has a drawback that the fracture toughness has a low value of about 2-4 MPa · m 1/2 . It is also known to use the same sintering aids for sintering α powder to produce sintered bodies with similar mechanical properties. Also in this case, the particles become columnar and their aspect ratio (length / diameter ratio) is smaller than that in the structure of the β powder or the sintered body obtained. In addition, it is necessary to perform sintering at a high temperature, and low fracture toughness is a practical disadvantage.

【0003】[0003]

【発明が解決しようとする課題】これらの問題を解決す
るため、アルミナ又はアルミナ−イットリアを添加し、
炭化ケイ素原料粉末を液相焼結する方法が提案されてい
る。この場合、β型の焼結原料が用いられ、1900℃
以上の温度で焼結する際にβからαへの相転移が生じる
ことから、柱状粒子が発達する。また、焼結体の粒界に
は、液相が固化したガラス相が残留する。このような焼
結体では、外力の印加に起因する亀裂は、粒界を優先的
に進行する。そのため、柱状粒子が焼結体の高靭性化に
有効に働き、靭性値が4〜6MPa・m1/2 と高くな
る。しかし、相転移を利用していることから、1900
℃以上の高温が必要であり、従来法と同様に高温焼結の
問題がある。また、相転移の速度が温度に非常に敏感な
ため、高度の温度制御が必要とされ、焼結作業が困難に
なる。そのため、原料や製造条件の制御によって意図的
に組織を制御し、破壊靭性や強度を制御することは困難
である。本発明は、このような問題を解消すべく案出さ
れたものであり、細粒で焼結性の高いβ粉末を使用し、
βからαへの相転移が生じない比較的低温で焼結するこ
とにより、柱状粒子を発達させた組織を持ち靭性に優れ
た炭化ケイ素焼結体を提供することを目的とする。
SUMMARY OF THE INVENTION To solve these problems, alumina or alumina-yttria is added,
Liquid phase sintering of silicon carbide raw material powder has been proposed. In this case, β-type sintering material is used, and 1900 ° C.
When sintering at the above temperature, a phase transition from β to α occurs, so that columnar particles develop. Further, a glass phase in which the liquid phase has solidified remains at the grain boundaries of the sintered body. In such a sintered body, the crack caused by the application of the external force proceeds preferentially at the grain boundary. Therefore, the columnar particles effectively work to increase the toughness of the sintered body, and the toughness value is increased to 4 to 6 MPa · m 1/2 . However, since the phase transition is used, 1900
A high temperature of at least ℃ is required, and there is a problem of high-temperature sintering as in the conventional method. Also, since the speed of the phase transition is very sensitive to temperature, a high degree of temperature control is required, making the sintering operation difficult. Therefore, it is difficult to intentionally control the structure by controlling the raw materials and manufacturing conditions, and to control the fracture toughness and strength. The present invention has been devised to solve such a problem, and uses a β-powder having high sinterability with fine grains,
An object of the present invention is to provide a silicon carbide sintered body having a structure in which columnar particles are developed and having excellent toughness by sintering at a relatively low temperature at which a phase transition from β to α does not occur.

【0004】[0004]

【課題を解決するための手段】本発明の炭化ケイ素焼結
体は、その目的を達成するため、85〜98重量%の炭
化ケイ素粒子と、2〜15重量%の粒界相からなる組織
をもち、炭化ケイ素粒子中のβ型含有率が50重量%以
上であり、平均粒径が1〜10μm,平均アスペクト比
が3以上の柱状粒子が全炭化ケイ素粒子の5重量%以上
であり、破壊靭性が4〜8MPa・m1/2 であることを
特徴とする。この焼結体は、Li,Mg,Al,Y,,
希土類金属及びSiから選ばれた2種以上の金属の酸化
物を構成成分とするガラス又は結晶相を含むガラスを粒
界相とすることが好ましい。この焼結体は、β型含有率
が全炭化ケイ素粒子の70重量%以上で、平均粒径0.
5〜3μmのマトリックス粒子40〜95重量%と平均
粒径3〜10μmの柱状粒子5〜60重量%から構成さ
れる組織、或いはβ型含有率が全炭化ケイ素粒子の50
重量%以上で、平均粒径1μm未満のマトリックス粒子
40重量%以下と平均粒径が1〜5μmの柱状粒子60
重量%以上から構成される組織をもっている。本発明の
焼結体は、平均粒径0.3μm以下及びβ型含有率80
重量%以上の原料微粉末を液相焼結した後、1900℃
以下の温度で熱処理することにより製造される。原料微
粉末には、粒成長の核として平均粒径0.6μm以上の
β型粒子0.5〜5重量%、或いはα型粒子0.5〜5
重量%添加することが好ましい。
In order to achieve the object, a silicon carbide sintered body of the present invention has a structure comprising 85 to 98% by weight of silicon carbide particles and 2 to 15% by weight of a grain boundary phase. The β-type content in the silicon carbide particles is 50% by weight or more, and the columnar particles having an average particle diameter of 1 to 10 μm and an average aspect ratio of 3 or more are 5% by weight or more of all the silicon carbide particles, and are broken. The toughness is characterized by being 4 to 8 MPa · m 1/2 . This sintered body is composed of Li, Mg, Al, Y ,,
It is preferable to use a glass containing an oxide of two or more metals selected from a rare earth metal and Si as a component or a glass containing a crystal phase as the grain boundary phase. This sintered body has a β-type content of 70% by weight or more of the total silicon carbide particles and an average particle size of 0.3%.
A structure composed of 40 to 95% by weight of matrix particles of 5 to 3 μm and 5 to 60% by weight of columnar particles having an average particle size of 3 to 10 μm, or a β-type content of 50% of all silicon carbide particles
Column particles 60 having an average particle diameter of 1 to 5 μm, and 40% by weight or less of matrix particles having an average particle diameter of 1 to 5 μm.
Has an organization composed of more than weight%. The sintered body of the present invention has an average particle size of 0.3 μm or less and a β-type content of 80 or less.
1900 ° C after liquid phase sintering of raw material fine powder of at least
It is manufactured by heat treatment at the following temperature. In the raw material powder, 0.5 to 5% by weight of β-type particles having an average particle diameter of 0.6 μm or more, or 0.5 to 5% by weight of α-type particles
It is preferable to add by weight.

