JPH05184347A - Algae cultivator and its culture - Google Patents

Algae cultivator and its culture

Info

Publication number
JPH05184347A
JPH05184347A JP4003840A JP384092A JPH05184347A JP H05184347 A JPH05184347 A JP H05184347A JP 4003840 A JP4003840 A JP 4003840A JP 384092 A JP384092 A JP 384092A JP H05184347 A JPH05184347 A JP H05184347A
Authority
JP
Japan
Prior art keywords
algae
culture
air
film
culture device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4003840A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tarouda
博之 太郎田
Tadatomo Kuritani
忠知 栗谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP4003840A priority Critical patent/JPH05184347A/en
Publication of JPH05184347A publication Critical patent/JPH05184347A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/40Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/18Open ponds; Greenhouse type or underground installations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • C12M41/10Filtering the incident radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To carry out mass culture of an alga while readily controlling the temperature and the irradiation light volume and effectively preventing contamination with a foreign material, etc., by using a specified apparatus. CONSTITUTION:An alga-culturing pond 2 is set in an air-doom type greenhouse 3 covered with a sunlight-transmitting film, capable of taking in the air by a fan 4 and designed so as to keep the inside to a positive pressure. The irradiation light volume is adjusted by using a low light-transmitting film or a light- screening sheet and the temperature is controlled by ventilation heating, etc. A filter is set to the air inlet of the air doom so that the inside of the cultivator 1 may be filled with a pure air and kept to a positive pressure. Thus, the objective culture is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、藻類の培養池と、当該
培養池を覆うエアドーム型温室とからなる藻類の培養装
置および当該培養装置を用いる藻類の培養方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for cultivating algae comprising an algae culture pond and an air-dome type greenhouse covering the culture pond, and a method for cultivating algae using the culture apparatus.

【0002】[0002]

【従来の技術】藻類を商業的に生産する場合に最も重要
なことは、いかに安価に、しかも効率良く光を照射する
かという点であり、従来の藻類の培養装置の殆どは太陽
光を光源とし、また屋外に設置されるものであった。し
かし屋外で微細藻類を培養する場合、培養温度をその藻
類が増殖するのに至適な範囲に保ち、またその藻類を補
食する動物、特に微小動物や光合成を競合的に阻害する
他の藻類の夾雑を防ぐことが非常に困難であった。従っ
て、これまでに商業生産に成功した微細藻類は、微生物
の夾雑に対して強いクロレラ、スピルリナ、ドナリエラ
のみで、しかも屋外培養池の水温を増殖至適範囲に保つ
ため、一年中温暖な場所でしか生産できなかった。
2. Description of the Related Art The most important factor in commercial production of algae is how to irradiate light inexpensively and efficiently. Most conventional algae culture devices use sunlight as a light source. It was also installed outdoors. However, when cultivating microalgae outdoors, keep the culture temperature in the optimum range for the algae to grow, and also to feed the algae, especially microbes and other algae that competitively inhibit photosynthesis. It was very difficult to prevent the contamination. Therefore, the only microalgae that have succeeded in commercial production so far are chlorella, spirulina, and donariella, which are highly resistant to microbial contamination. I could only produce it.

【0003】一方、屋外で藻類を培養生産する場合に
は、時々異物の混入が発生するが、これを防止する有効
な手段はなく、従来、後処理工程で多大な時間労力をか
けて、検査、除去してきた。しかしながら、生産される
藻類の用途は、食品添加物、飼料添加物、化粧品、医薬
品の原料、あるいは機能性食品等であり、生産藻類に対
する品質要求は年々厳しいものとなって来ている。
On the other hand, when cultivating and producing algae outdoors, sometimes foreign matter is mixed in, but there is no effective means for preventing this, and conventionally, after a great deal of time and labor is spent in the post-treatment process, the inspection is performed. , Have been removed. However, the applications of the algae produced are food additives, feed additives, cosmetics, raw materials for pharmaceuticals, functional foods, etc., and the quality requirements for the produced algae are becoming severer year by year.

【0004】[0004]

【発明が解決しようとする課題】これらの問題を解決す
るために、これまでチューブラー型やタンク型等の様々
な藻類培養装置が考案されてきたが、いまだに実用化さ
れた例はない。その理由は、装置が複雑でコストが高
い、光を十分に培養液に照射することができない、
微生物の夾雑を十分に防ぐことができない等である。更
に、これらの培養装置はいずれも密閉型であり、酸素や
二酸化炭素のガス交換速度が遅く、藻類の光合成速度あ
るいは呼吸速度が低下するという欠点を有していた。
In order to solve these problems, various types of algae culture devices such as tubular type and tank type have been devised up to now, but none have been put to practical use. The reason is that the device is complicated and costly, and it is impossible to sufficiently irradiate the culture solution with light.
For example, it is not possible to sufficiently prevent the contamination of microorganisms. Further, all of these culturing devices are hermetically sealed, and have a drawback that the gas exchange rate of oxygen and carbon dioxide is slow and the photosynthetic rate or respiration rate of algae is lowered.

【0005】本発明の目的は、構造が単純で製造コスト
が安く、かつ温度管理が容易で、藻体の生産速度を損な
うことなく、異物や異生物の混入を効率的に防止しう
る、藻類の培養装置および培養方法を提供することにあ
る。
The object of the present invention is to provide an algae which has a simple structure, a low manufacturing cost, easy temperature control, and which can effectively prevent contamination of foreign substances and foreign organisms without impairing the production rate of algae. To provide a culture device and a culture method.

【0006】[0006]

【課題を解決するための手段】本発明者等は、鋭意研究
の結果、太陽光を透過するフィルムでできたエアドーム
型温室(以下エアドームという)で藻類の培養池を覆う
ことにより、ガラスフレーム温室等に比べ、製造コスト
が安価で、照射光量を調節でき、かつ温度管理を行なう
ことが容易で、これまで気温が低くて藻類の培養が困難
であった地域においても商業生産が可能となることを見
いだした。
Means for Solving the Problems As a result of earnest research, the inventors of the present invention have shown that a glass frame greenhouse is covered by covering an algae culture pond with an air dome type greenhouse (hereinafter referred to as an air dome) made of a film that transmits sunlight. Compared to the above, the manufacturing cost is lower, the irradiation light amount can be adjusted, the temperature can be easily controlled, and commercial production is possible even in areas where it was difficult to culture algae due to low temperature. I found it.

【0007】またエアドームの空気取り入れ口に空気濾
過フィルターを設置することにより、培養装置内部を清
浄な空気で陽圧に保ち、他の方法よりも安価でかつ効率
的に、しかも藻体の生産速度を損なうことなく微生物あ
るいは異物の混入を防止できることを見いだして、本発
明を完成した。
Further, by installing an air filter at the air intake of the air dome, the inside of the culture device is maintained at a positive pressure with clean air, which is cheaper and more efficient than other methods, and the production rate of algal cells is higher. The present invention has been completed by discovering that contamination of microorganisms or foreign substances can be prevented without impairing the above.