【0005】[0005]

【作用】高靭性の炭化ケイ素焼結体が低い焼結温度で製
造できないのは、従来法が相転移を利用しているためで
ある。本発明においては、細粒で焼結性の高いβ粉末を
用い、βからαへの相転移が起こらない1900℃以下
の低温で焼結し、柱状粒子を発達させることにより、高
靭性の焼結体を低温で製造することを可能にしている。
このようにβ型を主成分とし、柱状粒子を含む焼結体で
あれば、強度,耐摩耗性等の炭化ケイ素本来の長所を活
用し、且つ靭性に優れた焼結体となる。このようにして
得られた炭化ケイ素焼結体は、β型を主とする炭化ケイ
素粒子と酸化物系の粒界相から構成され、平均粒径1〜
10μm,平均アスペクト比23以上の柱状長粒子を含
む組織をもっており、4〜8MPa・m1/2 の破壊靭性
を示す。
The reason that a silicon carbide sintered body having high toughness cannot be produced at a low sintering temperature is that the conventional method utilizes a phase transition. In the present invention, by using a fine-grained and highly sinterable β powder, sintering at a low temperature of 1900 ° C. or less at which a phase transition from β to α does not occur, and developing columnar particles, a high toughness This allows the compact to be produced at low temperatures.
As described above, a sintered body containing β type as a main component and containing columnar particles can be a sintered body having excellent toughness while utilizing the inherent advantages of silicon carbide such as strength and wear resistance. The silicon carbide sintered body thus obtained is composed of silicon carbide particles mainly of β type and an oxide-based grain boundary phase, and has an average particle diameter of 1 to 1.
It has a structure containing columnar long particles of 10 μm and an average aspect ratio of 23 or more, and shows a fracture toughness of 4 to 8 MPa · m 1/2 .

【0006】セラミックスの焼結では、使用する焼結原
料の粒度が焼結温度に大きく影響する。焼結原料として
は、平均粒径0.5〜0.6μmの粉末が市販されてい
る。この種の粉末は、0.1〜3μm程度の広い範囲に
わたる粒度分布をもっており、液相焼結に通常使用され
ているアルミナ−イットリア系の焼結助剤を用いても1
900℃以上の高温焼結が必要である。焼結性を低下さ
せる0.5μm以上の大きな粒子を除去したβ型の微細
粒子を調製し、適当な酸化物を助剤として使用すると焼
結温度を下げることができる。焼結温度は、ホットプレ
スや熱間静水圧焼結(HIP)等のように加圧を利用す
ると更に低下する。そして、適当な時間熱処理すると、
焼結体中の比較的大きな粒子が柱状に成長し、細かい粒
子と大きな柱状粒子からなる高靭性焼結体が得られる。
組織制御は、β型粒子の少量添加によって更に容易にな
る。β型粒子は、焼結時に核となって選択的に柱状に成
長し、靭性の向上が図られる。α型粒子は、粒度に関係
なく焼結時に核として作用するが、この場合は大部分が
柱状粒子である焼結体となる。
[0006] In the sintering of ceramics, the particle size of the sintering raw material used greatly affects the sintering temperature. Powders having an average particle size of 0.5 to 0.6 μm are commercially available as sintering raw materials. This kind of powder has a particle size distribution over a wide range of about 0.1 to 3 μm, and even if an alumina-yttria-based sintering agent usually used for liquid phase sintering is used.
High-temperature sintering at 900 ° C. or higher is required. The sintering temperature can be reduced by preparing β-type fine particles from which large particles of 0.5 μm or more that reduce sinterability have been removed and using an appropriate oxide as an auxiliary agent. The sintering temperature is further reduced by using pressure such as hot pressing or hot isostatic sintering (HIP). And heat treatment for an appropriate time,
Relatively large particles in the sintered body grow into columns, and a high toughness sintered body composed of fine particles and large columnar particles is obtained.
Tissue control is further facilitated by the addition of small amounts of β-type particles. The β-type particles become nuclei during sintering and grow selectively into columnar shapes, thereby improving toughness. The α-type particles act as nuclei during sintering regardless of the particle size. In this case, the α-type particles are mostly sintered particles having columnar particles.