【0008】[0008]

【構成】即ち、本発明は、藻類の培養池と、当該培養池
を覆うエアドーム型温室とからなる藻類の培養装置およ
び当該培養装置を用いる藻類の培養方法に関する。
More specifically, the present invention relates to an algae culture apparatus comprising an algae culture pond and an air-dome type greenhouse covering the culture pond, and a method for algae culture using the culture apparatus.

【0009】詳しくは、本発明は、藻類を培養するため
の培養池と、太陽光を透過するフィルムで当該培養池を
覆い、且つ空気取り入れ口と排気口を設けたエアドーム
型温室とからなることを特徴とする藻類の培養装置で、
太陽光を透過するフィルムに適当な光透過率を有するも
のを選ぶか、または光透過率の低いフィルム又は遮光シ
ートを既設フィルムに重ねることにより、光量を調節す
る培養装置である。
More specifically, the present invention comprises a culture pond for cultivating algae, and an air-dome type greenhouse in which the culture pond is covered with a sunlight-permeable film and which is provided with an air intake port and an exhaust port. An algae culture device characterized by
This is a culture device that adjusts the amount of light by selecting a film having an appropriate light transmittance as a film that transmits sunlight, or by laminating a film having a low light transmittance or a light shielding sheet on an existing film.

【0010】またエアドームの換気率を調節する方法、
エアドーム内部に霧状の水を噴霧し、気化熱によりドー
ム内の温度を調節する方法、培養池または培養装置内部
を加温または冷却する方法のいずれかにより、培養池ま
たは培養装置内部の温度を調節するか、又はそれらを組
み合わせて培養装置内部または培養池の温度を調節する
藻類の培養装置である。更にこれらの培養装置の空気取
り入れ口に空気濾過フィルターを設けることを特徴とす
る藻類の培養装置であり、並びに該藻類の培養装置を用
いる藻類の培養方法、特に藻類がクロレラ、スピルリ
ナ、ドナリエラ、フォルフィリディウム、ヘマトコッカ
ス等の微細藻類である藻類の培養方法である。
A method for adjusting the ventilation rate of the air dome,
By spraying mist-like water inside the air dome and adjusting the temperature inside the dome by the heat of vaporization, or by heating or cooling the inside of the culture pond or culture device, the temperature inside the culture pond or culture device can be adjusted. It is a culture device for algae, which is controlled or a combination thereof is used to control the temperature inside the culture device or in the culture pond. Furthermore, it is an apparatus for cultivating algae, characterized in that an air filter is provided at the air intake port of these culturing apparatuses, and a method for cultivating algae using the apparatus for cultivating algae, in particular, algae are Chlorella, Spirulina, Donariella, Fol This is a method for culturing algae such as microalgae such as Firidium and Haematococcus.

【0011】次に、本発明に係る培養装置および当該培
養装置を用いた藻類の培養方法に関し、図面に従って、
詳細に説明する。本発明に用いられる藻類の培養池
(2)は、目的とする藻類の生産に好ましい形であれば
良く、いかなる形を有する培養池でも本発明に用いるこ
とができる。例えばクロレラ等の培養に用いられている
円形培養池、スピルリナ等の培養に用いられているレー
スウェイ型培養池、あるいはドナリエラ等の培養に用い
られているラグーン型培養池等が挙げられる。
Next, the culture apparatus according to the present invention and the method for cultivating algae using the culture apparatus will be described with reference to the drawings.
The details will be described. The algae culture pond (2) used in the present invention may be in any shape as long as it is suitable for the production of the target algae, and a culture pond having any shape can be used in the present invention. For example, a circular culture pond used for culturing Chlorella or the like, a raceway-type culture pond used for culturing Spirulina or the like, or a lagoon-type culture pond used for culturing Donariella or the like.

【0012】本発明に用いられるエアドーム(3)は、
送風機(4)で空気を取り入れて内部を陽圧に保つこと
により、太陽光を透過するフィルム(5)を膨らませて
構造を保持するもので、上記の培養池(2)を完全に覆
うことができるものであれば、どの様な構造であっても
良い。例えばエアテントハウス(特公平1-54006)等が
挙げられる。
The air dome (3) used in the present invention is
The blower (4) takes in air and keeps the inside at a positive pressure to inflate the sunlight-permeable film (5) to retain the structure, which can completely cover the culture pond (2). Any structure may be used as long as it is possible. For example, an air tent house (Japanese Patent Publication 1-54006) and the like can be mentioned.

【0013】エアドーム(3)は、他のいかなる形の温
室、例えばガラスフレーム温室あるいはビニルハウス等
に比べても次の点で優れており、本発明で用いるのに最
も適している。即ち、 構造が単純なため装置費および維持費が安価であり、
設置およびメンテナンスが容易であるばかりか、既存の
培養池にも簡単に設置することができる。 ガラスフレーム温室あるいはビニルハウス等で必要な
ガラス又はフィルム等を保持する支柱が不要な為、光透
過率が高く、高い光合成速度が得られ、また光量が多過
ぎて培養に不適当な場合には、フィルム(5)に遮光シ
ート等を重ねるか、あるいは用いるフィルム(5)に適
当な光透過率を有するものを選ぶことにより、光量を簡
単に調節することができる。本発明で言う遮光シートと
は、光透過率の低い材質で作られたシート、もしくは網
目状等のシートで、光の透過性を制限するために、通常
用いられるものを言う。
The air dome (3) is most suitable for use in the present invention because it is superior to any other type of greenhouse such as a glass frame greenhouse or a vinyl house in the following points. That is, since the structure is simple, the device cost and maintenance cost are low,
Not only is it easy to install and maintain, it can also be easily installed in existing culture ponds. Since the column that holds the glass or film required in a glass frame greenhouse or vinyl house is unnecessary, high light transmittance, high photosynthetic rate can be obtained, and when the amount of light is too large and unsuitable for culture, The amount of light can be easily adjusted by stacking a light-shielding sheet or the like on the film (5) or by selecting a film (5) having an appropriate light transmittance. The light-shielding sheet referred to in the present invention is a sheet made of a material having a low light transmittance, or a mesh-like sheet, which is usually used to limit the light transmittance.