【0007】焼結及び熱処理をβからαへの相転移が生
じない1900℃以下の低温で行うと、大きな柱状粒子
がβのままで成長する。このように、粒度が細かく均一
なβ微細粉末単独又はそれに少量のβ又はα粒子を添加
し、比較的低温で焼結・熱処理することにより、相転移
を利用しなくても高靭性の焼結体が製造される。このよ
うにして得られた炭化ケイ素焼結体は、85〜98重量
%の炭化ケイ素粒子と2〜15重量%の粒界相から構成
される組織をもち、炭化ケイ素粒子中のβ型含有率が5
0重量%以上であり、平均粒径が1〜10μm,平均ア
スペクト比が3以上の柱状粒子が全炭化ケイ素の5重量
%以上である。このように組織制御することにより、4
〜8MPa・m1/2 の破壊靭性を示す高靭性炭化ケイ素
焼結体となる。この焼結体は、酸化物を焼結助剤として
液相焼結することにより高密度化される。この場合、冷
却後には粒界に液相が固化した酸化物ガラス相又は結晶
相を含むガラス相が形成される。この粒界のガラス相
は、Li,Mg,Al,Y,希土類金属,Si等の2種
以上の金属の酸化物を構成成分としている。ガラス相の
量は、2〜15重量%の範囲にあることが好ましい。2
重量%未満では焼結が困難になり、逆に15重量%を超
えるガラス相では焼結体の強度が低下する。
If the sintering and heat treatment are performed at a low temperature of 1900 ° C. or less at which no phase transition from β to α occurs, large columnar particles grow with β still. In this way, by adding a single β-fine powder having a fine and uniform particle size or adding a small amount of β- or α-particles and sintering and heat-treating at a relatively low temperature, high-toughness sintering can be performed without using phase transition. The body is manufactured. The silicon carbide sintered body thus obtained has a structure composed of 85 to 98% by weight of silicon carbide particles and 2 to 15% by weight of a grain boundary phase, and has a β-type content in the silicon carbide particles. Is 5
0% by weight or more, columnar particles having an average particle diameter of 1 to 10 μm and an average aspect ratio of 3 or more account for 5% by weight or more of the total silicon carbide. By controlling the organization in this way, 4
A high toughness silicon carbide sintered body having a fracture toughness of about 8 MPa · m 1/2 is obtained. This sintered body is densified by liquid phase sintering using an oxide as a sintering aid. In this case, after cooling, a glass phase including an oxide glass phase or a crystal phase in which a liquid phase is solidified is formed at the grain boundary. The glass phase at the grain boundaries contains oxides of two or more metals such as Li, Mg, Al, Y, rare earth metals, and Si as constituents. Preferably, the amount of glass phase is in the range from 2 to 15% by weight. 2
If the content is less than 15% by weight, sintering becomes difficult, and if the content exceeds 15% by weight, the strength of the sintered body is reduced.

【0008】靭性の向上に有効な柱状粒子は、平均粒径
が1〜10μm,平均アスペクト比が3以上である。平
均粒径が1μm未満になると破壊靭性の向上に効果がな
く、10μmを超えるようになると焼結及び熱処理に極
めて長時間が必要とされる。平均アスペクト比が3未満
では、マトリックスとほぼ同じ特性になり、靭性改善に
寄与する柱状粒子の作用が低下する。柱状粒子の平均粒
径の範囲はマトリックス粒子の大きさによっても異な
り、0.5〜3μmのマトリックスでは柱状粒子の平均
粒径が3〜10μmであり、且つ柱状粒子の量が5〜6
0重量%,β型含有率が全炭化ケイ素粒子の70重量%
以上である。柱状粒子の量が5重量%以下では破壊靭性
の向上に効果がなく、60重量%以上でも特性上に問題
はないが極めて長時間の加熱が必要になる。
The columnar particles effective for improving toughness have an average particle size of 1 to 10 μm and an average aspect ratio of 3 or more. If the average particle size is less than 1 μm, there is no effect on the improvement of fracture toughness, and if it exceeds 10 μm, extremely long time is required for sintering and heat treatment. When the average aspect ratio is less than 3, the properties become almost the same as those of the matrix, and the effect of the columnar particles contributing to the improvement of toughness is reduced. The range of the average particle diameter of the columnar particles differs depending on the size of the matrix particles. In a matrix of 0.5 to 3 μm, the average particle diameter of the columnar particles is 3 to 10 μm, and the amount of the columnar particles is 5 to 6 μm.
0 wt%, β-type content is 70 wt% of all silicon carbide particles
That is all. When the amount of the columnar particles is 5% by weight or less, there is no effect in improving the fracture toughness. When the amount is 60% by weight or more, there is no problem in the characteristics, but heating for an extremely long time is required.

【0009】このような焼結体は、平均粒径が0.3μ
m以下と微細でβ型含有率が80重量%以上である原料
粉末を液相焼結した後、1900℃以下の温度で加熱し
て熱処理することにより製造される。熱処理の際に、粒
子中の一部の大きな粒子が核となり、柱状粒子が発達す
るため、得られた焼結体の破壊靭性が高くなる。原料粉
末中に平均粒径が0.6μm以上の大きなβ型粒子を粒
成長の核として0.5〜5重量%添加するとき、柱状粒
子の数や大きさの制御が一層容易になる。原料粉末中に
α型粒子を添加する場合、どのような粒径のα型粒子も
粒成長の核として働く。この場合、α型粒子の添加量
は、0.5〜5重量%の範囲に調整することが好まし
い。本発明の焼結体は、1900℃以下の焼結及び熱処
理により製造される。この焼結及び熱処理によって、平
均粒径が1μm未満のマトリックス粒子40重量%以下
と、平均粒径が1〜5μmの柱状粒子60重量%以上か
ら構成される高靭性炭化系諸焼結体が得られる。α型粒
子は、全ての粒子が粒成長の核として作用するので、β
型粒子を核として加えた場合よりもマトリックスの量が
少なく、柱状粒子が増加する。このように、α型粒子の
添加は、柱状粒子の発達を促進させる。また、焼結及び
熱処理を1900℃以下で行うことにより、α型粒子を
核として添加しても相転移が顕著ではなく、β型を主成
分とする柱状粒子を得ることができる。このようにし
て、低温での製造が可能となり、結果としてβ型含有率
が50重量%以上の高靭性炭化ケイ素焼結体が得られ
る。
Such a sintered body has an average particle size of 0.3 μm.
It is manufactured by subjecting a raw material powder having a fineness of not more than m and a β-type content of not less than 80% by weight to liquid phase sintering, followed by heating at a temperature of 1900 ° C. or less and heat treatment. During the heat treatment, some large particles in the particles become nuclei and columnar particles develop, so that the fracture toughness of the obtained sintered body increases. When large β-type particles having an average particle diameter of 0.6 μm or more are added to the raw material powder as nuclei for grain growth in an amount of 0.5 to 5% by weight, the number and size of columnar particles can be more easily controlled. When α-type particles are added to the raw material powder, α-type particles having any size function as nuclei for grain growth. In this case, the addition amount of the α-type particles is preferably adjusted in the range of 0.5 to 5% by weight. The sintered body of the present invention is manufactured by sintering at 1900 ° C. or less and heat treatment. By this sintering and heat treatment, high toughness carbonized sintered bodies composed of 40% by weight or less of matrix particles having an average particle size of less than 1 μm and 60% by weight or more of columnar particles having an average particle size of 1 to 5 μm are obtained. Can be Since α-type particles all act as nuclei for grain growth, β
The amount of matrix is smaller than in the case where the type particles are added as nuclei, and the number of columnar particles increases. Thus, the addition of α-type particles promotes the development of columnar particles. Further, by performing sintering and heat treatment at 1900 ° C. or lower, even if α-type particles are added as nuclei, phase transition is not remarkable, and columnar particles mainly containing β-type particles can be obtained. In this manner, production at a low temperature becomes possible, and as a result, a high-toughness silicon carbide sintered body having a β-type content of 50% by weight or more is obtained.

【0010】炭化ケイ素焼結体の粒径測定には、試料を
切断・研磨した後、CF4 ガスのマイクロ波プラズマで
処理し、走査型電子顕微鏡(SEM)で観察する。この
処理で炭化ケイ素粒子が除去され、粒界の酸化物系ガラ
スが残留するので、粒子の形状を容易に観察することが
できる。SEM写真から500個以上の粒子を用い、画
像処理法で粒子の直径,長さ及び面積を算出する。粒子
の直径は、研磨面の粒子の最も短い直径である。平均粒
径とは測定した多数の直径の個数平均であり、測定した
粒子の長さと直径の比が見掛け上のアスペクト比であ
る。そして、アスペクト比を大きなものから並べ、その
上から10%の値の平均を真のアスペクト比と定義す
る。このように画像解析を利用すると、二次元の断面に
関する情報から三次元の粒子の分布や粒子形状(アスペ
クト比)に関するデータが得られる。
For measuring the particle size of the silicon carbide sintered body, a sample is cut and polished, treated with microwave plasma of CF 4 gas, and observed with a scanning electron microscope (SEM). The silicon carbide particles are removed by this treatment, and the oxide glass at the grain boundaries remains, so that the shape of the particles can be easily observed. Using 500 or more particles from the SEM photograph, the diameter, length and area of the particles are calculated by an image processing method. The diameter of the particles is the shortest diameter of the particles on the polishing surface. The average particle diameter is a number average of a large number of measured diameters, and the ratio of the measured particle length to diameter is an apparent aspect ratio. Then, the aspect ratios are arranged in descending order, and the average of 10% values from the top is defined as the true aspect ratio. By using the image analysis in this way, data on the three-dimensional particle distribution and particle shape (aspect ratio) can be obtained from the information on the two-dimensional cross section.

【0011】測定した直径とある直径の範囲内にある粒
子の総面積をプロットすると、焼結体内部における粒度
分布が得られる。本発明の焼結体では、この粒度が二つ
の分布に分かれており、粒径の小さい方をマトリック
ス,大きい方を柱状粒子として定義する。そして、マト
リックスと柱状粒子のそれぞれについての平均粒径及び
アスペクト比を求める。焼結体内のβ型含有率は、粉砕
した試料の粉末X線回折によって決定できる。破壊靭性
は、JIS 1607に準拠し、試料の研磨面にヴィッ
カース型ダイアモンド圧子を98Nで押し付け、圧痕の
大きさとそのコーナーから成長した亀裂の大きさを測定
することにより調査した。
By plotting the measured diameter and the total area of the particles within a certain diameter range, a particle size distribution inside the sintered body is obtained. In the sintered body of the present invention, the particle size is divided into two distributions, and the smaller one is defined as a matrix, and the larger one is defined as a columnar particle. Then, the average particle size and the aspect ratio of each of the matrix and the columnar particles are determined. The β type content in the sintered body can be determined by powder X-ray diffraction of the pulverized sample. The fracture toughness was investigated in accordance with JIS 1607 by pressing a Vickers-type diamond indenter at 98 N against the polished surface of the sample and measuring the size of the indentation and the size of the crack grown from the corner.