【0014】通常の温室に比べて、エアドームは換気
率が高く、従って酸素や二酸化炭素のガス交換速度が高
く、光合成あるいは呼吸を阻害することなく、高い生産
速度が得られる。藻類を培養する場合は、陸上植物とは
異なり、ガス交換が水面を介しておこなわれるため交換
速度が遅く、これが藻体の生産速度を制限する。例え
ば、本発明者等の研究によれば、スピルリナを屋外池で
培養した場合、日中の培養液中の溶存酸素量は、該大気
圧、該温度での液中の飽和溶存酸素濃度の2ないし3倍
に達した。これはスピルリナから光合成作用によって産
生される酸素により、液中の溶存酸素濃度が極めて高く
なっていることを示しているが、液中の溶存酸素濃度が
高くなり過ぎると、藻類の生育に阻害を及ぼすことが知
られている。そのため換気率を上げて、水面におけるガ
ス交換速度を上げることが重要であり、この要求を満た
すことのできる温室にはエアドーム(3)が最適であ
る。
Compared with a normal greenhouse, an air dome has a high ventilation rate, and therefore a high gas exchange rate of oxygen and carbon dioxide, and a high production rate can be obtained without inhibiting photosynthesis or respiration. When culturing algae, unlike land plants, gas exchange takes place via the water surface, so the exchange rate is slow, which limits the production rate of algal bodies. For example, according to the research conducted by the present inventors, when spirulina is cultured in an outdoor pond, the amount of dissolved oxygen in the culture solution during the day is 2 times the saturated dissolved oxygen concentration in the solution at the atmospheric pressure and the temperature. Or tripled. This indicates that the oxygen produced by photosynthesis from spirulina causes the dissolved oxygen concentration in the liquid to be extremely high, but if the dissolved oxygen concentration in the liquid becomes too high, it inhibits the growth of algae. It is known to affect. Therefore, it is important to increase the ventilation rate to increase the gas exchange rate on the water surface, and the air dome (3) is optimal for a greenhouse that can meet this requirement.

【0015】培養装置(1)内部に一定の空気流が生
じるため、ドーム内の温度あるいはガス濃度を均一に保
つことができ、制御が容易で、安定した藻類の生産が可
能である。 本発明に用いられるエアドーム(3)のフィルム(5)
は、上記で述べたように、太陽光を透過し、該培養藻
の性質に適した光量が得られる光透過率を有するものを
選択する。かつ、できるだけ高い機械的強度と耐候性を
有し、表面が汚れにくい材質のものが望ましい。例え
ば、ナイロン糸のメッシュを塩ビフィルムでサンドイッ
チし、表面をアクリルコーティングしたフィルム等が好
ましく用いられる。
Since a constant air flow is generated inside the culture device (1), the temperature or gas concentration inside the dome can be kept uniform, control is easy, and stable algae production is possible. Film (5) of the air dome (3) used in the present invention
As described above, a material having a light transmittance that allows sunlight to pass therethrough and obtains a light amount suitable for the properties of the cultured alga is selected. In addition, it is desirable to use a material that has as high mechanical strength and weather resistance as possible, and the surface of which does not easily get dirty. For example, a film in which a nylon thread mesh is sandwiched with a vinyl chloride film and the surface is acrylic coated is preferably used.

【0016】培養池(2)とエアドーム(3)からなる
藻類の培養装置(1)の温度調節は、次のようにしてお
こなう。即ち、エアドーム(3)は温室であるから、通
常、内部温度は外気温よりも高くなるが、その気温差は
換気率を高くすれば小さく、逆に低くすれば大きくなる
から、換気率を調節することにより、培養装置(1)内
部の温度は容易に調節できる。また必要があればボイラ
ー、ヒーター等の各種の加温装置を組み合わせ、ドーム
内の温度を上げることも可能であり、また媒体を循環
し、培養装置内部または培養池を加温することにより、
培養装置内部または培養池の温度を調節することもでき
る。
The temperature control of the algae culture device (1) comprising the culture pond (2) and the air dome (3) is performed as follows. That is, since the air dome (3) is a greenhouse, the inside temperature is usually higher than the outside temperature, but the temperature difference is small when the ventilation rate is high, and is large when the ventilation rate is low. Therefore, the ventilation rate is adjusted. By doing so, the temperature inside the culture device (1) can be easily adjusted. If necessary, it is also possible to combine various heating devices such as boilers and heaters to raise the temperature inside the dome, and by circulating the medium and heating the inside of the culture device or the culture pond,
It is also possible to control the temperature inside the culture device or in the culture pond.

【0017】この様にして容易に温度調節が可能なた
め、これまで気温が低くて培養が困難であった地域でも
藻類の商業生産が可能となることは明かであるが、実際
には気温は1年を通じて大きく変動し、季節によっては
至適温度を超えてしまうことも考えられる。その場合に
は、換気率を高める方法の他に、エアドーム(3)のフ
ィルム(5)に適当な遮光シートを重ねて遮光する方
法、チラー等を用いて冷却水を循環し、培養池(2)ま
たは培養装置(1)内部を冷却する方法等で培養池
(2)の水温を下げることができる。しかし安価でかつ
簡便な操作で温度調節できる方法が望ましく、例えばエ
アドーム内部に霧状の水を噴霧し、気化熱によりドーム
内の温度を下げる方法が好ましい。この場合も本発明に
よれば、エアドームに吹き込む風中に水を噴射すること
により、容易に行なうことができる。
Since it is possible to easily control the temperature in this way, it is clear that commercial production of algae is possible even in an area where it has been difficult to culture due to the low temperature. It can fluctuate greatly throughout the year and may exceed the optimum temperature depending on the season. In that case, in addition to the method of increasing the ventilation rate, a method of stacking a suitable light-shielding sheet on the film (5) of the air dome (3) to shield light, cooling water is circulated by using a chiller, etc. ) Or a method of cooling the inside of the culture device (1) or the like to lower the water temperature of the culture pond (2). However, it is desirable to use a method that is inexpensive and that allows the temperature to be adjusted by a simple operation. For example, a method of spraying mist-like water inside the air dome and lowering the temperature inside the dome by heat of vaporization is preferable. Also in this case, according to the present invention, it can be easily performed by injecting water into the air blown into the air dome.

【0018】エアドームの空気取り入れ口(6)に設け
る空気濾過フィルター(7)は、対象である異物、異生
物を効率よく除去し、しかも空気濾過での圧力損失が送
風機(4)に過大な負荷をかけないよう十分な濾過容量
を有する必要がある。この条件を満たすフィルターであ
れば材質はどの様なものでも良く、例えば昆虫や大きな
異物を除去するには、金網、防虫ネット等が挙げられ
る。また例えば対象が微小生物や塵の場合には、スポン
ジや不織布フィルター、更に内部を無菌的に保ちたけれ
ばHEPAフィルター等の更に高度な濾過フィルターを用い
ることができ、必要に応じて、これらを組み合わせて使
用することが好ましい。
The air filter (7) provided at the air intake (6) of the air dome efficiently removes the foreign matter and foreign substances of interest, and the pressure loss in the air filtration causes an excessive load on the blower (4). It is necessary to have a sufficient filtration capacity so as not to apply Any material may be used as long as it is a filter satisfying this condition. For example, in order to remove insects and large foreign substances, a wire net, an insect net, etc. may be mentioned. In addition, for example, when the target is micro organisms or dust, a sponge or a non-woven fabric filter, and if you want to keep the inside sterile, you can use a more advanced filtration filter such as a HEPA filter, and if necessary, combine these. It is preferable to use.

【0019】更に、この培養装置(1)の内部を清浄に
保つためには、排気口(8)にも空気濾過フィルターを
設けることが望ましく、またコンクリート製の培養池以
外の床もコンクリート土間(9)等で完全に覆われてい
ることが望ましい。さらには土間(9)に排水溝(1
0)が設置されていることが望ましく、更には、土間が
排水溝に向かって下る勾配を有し、容易に排水できるこ
とが望ましく、かつ排水溝の途中に培養装置外部へ通じ
る排水管(11)を持つことが望ましい。コンクリート
等でできた土間(9)および培養池(2)は、殺菌剤例
えば次亜塩素酸ナトリウム水溶液等を液状あるいは霧状
で散布することにより容易に洗浄・殺菌できる。
Further, in order to keep the inside of the culturing device (1) clean, it is desirable to provide an air filter at the exhaust port (8) as well, and for floors other than the concrete culturing pond, concrete floors ( It is desirable to be completely covered with 9). In addition, the drainage ditch (1
0) is preferably installed, and further, it is desirable that the soil has a slope descending toward the drainage channel so that drainage can be easily performed, and a drainage pipe (11) leading to the outside of the culture device in the middle of the drainage channel. It is desirable to have. The dirt floor (9) and the culture pond (2) made of concrete or the like can be easily washed and sterilized by spraying a germicide such as an aqueous solution of sodium hypochlorite in a liquid or mist form.

【0020】以上の様にして内部が清浄に保たれ、照射
光量並びに温度が管理された藻類の培養装置(1)は、
あらゆる藻類の培養に用いることができるが、特にクロ
レラ、スピルリナ、ドナリエラ、フォルフィリディウ
ム、ヘマトコッカス等の微細藻類の培養に好適である。
As described above, the algae culturing apparatus (1) whose inside is kept clean and whose irradiation light quantity and temperature are controlled is
Although it can be used for culturing all algae, it is particularly suitable for culturing microalgae such as Chlorella, Spirulina, Donariella, Forfilidium, and Hematococcus.

【0021】現在クロレラは台湾および日本で生産され
ている。培養に用いられている藻株は、クロレラ・ピレ
ノイドーサ(Chlorella pyrenoidosa)、クロレラ・エ
ィプソイデア(C.ellipsoidea)、クロレラ・ブルガリ
ス(C.vulgaris)、またはセネデスムス属(Scenedesmu
s)等で、培養至適温度は種や株間で大きく異なり、そ
れぞれの生産地の気象条件に適した株を選択し、生産し
ている。例えば、日本では生育の適温が25℃であるクロ
レラ・ピレノイドーサ(C.pyrenoidosa)等が、また台
湾では適温が35〜40℃のクロレラ・エィプソイデア(C.
ellipsoidea)等が用いられている。しかし、いずれの
生産地においても冬期に水温を適温に保つことは困難
で、冬期の生産効率は低い。そこで本発明による藻類の
培養装置を用いることにより、冬期の生産効率を大幅に
向上させることができる。
Chlorella is currently produced in Taiwan and Japan. The algae strains used in the culture are Chlorella pyrenoidosa, Chlorella pyrenoidosa, C. ellipsoidea, Chlorella vulgaris, or Scenedesmus.
In s), etc., the optimum temperature for culturing varies greatly among species and strains, and strains that are suitable for the climatic conditions of each production area are selected and produced. For example, in Japan, the optimal temperature for growth is 25 ° C, such as Chlorella pyrenoidosa (C. pyrenoidosa), and in Taiwan, the optimal temperature is 35-40 ° C for Chlorella Epseidea (C.
ellipsoidea) is used. However, it is difficult to keep the water temperature at an appropriate temperature in winter in any of the production areas, and the production efficiency in winter is low. Therefore, by using the algae culture device according to the present invention, the production efficiency in winter can be significantly improved.

【0022】スピルリナは、タイ、アメリカ(カリフォ
ルニア、ハワイ)、メキシコおよび日本で生産されてい
る。培養に用いられているスピルリナ属(Spirulina)
藻株の適温は35℃なので、年間を通じて高い生産性を維
持できるのは、タイのように年間を通じて平均気温が30
℃を超える地域のみである。そこで本発明による藻類の
培養装置を用いることにより、該地での冬期の生産効率
を大幅に向上させることができる。
Spirulina is produced in Thailand, the United States (California, Hawaii), Mexico and Japan. Spirulina used for culture
Since the optimum temperature for algae strains is 35 ° C, it is possible to maintain high productivity throughout the year because the average temperature is 30 throughout the year like Thailand.
Only in areas where the temperature exceeds ℃. Therefore, by using the apparatus for cultivating algae according to the present invention, it is possible to significantly improve the production efficiency in winter in the area.

【0023】ドナリエラは、オーストラリアとイスラエ
ルで生産されている。培養に用いられているドナリエラ
・サリーナ(Dunaliella salina)あるいはドナリエラ
・バルダビル(D.bardawil)等はいずれも耐塩性を有し
ており、商業生産ではアメーバ等の補食性微生物の夾雑
を防ぐため、20%以上の高い塩濃度で培養している。そ
こで本発明による空気濾過フィルター付藻類培養装置を
用いれば、微生物を夾雑させることなく塩濃度を低減す
ることができ、培地用薬品を大幅に節約でき、得られた
製品からの脱塩工程も簡略化できる。また、上記以外の
地域でも生産が容易になることは、クロレラやスピルリ
ナと同様である。
Donariella is produced in Australia and Israel. Donaliella salina (Dunaliella salina) and Donaliella valdavir (D. bardawil), which are used for culturing, all have salt tolerance, and are used in commercial production to prevent the contamination of predatory microorganisms such as amoeba. Cultured at a high salt concentration of over%. Therefore, by using the algae culture device with an air filtration filter according to the present invention, the salt concentration can be reduced without contaminating microorganisms, the chemicals for the medium can be significantly saved, and the desalting process from the obtained product can be simplified. Can be converted. In addition, the ease of production in areas other than the above is the same as for Chlorella and Spirulina.