【0012】[0012]

【実施例】【Example】

実施例1:焼結用原料として市販されている炭化ケイ素
超微粉(住友大阪セメント社製β−SiC超微粉)に対
して、スラリー濃度が5重量%となるように濃度0.1
重量%のカルボキシメチルセルロース(CMC)水溶液
を添加し、炭化ケイ素製のボールミルで3時間湿式分散
及び粉砕した。次いで、このスラリーを遠心力2800
Gの条件で90分間遠心分離し、上澄みとして炭化ケイ
素粉末中の遊離炭素を除去した後、洗浄及び乾燥して炭
化ケイ素微粉末を調整した。平均粒径は、レーザ散乱法
での測定が難しく、比表面積より球を仮定して算出した
が、0.09μmと極めて細かいものであった。次い
で、調整された炭化ケイ素微粉末90重量%に、Al2
3 (住友化学社製 AKP−20)7重量%,Y2
3 (信越化学工業社製微粉)2重量%,CaO(和光純
薬社製特級試薬)1重量%を添加し、炭化ケイ素容器と
ボールを用いた遊星型ボールミルで、エタノール中で2
時間湿式混合した。粉末を乾燥した後、これらの粉末約
3gを直径15mmの金型で20MPaで円盤状に成形
し、更に静水圧プレスで200MPaに加圧した。BN
粉末を塗布したカーボンルツボに原料成形体を収容し、
Ar中で1750℃に60分加熱した。
Example 1: A commercially available silicon carbide ultrafine powder (β-SiC ultrafine powder manufactured by Sumitomo Osaka Cement Co., Ltd.) as a raw material for sintering, having a concentration of 0.1 such that the slurry concentration becomes 5% by weight.
A weight% aqueous solution of carboxymethyl cellulose (CMC) was added, and wet-dispersed and pulverized with a silicon carbide ball mill for 3 hours. The slurry was then centrifuged at 2800
The mixture was centrifuged under the conditions of G for 90 minutes to remove free carbon in the silicon carbide powder as a supernatant, and then washed and dried to prepare a fine silicon carbide powder. The average particle size was difficult to measure by the laser scattering method, and was calculated on the assumption of a sphere from the specific surface area, but was extremely fine as 0.09 μm. Next, to the adjusted silicon carbide fine powder of 90% by weight, Al 2 was added.
O 3 (AKP-20 manufactured by Sumitomo Chemical Co., Ltd.) 7% by weight, Y 2 O
3 Add 2% by weight (fine powder manufactured by Shin-Etsu Chemical Co., Ltd.) and 1% by weight of CaO (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), and add 2% by weight in ethanol with a planetary ball mill using a silicon carbide container and balls.
Wet mixed for hours. After the powders were dried, about 3 g of these powders were formed into a disk shape at 20 MPa using a mold having a diameter of 15 mm, and further pressed to 200 MPa by a hydrostatic press. BN
The raw material compact is housed in a carbon crucible coated with powder,
Heated to 1750 ° C. in Ar for 60 minutes.

【0013】得られた焼結体は、97.5%の相対密度
をもち、組織は均一で、破壊靭性は1.9MPa・m
1/2 であった。この焼結体を温度を下げることなく19
00℃で2時間保持した後、冷却し、その組織(マトリ
ックスと柱状粒子それぞれの平均粒径及びアスペクト
比)及び破壊靭性を評価し、その結果を表1に示す。焼
結体の粉末X線回折の結果では、β型含有率が73%で
あった。組織は、焼結体から切り出した試料を切断・研
磨した後、プラズマエッチングし、走査型電子顕微鏡
(SEM)で観察した。更に、画像解析装置(ニレコ社
製ルーゼックス III)により500個以上の粒子を用い
て定量評価した。また、β含有率と破壊靭性を測定し、
表1の結果を得た。表1から明らかなように、β型を主
成分としながらも、図1に示すように柱状粒子が発達し
た組織をもち、靭性の高い焼結体が得られた。
The obtained sintered body has a relative density of 97.5%, a uniform structure, and a fracture toughness of 1.9 MPa · m.
It was 1/2 . The sintered body is cooled without lowering the temperature.
After holding at 00 ° C. for 2 hours, the mixture was cooled, and its structure (average particle size and aspect ratio of matrix and columnar particles) and fracture toughness were evaluated. The results are shown in Table 1. As a result of powder X-ray diffraction of the sintered body, the β-type content was 73%. The structure was obtained by cutting and polishing a sample cut out of the sintered body, plasma etching, and observing with a scanning electron microscope (SEM). Further, quantitative evaluation was performed using an image analyzer (Luzex III manufactured by NIRECO) using 500 or more particles. Also, the β content and fracture toughness were measured,
The results in Table 1 were obtained. As is evident from Table 1, a sintered body having high toughness was obtained having a structure in which columnar particles were developed as shown in FIG.