【0024】フォルフィリディウムは単細胞の紅藻類
で、色調の良好な赤色天然色素フィコエリスリン生産藻
類として期待されているが、いまだ商業生産には至って
いない。その理由のひとつは生育の適温が25℃と低いか
らである。年間を通じて水温を25℃付近に保つことがで
きる商業的生産に適した生産地を探すことは困難である
が、本発明による藻類培養装置を用いれば、例えば日本
等の温帯地域でさえ、年間を通じて生産することが可能
である。
Phorphyridium is a unicellular red alga and is expected as a red natural pigment phycoerythrin producing alga with a good color tone, but it has not yet reached commercial production. One of the reasons is that the optimum temperature for growth is as low as 25 ° C. It is difficult to find a production site suitable for commercial production that can maintain the water temperature around 25 ° C throughout the year, but if the algae culture device according to the present invention is used, even in temperate regions such as Japan, for example, throughout the year It is possible to produce.

【0025】ヘマトコッカスは、付加価値の高いカロテ
ノイド色素・アスタキサンチン生産藻類として期待され
ているが、いまだ商業生産には至っていない。その理由
は第一に本藻類が夾雑微生物に補食され易いことであ
り、そして第二にフォルフィリディウムと同じく生育の
適温が低いことにある。そこで本発明による空気濾過フ
ィルター付藻類培養装置を用いれば、温度を適温である
25〜30℃に管理し、藻体の生産速度を損なうことなく微
生物の夾雑を効率的に防止し、安定して培養することが
できる。
Hematococcus is expected as a carotenoid pigment / astaxanthin-producing alga with high added value, but it has not yet reached commercial production. The first reason is that the algae are easily supplemented by contaminating microorganisms, and secondly, the optimum temperature for growth is low as in Phorphidium. Therefore, if the algae culture device with an air filtration filter according to the present invention is used, the temperature is appropriate.
The temperature can be controlled at 25 to 30 ° C, the contamination of microorganisms can be efficiently prevented without impairing the production rate of algal cells, and stable culture can be performed.

【0026】いずれの藻類の場合にも、空気濾過フィル
ターをエアドームの空気取り入れ口に設けることによ
り、異物混入がない高品質な藻体を得ることができる。
In the case of any algae, by providing an air filter at the air intake of the air dome, it is possible to obtain a high quality algal body free from foreign matter.

【実施例】以下、本発明を実施例および比較例により説
明するが、もとより本発明はこれに限定されるものでは
ない。
EXAMPLES The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0027】(実施例1)これまで、夏期にのみスピル
リナを生産していたレースウェイ型培養池P1(1000m2)
に、エアドームを設置した。まず池の周囲に溝を掘り、
次に太陽光を透過するフィルムを池の上に広げ、その上
にフィルムをおさえるメッシュを広げた。そして空気取
り入れ用の送風機をフィルムの空気取り入れ口に縛り付
け、台座を地面に固定した。フィルムとメッシュの裾部
分は、あらかじめ掘った溝に埋め込んで固定した。最後
に送風機を作動して、フィルムを膨張させた。
Example 1 A raceway-type culture pond P1 (1000 m 2 ) which has been producing spirulina only in summer until now.
I installed an air dome. First, dig a groove around the pond,
Next, a film that transmits sunlight was spread on the pond, and a mesh holding the film was spread on it. Then, an air blower for air intake was tied to the air intake of the film, and the pedestal was fixed to the ground. The hem part of the film and mesh was embedded and fixed in a groove dug in advance. Finally, the blower was operated to expand the film.

【0028】この培養装置P1Aの冬期における温度特
性を調べたところ、培養池の水温はP1に比べて平均10
℃、プロパンガスを燃焼させ加温することにより更に平
均4℃高くなった。 (実施例2)実施例1で建設したエアドーム付き培養池
P1Aを用いて、11月から3月までの冬期の間スピル
リナの生産をおこなった。培地にはスピルリナ用のSO
T培地(表1)を用い、PHを9.0に調節して培養した
ところ、藻体生産速度は表3の通りであった。
When the temperature characteristics of the culture apparatus P1A in winter were examined, the water temperature in the culture pond was 10 on average as compared with P1.
℃, by burning propane gas and heating, the average temperature increased by 4 ℃. (Example 2) Using the culture basin P1A with an air dome constructed in Example 1, spirulina was produced during the winter season from November to March. The medium contains SO for Spirulina
Using T medium (Table 1) and culturing with pH adjusted to 9.0, the algal cell production rate was as shown in Table 3.

【0029】 表1.SOT培地の組成 ───────────────── NaHCO3 16.8 g/l K2HPO4 0.5 g/l NaNO3 2.5 g/l K2SO4 1.0 g/l NaCl 1.0 g/l MgSO4・7H2O 0.2 g/l CaCl2・2H2O 0.04 g/l FeSO4・7H2O 0.01 g/l Na2EDTA 0.08 g/l A5 solution 1.0 ml/l ─────────────────Table 1. Composition of SOT medium ───────────────── NaHCO 3 16.8 g / l K 2 HPO 4 0.5 g / l NaNO 3 2.5 g / l K 2 SO 4 1.0 g / l NaCl 1.0 g / l MgSO 4・ 7H 2 O 0.2 g / l CaCl 2・ 2H 2 O 0.04 g / l FeSO 4・ 7H 2 O 0.01 g / l Na 2 EDTA 0.08 g / l A5 solution 1.0 ml / l ─── ──────────────

【0030】 表2.A5 solution の組成 ───────────────── H3BO3 2.86 g/l MnSO4・7H2O 2.5 g/l ZnSO4・7H2O 222 mg/l CuSO4・5H2O 79 mg/l Na2MoO4・2H2O 21 mg/l ─────────────────Table 2. Composition of A5 solution ───────────────── H 3 BO 3 2.86 g / l MnSO 4・ 7H 2 O 2.5 g / l ZnSO 4・ 7H 2 O 222 mg / l CuSO 4 · 5H 2 O 79 mg / l Na 2 MoO 4 · 2H 2 O 21 mg / l ─────────────────

【0031】(比較例1)エアドームのない培養池P1
での冬期におけるスピルリナの生産速度は、実施例2と
おなじ培地/PHを用いても、表3の通り明らかにP1
Aに劣った。
(Comparative Example 1) Culture pond P1 without air dome
The production rate of spirulina in the winter season was clearly P1 as shown in Table 3 even when the same medium / PH as in Example 2 was used.
It was inferior to A.

【0032】 [0032]

【0033】(実施例3)30m2のコンクリート製レース
ウェイ型培養池P2の周囲にコンクリートの土間を設け
た。土間の外側にはエアドームのフィルムを固定するた
めのアンカーを埋め込み、その内側に深さ10cmの排水溝
を設けた。土間は水はけが良くなるように排水溝に向け
て若干の勾配をつけた。また排水溝の一端には外部に通
じる排水管を設置した。エアドームおよび送風機をアン
カーに固定し、フィルムを膨張させた。空気取り入れ口
に不織布フィルターPS300(日本バイリーン(株)製)
を取り付けた。以上の様にして本発明に係る培養装置P
2Aを設置した。
(Example 3) A concrete soil space was provided around a 30 m 2 concrete raceway-type culture pond P2. An anchor for fixing the film of the air dome was embedded on the outside of the soil, and a drainage groove with a depth of 10 cm was provided on the inside. The soil has a slight slope toward the drain to improve drainage. A drainage pipe was installed at one end of the drainage channel to communicate with the outside. The air dome and blower were fixed to the anchor and the film was inflated. Nonwoven fabric filter PS300 (made by Japan Vilene Co., Ltd.) at the air intake
Attached. As described above, the culture apparatus P according to the present invention
2A was installed.

【0034】(比較例2)これまで、緑藻ヘマトコッカ
スをP2で培養しようと試みたが、培養開始2〜3日目
でアメーバや繊毛虫等の微小動物あるいはアカムシ等の
昆虫により補食されてしまい、藻体を増殖させることが
できなかった。
(Comparative Example 2) Up to now, it has been attempted to cultivate the green alga Haematococcus in P2, but on the 2nd to 3rd day after the initiation of culture, it was supplemented by microbes such as amoeba and ciliates, or insects such as aphids. It was impossible to grow algal bodies.

【0035】(実施例4)P2Aを用いてヘマトコッカ
スを生産した。表4に示す改変C培地を用い、PHは7.
0に調節して培養した。P2A内部の池と土間は、あら
かじめ次亜塩素酸ナトリウム水溶液により殺菌した。培
養にはヘマトコッカス・プルビアリスN4株(Haematoc
occus pluvialis N4)を用い、室内培養で他の真核微生
物が夾雑していないきれいな種藻株を得て、これをP2
Aに接種した。培養期間中の水温は25-29℃に保たれ
た。
(Example 4) Hematococcus was produced using P2A. Using the modified C medium shown in Table 4, the pH was 7.
The culture was adjusted to 0. The pond inside the P2A and the soil were previously sterilized with an aqueous sodium hypochlorite solution. For culturing, Haematococcus pluvialis N4 strain (Haematoc
occus pluvialis N4) was used to obtain a clean seed alga strain that was not contaminated with other eukaryotic microorganisms by in-house culture and used for P2
A was inoculated. The water temperature was maintained at 25-29 ° C during the culture period.

【0036】その結果ヘマトコッカスは順調に増殖し、
培養7日目で藻濃度は720mg/lに達した。アメーバや繊
毛虫等の微小動物あるいはアカムシ等の昆虫の夾雑は観
察されなかった。7日間の平均藻体生産速度は 9.4g/m
2・day であった。
As a result, Haematococcus grows smoothly,
The alga concentration reached 720 mg / l on the 7th day of culture. No contamination of small animals such as amoeba and ciliates or insects such as aphids was observed. Average algal production rate for 7 days is 9.4g / m
It was 2 · day.

【0037】 表4.改変C培地の組成 ──────────────────── Ca(NO3)2・4H2O 0.3 g/l KNO3 0.2 g/l β-Na2 glycerophosphate 0.1 g/l MgSO4・7H2O 80 mg/l Vitamine B12 0.2 μg/l Biotin 0.2 μg/l Thiamine HCl 20 μg/l P IV metals 3 ml/l Tris(hydroxymethyl) aminomethane 0.5 g/l ──────────────────── Table 4. Modified C Medium composition ──────────────────── Ca (NO 3) 2 · 4H 2 O 0.3 g / l KNO 3 0.2 g / l β-Na 2 glycerophosphate 0.1 g / l MgSO 4 · 7H 2 O 80 mg / l Vitamine B 12 0.2 μg / l Biotin 0.2 μg / l Thiamine HCl 20 μg / l P IV metals 3 ml / l Tris (hydroxymethyl) aminomethane 0.5 g / l ── ──────────────────

【0038】 表5.P IV metals の組成 ──────────────────── FeCl3・6H2O 196 mg/l MnCl2・4H2O 36 mg/l ZnSO4・7H2O 22 mg/l CoCl2・6H2O 4 mg/l Na2MoO4・2H2O 2.5 mg/l Na2EDTA・2H20 1 g/l ────────────────────Table 5. Composition of P IV metals ──────────────────── FeCl 3・ 6H 2 O 196 mg / l MnCl 2・ 4H 2 O 36 mg / l ZnSO 4・ 7H 2 O 22 mg / l CoCl 2 · 6H 2 O 4 mg / l Na 2 MoO 4 · 2H 2 O 2.5 mg / l Na 2 EDTA · 2H 2 0 1 g / l ──────────── ────────

【0039】[0039]

【発明の効果】本発明に係る藻類の培養装置によれば、
培養池をエアドームで覆うことにより照射光量の調整並
びに容易な温度管理が可能となり、また空気取り入れ口
に空気濾過フィルターを設けることにより、異物、異生
物の含まれない高品質な藻体を、安定かつ効率的に培養
でき、特にフォルフィリディウムやヘマトコッカスとい
ったこれまで商業生産ができなかった微細藻類の生産を
可能にする。
According to the apparatus for cultivating algae according to the present invention,
By covering the culture pond with an air dome, the amount of irradiation light can be adjusted and the temperature can be easily controlled.By installing an air filter at the air intake, it is possible to stabilize high-quality algal cells free from foreign matter and foreign organisms. It can be cultivated efficiently and enables the production of microalgae such as Phorphidium and Haematococcus, which could not be produced commercially until now.

【0040】[0040]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る藻類の培養装置の例として、レー
スウェイ型培養池とエアドーム型温室とからなる培養装
置の正面図を示した。
FIG. 1 shows a front view of a culture device including a raceway-type culture pond and an air-dome type greenhouse as an example of the algae culture device according to the present invention.

【図2】第1図の培養装置の平面図。FIG. 2 is a plan view of the culture device of FIG.

【図3】第1図のIV−IV線に沿ってみた部分拡大縦
断面図。
FIG. 3 is a partially enlarged vertical sectional view taken along the line IV-IV in FIG.