【0014】実施例2:焼結用原料として、市販されて
いる炭化ケイ素粉末(イビデン社製ベータランダムウル
トラファイン)に対して、スラリー濃度が10重量%と
なるように濃度0.1重量%のCMC水溶液を添加し、
炭化ケイ素製のボールミルで3時間湿式分散及び粉砕処
理した。次いで、このスラリーを遠心力1400Gの条
件で5分間遠心分離し、上澄みとして炭化ケイ素微粉末
を含むスラリーを分離し、洗浄及び乾燥することにより
炭化ケイ素微粉末を調整した。得られた炭化ケイ素微粉
末の平均粒径は、レーザ散乱法で測定したところ0.2
8μmであった。調整された炭化ケイ素微粉末91重量
%に、Al23 (住友化学社製AKP−20)6重量
%,Y23 (信越化学社製微粉)2重量%,MgO
(和光純薬社製特級試薬)1重量%を添加し、実施例1
と同様に湿式混合した。粉末を乾燥した後、これらの粉
末約4gを直径15mmのカーボンダイスに充填し、ア
ルゴン雰囲気中、プレス圧20MPaで1850℃に1
5分間ホットプレス焼結した。そして、圧力を開放した
後、引き続き1850℃に8時間加熱する熱処理を施し
た。得られた焼結体は、相対密度99.5%,β型含有
率88%であった。また、組織と破壊靭性の評価結果
は、表1に示す通りであった。この場合も、β型を主成
分としながらも、柱状粒子を含む高靭性の焼結体である
ことが判る。
Example 2 As a raw material for sintering, a concentration of 0.1% by weight of a commercially available silicon carbide powder (Beta Random Ultrafine manufactured by Ibiden Co., Ltd.) was adjusted so that the slurry concentration became 10% by weight. Add CMC aqueous solution,
The mixture was wet-dispersed and pulverized for 3 hours using a ball mill made of silicon carbide. Next, this slurry was centrifuged at a centrifugal force of 1400 G for 5 minutes, and a slurry containing fine silicon carbide powder as a supernatant was separated, washed and dried to prepare fine silicon carbide powder. The average particle size of the obtained silicon carbide fine powder was measured by a laser scattering method.
It was 8 μm. 6% by weight of Al 2 O 3 (AKP-20 manufactured by Sumitomo Chemical Co., Ltd.), 2 % by weight of Y 2 O 3 (fine powder manufactured by Shin-Etsu Chemical Co., Ltd.), 91% by weight of the adjusted silicon carbide fine powder, 91% by weight, MgO
Example 1 (1% by weight of a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added.
The same wet mixing was carried out. After the powders were dried, about 4 g of these powders were filled in a carbon die having a diameter of 15 mm, and the pressure was increased to 1850 ° C. under a press pressure of 20 MPa in an argon atmosphere.
Hot press sintering for 5 minutes. Then, after releasing the pressure, a heat treatment of continuously heating to 1850 ° C. for 8 hours was performed. The obtained sintered body had a relative density of 99.5% and a β-type content of 88%. The evaluation results of the structure and the fracture toughness were as shown in Table 1. Also in this case, it is understood that the sintered body is a high toughness sintered body containing columnar particles while having β-type as a main component.

【0015】実施例3:実施例1の微粉末と焼結助剤
に、2重量%の粗粉末を粒成長の核として添加した。な
お、粗粉末には、実施例2で沈澱として回収した平均粒
径1.2μmのβ型粉末を使用した。実際の操作は、微
粉末に助剤を加え、実施例1と同様に2時間湿式混合し
た後、粗粉末を加え、更に15分間混合した。この粉末
を用い、1750℃で15分間ホットプレス焼結し、1
850℃×4時間の熱処理を施した。得られた焼結体
は、相対密度が99.2%,β型含有率が75%であっ
た。結果は表1にみられるように、粗粉末を核として添
加しない実施例1の場合に比較して、低温での熱処理に
よって高靭性の焼結体が得られていることを示す。
Example 3 To the fine powder of Example 1 and a sintering aid, 2% by weight of a coarse powder was added as a core for grain growth. As the coarse powder, β-type powder having an average particle diameter of 1.2 μm recovered as a precipitate in Example 2 was used. The actual operation was such that an auxiliary agent was added to the fine powder, wet-mixed for 2 hours in the same manner as in Example 1, then a coarse powder was added, and the mixture was further mixed for 15 minutes. Using this powder, hot press sintering was performed at 1750 ° C for 15 minutes.
Heat treatment was performed at 850 ° C. × 4 hours. The obtained sintered body had a relative density of 99.2% and a β-type content of 75%. As shown in Table 1, the results show that a high-toughness sintered body was obtained by the heat treatment at a low temperature as compared with the case of Example 1 in which the coarse powder was not added as a core.

【0016】実施例4:実施例3と同じ原料粉末と焼結
助剤に、2重量%のα型粉末を粒成長の核として添加し
た。α型粉末には、α型粉末(昭和電工社製A−1)か
ら実施例2と同様に微粉末を分離した残りの粗粉末(平
均粒径0.9μm)を使用した。実施例3と同じ条件で
ホットプレス焼結し、1900℃で2時間熱処理した。
得られた焼結体は、相対密度が99.6%,β型含有率
が63%であった。焼結体は、図2に示すようにほぼ柱
状粒子のみからなる組織をもち、マトリックスがほとん
ど消失していた。組織の評価及び破壊靭性の結果は、表
1にみられるように、粗粉末を核として添加しない実施
例1の場合に比較して、短時間の熱処理で高靭性の焼結
体が得られていることを示す。
Example 4 To the same raw material powder and sintering aid as in Example 3, 2% by weight of α-type powder was added as a core for grain growth. As the α-type powder, the remaining coarse powder (average particle size: 0.9 μm) obtained by separating the fine powder from the α-type powder (A-1 manufactured by Showa Denko KK) in the same manner as in Example 2 was used. Hot press sintering was performed under the same conditions as in Example 3 and heat treatment was performed at 1900 ° C. for 2 hours.
The obtained sintered body had a relative density of 99.6% and a β-type content of 63%. As shown in FIG. 2, the sintered body had a structure composed of substantially only columnar particles, and the matrix had almost disappeared. As shown in Table 1, the evaluation of the microstructure and the fracture toughness show that a high toughness sintered body was obtained by a short heat treatment as compared with the case of Example 1 in which the coarse powder was not added as a core. To indicate that

【0017】 [0017]

【0018】実施例5:実施例3のホットプレス焼結体
(熱処理なし)を1700℃で30MPaの圧力によっ
て圧縮すると、1.5×10-4/秒の超塑性変形を示し
た。変形後の組織は、変形前の組織とほぼ同じであり、
平均粒径が約0.1μmと微細であった。変形後、実施
例3と同じ条件下で熱処理することにより、破壊靭性
6.2MPa・m1/2 の焼結体を得た。すなわち、微細
な組織をもつ焼結体を超塑性加工によって所定形状に成
形した後、熱処理を施すことにより、高靭性の材料が得
られることが判った。
Example 5 When the hot-pressed sintered body of Example 3 (without heat treatment) was compressed at 1700 ° C. under a pressure of 30 MPa, a superplastic deformation of 1.5 × 10 -4 / sec was exhibited. The tissue after deformation is almost the same as the tissue before deformation,
The average particle size was as fine as about 0.1 μm. After the deformation, heat treatment was performed under the same conditions as in Example 3 to obtain a sintered body having a fracture toughness of 6.2 MPa · m 1/2 . That is, it was found that a high toughness material can be obtained by forming a sintered body having a fine structure into a predetermined shape by superplastic working and then performing a heat treatment.

【0019】実施例6:実施例4のホットプレス焼結体
(熱処理なし)を1650℃で30MPaの圧力によっ
て圧縮すると、8.2×10-4/秒の超塑性変形を示し
た。変形後の組織は、変形前の組織とほぼ同じであり、
平均粒径が約0.1μmと微細であった。変形後、実施
例3と同じ条件下で熱処理することにより、破壊靭性
7.5MPa・m1/2 の焼結体を得た。この場合も、微
細な組織をもつ焼結体を超塑性加工によって所定形状に
成形した後、熱処理を施すことにより、高靭性の材料が
得られることが判った。
Example 6: When the hot-pressed sintered body of Example 4 (without heat treatment) was compressed at 1650 ° C. under a pressure of 30 MPa, a superplastic deformation of 8.2 × 10 -4 / sec was exhibited. The tissue after deformation is almost the same as the tissue before deformation,
The average particle size was as fine as about 0.1 μm. After the deformation, heat treatment was performed under the same conditions as in Example 3 to obtain a sintered body having a fracture toughness of 7.5 MPa · m 1/2 . Also in this case, it was found that a high-toughness material was obtained by forming a sintered body having a fine structure into a predetermined shape by superplastic working and then performing a heat treatment.

【0020】[0020]

【発明の効果】以上に説明したように、本発明の炭化ケ
イ素焼結体においては、β型を主成分とし、柱状粒子の
平均粒径,アスペクト比,全炭化ケイ素粒子に対する比
率等を特定することにより、炭化ケイ素本体の高温強
度,耐食性,耐摩耗性等を活用し、しかも靭性に優れた
製品として使用される。この焼結体は、従来法に比較し
て低温の焼結により製造でき、破壊靭性を向上させる量
や大きさが合成条件から制御できるので、再現性よく組
織制御が可能となり、品質信頼性の高い製品として広範
な分野で使用される。
As described above, in the silicon carbide sintered body of the present invention, the β-type is the main component, and the average particle diameter, the aspect ratio, the ratio to the total silicon carbide particles, etc. of the columnar particles are specified. This makes it possible to utilize the high-temperature strength, corrosion resistance, abrasion resistance and the like of the silicon carbide main body and to use it as a product having excellent toughness. This sintered body can be manufactured by sintering at a lower temperature compared to the conventional method, and the amount and size to improve the fracture toughness can be controlled from the synthesis conditions, so that the structure can be controlled with good reproducibility and quality reliability. Used in a wide range of fields as a high product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で製造された炭化ケイ素焼結体の組
織を示す写真
FIG. 1 is a photograph showing the structure of a silicon carbide sintered body manufactured in Example 1.