【0041】[0041]

【符号の説明】[Explanation of symbols]

1・・・・藻類の培養装置、2・・・・藻類の培養池、3・・・・エ
アドーム型温室、4・・・・送風機、5・・・・太陽光を透過す
るフィルム、6・・・・空気取り入れ口、7・・・・空気濾過フ
ィルター、8・・・・排気口、9・・・コンクリート等ででき
た土間、10・・・・排水溝、11・・・・排水管、12・・・・出
入口、13・・・・攪拌用水車。
1 ... Algae culture device, 2 ... Algae culture pond, 3 ... Air-dome type greenhouse, 4 ... Blower, 5 ... Sunlight permeable film, 6 ... ... Air intake, 7 ... Air filter, 8 ... Exhaust, 9 ... Soil made of concrete, 10 Drainage, 11 ... Drainage pipe , 12 ... ・ Gateway, 13 ・ ・ ・ ・ Stirring turbine.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 藻類を培養するための培養池と、太陽光
を透過するフィルムで当該培養池を覆い、且つ空気取り
入れ口と排気口を設けたエアドーム型温室とからなるこ
とを特徴とする藻類の培養装置。
1. An algae characterized by comprising a culture pond for cultivating algae, and an air dome type greenhouse which covers the culture pond with a film which transmits sunlight and which is provided with an air intake port and an exhaust port. Culture device.
【請求項2】 太陽光を透過するフィルムに適当な光透
過率を有するものを選ぶか、または光透過率の低いフィ
ルム又は遮光シートを既設フィルムに重ねることによ
り、光量を調節する請求項1記載の藻類の培養装置。
2. The amount of light is controlled by selecting a film having an appropriate light transmittance as a film that transmits sunlight or by laminating a film having a low light transmittance or a light shielding sheet on an existing film. Algae culture device.
【請求項3】 エアドームの換気率を調節することによ
り、培養装置内部の温度を調節する請求項1記載の藻類
の培養装置。
3. The algae culture device according to claim 1, wherein the temperature inside the culture device is adjusted by adjusting the ventilation rate of the air dome.
【請求項4】 エアドーム内部に霧状の水を噴霧し、気
化熱によりドーム内の温度を調節し、培養装置内部の温
度を調節する請求項1記載の藻類の培養装置。
4. The apparatus for cultivating algae according to claim 1, wherein atomized water is sprayed inside the air dome, and the temperature inside the dome is adjusted by heat of vaporization to adjust the temperature inside the culturing apparatus.
【請求項5】 培養装置内部を加温または冷却すること
により、培養装置内部または培養池の温度を調節する請
求項1記載の藻類の培養装置。
5. The algae culture device according to claim 1, wherein the temperature inside the culture device or in the culture pond is adjusted by heating or cooling the inside of the culture device.
【請求項6】 太陽光を透過するフィルムに適当な光透
過率を有するものを選ぶか、または光透過率の低いフィ
ルム又は遮光シートを既設フィルムに重ねることによ
り、光量を調節し、かつエアドームの換気率を調節する
方法、エアドーム内部に霧状の水を噴霧し、気化熱によ
りドーム内の温度を下げる方法、培養装置内部または培
養池を加温または冷却する方法等を組み合わせることに
より、培養装置内部または培養池の温度を調節する請求
項1記載の藻類の培養装置。
6. A light-transmitting film having an appropriate light transmittance is selected, or a film having a low light transmittance or a light-shielding sheet is overlaid on an existing film to adjust the light amount and the air dome of the air dome. By combining a method of adjusting the ventilation rate, a method of spraying mist-like water inside the air dome and lowering the temperature inside the dome by heat of vaporization, a method of heating or cooling the inside of the culture device or the culture pond, etc. The algae culture device according to claim 1, wherein the temperature of the inside or the culture pond is adjusted.
【請求項7】 エアドーム型温室の空気取り入れ口に空
気濾過フィルターを設ける請求項1、2、3、4、5ま
たは6のいずれか一項記載の藻類の培養装置。
7. The apparatus for cultivating algae according to any one of claims 1, 2, 3, 4, 5 or 6, wherein an air filter is provided at the air intake of the air dome type greenhouse.
【請求項8】 請求項1、2、3、4、5、6または7
のいずれか一項記載の藻類の培養装置を用いる藻類の培
養方法。
8. A method according to claim 1, 2, 3, 4, 5, 6 or 7.
A method for culturing algae using the apparatus for cultivating algae according to any one of 1.
【請求項9】 藻類がクロレラ、スピルリナ、ドナリエ
ラ、フォルフィリディウム、ヘマトコッカス等の微細藻
類である請求項8記載の藻類の培養方法。
9. The method for cultivating algae according to claim 8, wherein the algae are microalgae such as Chlorella, Spirulina, Donariella, Forfilidium, and Hematococcus.
JP4003840A 1992-01-13 1992-01-13 Algae cultivator and its culture Pending JPH05184347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4003840A JPH05184347A (en) 1992-01-13 1992-01-13 Algae cultivator and its culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4003840A JPH05184347A (en) 1992-01-13 1992-01-13 Algae cultivator and its culture

Publications (1)

Publication Number Publication Date
JPH05184347A true JPH05184347A (en) 1993-07-27

Family

ID=11568386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4003840A Pending JPH05184347A (en) 1992-01-13 1992-01-13 Algae cultivator and its culture

Country Status (1)