【図2】 実施例4で製造された炭化ケイ素焼結体の組
織を示す写真
FIG. 2 is a photograph showing a structure of a silicon carbide sintered body manufactured in Example 4.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 85〜98重量%の炭化ケイ素粒子と、
2〜15重量%の粒界相からなる組織をもち、炭化ケイ
素粒子中のβ型含有率が50重量%以上であり、平均粒
径が1〜10μm,平均アスペクト比が3以上の柱状粒
子が全炭化ケイ素粒子の5重量%以上であり、破壊靭性
が4〜8MPa・m1/2 である炭化ケイ素焼結体。
1 to 85 to 98% by weight of silicon carbide particles;
Columnar particles having a structure consisting of a grain boundary phase of 2 to 15% by weight, a β-type content in the silicon carbide particles of 50% by weight or more, an average particle diameter of 1 to 10 μm, and an average aspect ratio of 3 or more. A silicon carbide sintered body that is 5% by weight or more of all silicon carbide particles and has a fracture toughness of 4 to 8 MPa · m 1/2 .
【請求項2】 粒界相が、Li,Mg,Al,Y,,希
土類金属及びSiから選ばれた2種以上の金属の酸化物
を構成成分とするガラス又は結晶相を含むガラスである
請求項1記載の炭化ケイ素焼結体。
2. The method according to claim 1, wherein the grain boundary phase is a glass containing an oxide of two or more metals selected from the group consisting of Li, Mg, Al, Y, a rare earth metal and Si, or a glass containing a crystal phase. Item 4. The sintered silicon carbide according to Item 1.
【請求項3】 炭化ケイ素粒子が平均粒径0.5〜3μ
mのマトリックス粒子40〜95重量%と平均粒径3〜
10μmの柱状粒子5〜60重量%から構成され、β型
含有率が全炭化ケイ素粒子の70重量%以上である請求
項1又は2記載の炭化ケイ素焼結体。
3. The silicon carbide particles have an average particle size of 0.5 to 3 μm.
40 to 95% by weight of matrix particles having an average particle size of 3 to
3. The silicon carbide sintered body according to claim 1, comprising 5 to 60% by weight of 10 [mu] m columnar particles, and having a [beta] -type content of 70% by weight or more of all silicon carbide particles.
【請求項4】 炭化ケイ素粒子が平均粒径1μm未満の
マトリックス粒子40重量%以下と平均粒径が1〜5μ
mの柱状粒子60重量%以上から構成され、β型含有率
が全炭化ケイ素粒子の50重量%以上である請求項1〜
3の何れかに記載の炭化ケイ素焼結体。
4. The method according to claim 1, wherein the silicon carbide particles have an average particle diameter of 40% by weight or less and an average particle diameter of 1 to 5 μm or less.
m, comprising at least 60% by weight of columnar particles having a β-type content of at least 50% by weight of all silicon carbide particles.
3. The sintered silicon carbide according to any one of 3.
【請求項5】 平均粒径0.3μm以下及びβ型含有率
80重量%以上の原料微粉末を液相焼結した後、190
0℃以下の温度で熱処理する請求項1〜4の何れかに記
載の炭化ケイ素焼結体の製造方法。
5. A raw material fine powder having an average particle size of 0.3 μm or less and a β-type content of 80% by weight or more is subjected to liquid phase sintering,
The method for producing a silicon carbide sintered body according to claim 1, wherein the heat treatment is performed at a temperature of 0 ° C. or lower.
【請求項6】 請求項5記載の原料微粉末に、平均粒径
0.6μm以上のβ型粒子を粒成長の核として0.5〜
5重量%添加する炭化ケイ素焼結体の製造方法。
6. The raw material fine powder according to claim 5, wherein β-type particles having an average particle size of 0.6 μm or more are used as nuclei for grain growth in an amount of from 0.5 to 0.5 μm.
A method for producing a silicon carbide sintered body in which 5% by weight is added.
【請求項7】 請求項5記載の原料微粉末に、α型粒子
を粒成長の核として0.5〜5重量%添加する炭化ケイ
素焼結体の製造方法。
7. A method for producing a silicon carbide sintered body, wherein α-type particles are added to the raw material fine powder according to claim 5 as nuclei for grain growth in an amount of 0.5 to 5% by weight.
JP7270505A 1995-09-25 1995-09-25 Silicon carbide sintered body excellent in toughness and manufacturing method Expired - Lifetime JP2920482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7270505A JP2920482B2 (en) 1995-09-25 1995-09-25 Silicon carbide sintered body excellent in toughness and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7270505A JP2920482B2 (en) 1995-09-25 1995-09-25 Silicon carbide sintered body excellent in toughness and manufacturing method

Publications (2)

Publication Number Publication Date
JPH0987027A JPH0987027A (en) 1997-03-31
JP2920482B2 true JP2920482B2 (en) 1999-07-19

Family

ID=17487195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7270505A Expired - Lifetime JP2920482B2 (en) 1995-09-25 1995-09-25 Silicon carbide sintered body excellent in toughness and manufacturing method

Country Status (1)

Country Link
JP (1) JP2920482B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267584A (en) * 2007-04-25 2008-11-06 Ebara Corp Ceramic slide member for pure water
CN101654366B (en) * 2009-09-10 2012-10-24 中国矿业大学(北京) Composite sintering agent and method for preparing nano crystalline ceramics at low temperature
EP2861546B1 (en) * 2012-06-15 2022-08-31 Saint-Gobain Ceramics & Plastics Inc. Method of forming a ceramic body comprising silicon carbide, and armor component comprising said ceramic body
JP6053481B2 (en) * 2012-11-30 2016-12-27 日本特殊陶業株式会社 Silicon carbide sintered body and method for producing the same

Also Published As

Publication number Publication date
JPH0987027A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
RU2096513C1 (en) Method of manufacture of sintered product from hard alloy
Tuan et al. The toughening of alumina with nickel inclusions
Lis et al. New ceramics based on Ti3SiC2
EP0311264B1 (en) Ceramic cutting tool inserts and production thereof
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
US5002907A (en) Homogenous silicon nitride sintered body
JP2008133160A (en) Boron carbide sintered compact and method of manufacturing the same
EP2342033A1 (en) Cubic boron nitride ceramic composites and methods of making thereof
Skorokhod Processing, microstructure, and mechanical properties of B4C―TiB2 particulate sintered composites. Part I. Pressureless sintering and microstructure evolution
Novikov et al. Composite materials of diamond−(Co–Cu–Sn) system with improved mechanical characteristics. Part 1. The influence of hot re-pressing on the structure and properties of diamond−(Co–Cu–Sn) composite
Tennery et al. Structure-property correlations for TiB 2-based ceramics densified using active liquid metals
US5394929A (en) Method of preparing boron carbie/aluminum cermets having a controlled microstructure
JP2920482B2 (en) Silicon carbide sintered body excellent in toughness and manufacturing method
EP0311289B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
Neuman et al. Processing and mechanical properties of hot-pressed zirconium diboride–zirconium carbide ceramics
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
Sugiyama et al. Preparation of WC-WB-W2B composites from B4C-W-WC powders and their mechanical properties
US6534428B2 (en) Titanium diboride sintered body with silicon nitride as a sintering aid
Attia et al. Hot Pressed Si 3 N 4 Ceramics Using MgO–Al 2 O 3 as Sintering Additive for Vehicle Engine Parts
Quadir et al. Development of Lower Cost Si3N4
US5324693A (en) Ceramic composites and process for manufacturing the same
JP2000154058A (en) High strength ceramics and method for evaluating defect in ceramics
JPH055150A (en) Boron carbide-reactive metal cermet
JP2000072553A (en) Silicon nitride wear resistance member and its production

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term