Country Link
JP (1) JPH05184347A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889118A1 (en) * 1997-07-04 1999-01-07 Ingredients Technology Corporation A bioreactor for the growth of photosynthetic microorganisms
WO1999001537A1 (en) * 1997-07-04 1999-01-14 Ingredient Technology Corporation International A bioreactor for the growth of photosynthetic microorganisms
JP2002262858A (en) * 2001-03-06 2002-09-17 Tokai Sangyo Kk Method for cultivating blue-breen algae
WO2003066799A1 (en) * 2001-11-22 2003-08-14 Vaktek As Device for production of algae
WO2005019406A1 (en) * 2003-08-22 2005-03-03 Astec Co., Ltd. Storage container for incubator and incubator
WO2008153202A1 (en) * 2007-06-14 2008-12-18 Waseda University Method of culturing photosynthetic microorganism using photosynthetic reactor allowed to float on water surface and photosynthetic reactor for producing hydrogen gas by photosynthetic microorganism
JP2010514446A (en) * 2006-12-28 2010-05-06 ソリックス バイオフューエルズ, インコーポレイテッド Excellent diffused light large surface area water-supported photobioreactor
DE102009022754A1 (en) * 2009-05-26 2010-12-02 Christian-Albrechts-Universität Zu Kiel Photobioreactor comprises a shape-stable base tub and a transparent conical-shaped sleeve overarching the base tub and forming a hollow area with the base tub, where the sleeve comprises an external cover and an internal cover
KR101110068B1 (en) * 2011-05-27 2012-02-15 한국해양연구원 Method for manufacturing microalgae biofuel
JP2012175964A (en) * 2011-02-01 2012-09-13 Ihi Corp Microalgae culture device and method
EP2524962A1 (en) * 2011-05-17 2012-11-21 Aeon Biogroup Spa Algae culture system
JP2013027378A (en) * 2011-07-29 2013-02-07 Ihi Corp Separation method and separation system of microalgae
JP2014515931A (en) * 2011-05-25 2014-07-07 コリア インスティチュート オブ オーシャン サイエンス アンド テクノロジー Microalgae biofuel production plant, biofuel production culture tank, and microalgae biofuel production method
US8859262B2 (en) 2007-04-27 2014-10-14 Algae Systems, LLC Photobioreactor systems positioned on bodies of water
CN104110010A (en) * 2014-07-01 2014-10-22 胡盼成 Water retention method and structure for water areas in water-deficient regions
US8877488B2 (en) 2006-07-10 2014-11-04 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
JPWO2013015422A1 (en) * 2011-07-27 2015-02-23 株式会社Ihi Incubator
CN104726321A (en) * 2015-04-15 2015-06-24 中国海洋大学 Runway type bioreactor applicable to sunshine factorization
JP2015171327A (en) * 2014-03-11 2015-10-01 公立大学法人福井県立大学 Method and device for culturing cyanobacteria
ITUB20150681A1 (en) * 2015-05-21 2016-11-21 Micoperi Blue Growth S R L Plant and process for the production of microorganisms in aquaculture
JP2017000124A (en) * 2015-06-16 2017-01-05 国立研究開発法人農業・食品産業技術総合研究機構 Method for culturing algae
JP2024005278A (en) * 2022-06-30 2024-01-17 三菱化工機株式会社 Cooling mechanism of algae culture device and cooling method using the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889118A1 (en) * 1997-07-04 1999-01-07 Ingredients Technology Corporation A bioreactor for the growth of photosynthetic microorganisms
WO1999001537A1 (en) * 1997-07-04 1999-01-14 Ingredient Technology Corporation International A bioreactor for the growth of photosynthetic microorganisms
JP2002262858A (en) * 2001-03-06 2002-09-17 Tokai Sangyo Kk Method for cultivating blue-breen algae
WO2003066799A1 (en) * 2001-11-22 2003-08-14 Vaktek As Device for production of algae
WO2005019406A1 (en) * 2003-08-22 2005-03-03 Astec Co., Ltd. Storage container for incubator and incubator
US8877488B2 (en) 2006-07-10 2014-11-04 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
JP2010514446A (en) * 2006-12-28 2010-05-06 ソリックス バイオフューエルズ, インコーポレイテッド Excellent diffused light large surface area water-supported photobioreactor
US8859262B2 (en) 2007-04-27 2014-10-14 Algae Systems, LLC Photobioreactor systems positioned on bodies of water
WO2008153202A1 (en) * 2007-06-14 2008-12-18 Waseda University Method of culturing photosynthetic microorganism using photosynthetic reactor allowed to float on water surface and photosynthetic reactor for producing hydrogen gas by photosynthetic microorganism
DE102009022754A1 (en) * 2009-05-26 2010-12-02 Christian-Albrechts-Universität Zu Kiel Photobioreactor comprises a shape-stable base tub and a transparent conical-shaped sleeve overarching the base tub and forming a hollow area with the base tub, where the sleeve comprises an external cover and an internal cover
JP2012175964A (en) * 2011-02-01 2012-09-13 Ihi Corp Microalgae culture device and method
EP2524962A1 (en) * 2011-05-17 2012-11-21 Aeon Biogroup Spa Algae culture system
JP2014515931A (en) * 2011-05-25 2014-07-07 コリア インスティチュート オブ オーシャン サイエンス アンド テクノロジー Microalgae biofuel production plant, biofuel production culture tank, and microalgae biofuel production method
KR101110068B1 (en) * 2011-05-27 2012-02-15 한국해양연구원 Method for manufacturing microalgae biofuel
JPWO2013015422A1 (en) * 2011-07-27 2015-02-23 株式会社Ihi Incubator
US9476023B2 (en) 2011-07-27 2016-10-25 Ihi Corporation Culture device
JP2013027378A (en) * 2011-07-29 2013-02-07 Ihi Corp Separation method and separation system of microalgae
JP2015171327A (en) * 2014-03-11 2015-10-01 公立大学法人福井県立大学 Method and device for culturing cyanobacteria
CN104110010A (en) * 2014-07-01 2014-10-22 胡盼成 Water retention method and structure for water areas in water-deficient regions
CN104726321A (en) * 2015-04-15 2015-06-24 中国海洋大学 Runway type bioreactor applicable to sunshine factorization
CN104726321B (en) * 2015-04-15 2017-06-06 中国海洋大学 A kind of racetrack bioreactor suitable for sunlight batch production
ITUB20150681A1 (en) * 2015-05-21 2016-11-21 Micoperi Blue Growth S R L Plant and process for the production of microorganisms in aquaculture
WO2016185438A1 (en) * 2015-05-21 2016-11-24 Micoperi Blue Growth S.R.L. Plant and method for producing microorganisms in aquaculture
JP2017000124A (en) * 2015-06-16 2017-01-05 国立研究開発法人農業・食品産業技術総合研究機構 Method for culturing algae
JP2024005278A (en) * 2022-06-30 2024-01-17 三菱化工機株式会社 Cooling mechanism of algae culture device and cooling method using the same

Similar Documents

Publication Publication Date Title
JPH05184347A (en) Algae cultivator and its culture
US6233870B1 (en) Method and device for aquatic greening in a space of a structure
Vox et al. Sustainable greenhouse systems
CN110249991B (en) Soilless moss planting method for sunlight greenhouse net shed sand bed
JP7091342B2 (en) Plant cultivation method and plant cultivation equipment
CN102047835A (en) Normal environmental plant hydroponics technology
CN103828558A (en) Method for cultivation of seedlings of bulbus fritillariae cirrhosae through devices
CN105104001B (en) A kind of vegetable-cultivating organic system
JP2000069858A (en) Method for culturing plant in green house and apparatus therefor
CN107155896B (en) A method of promote African Chrysanthemum tissue culture to transplant seedling rooting
CN202509653U (en) Three-dimensional paddy field wall
CN108157180A (en) A kind of method of the open industrial fast breeding of potato virus-free plantlet
CN109089882A (en) A kind of moss tissue culture directly induced by spore and seedling culture method
CN102524038A (en) Three-dimensional combined temperature control and light control breeding bed
CN110106094A (en) High temperature resistant Stropharia rugoso-annulata bacterial strain and its application
CN104542281A (en) Tissue culture and propagation method of viburnum tinus
KR101710301B1 (en) Method for red sea cucumber aquaculture using adhesive microalgae isolated from jeju lava seawater
CN202396257U (en) Stereoscopic combined temperature and light control breeding bed
CN205040377U (en) Overhead cultivation device
KR20100048672A (en) Mushroom growing house
CN106212367B (en) A kind of booth and its cultural method for forest frog culture
JP3878968B2 (en) Elevated cultivation method and elevated cultivation bed
CN1171190A (en) Ecological greenhouse
KR101810782B1 (en) Method for massive culture of adhesive microalgae
JPH05153863A (en) Method for proliferating va mycorrhizal fungi