JP2015171327A - Method and device for culturing cyanobacteria - Google Patents

Method and device for culturing cyanobacteria Download PDF

Info

Publication number
JP2015171327A
JP2015171327A JP2014047914A JP2014047914A JP2015171327A JP 2015171327 A JP2015171327 A JP 2015171327A JP 2014047914 A JP2014047914 A JP 2014047914A JP 2014047914 A JP2014047914 A JP 2014047914A JP 2015171327 A JP2015171327 A JP 2015171327A
Authority
JP
Japan
Prior art keywords
culture
cyanobacteria
container
liquid medium
liquid surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014047914A
Other languages
Japanese (ja)
Inventor
香 大城
Kaori Oki
香 大城
伸哉 吉川
Shinya Yoshikawa
伸哉 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefectural University
Original Assignee
Fukui Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefectural University filed Critical Fukui Prefectural University
Priority to JP2014047914A priority Critical patent/JP2015171327A/en
Publication of JP2015171327A publication Critical patent/JP2015171327A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily and efficiently culturing a large amount of cyanobacteria, and to provide a device therefor.SOLUTION: There is provide a method for culturing cyanobacteria, in which the cyanobacteria are statically cultured in a liquid culture medium whose depth is 3 cm or less, whose liquid surface area is 400 cmor more, and whose liquid surface contacts with air. There is also provided a culturing device which comprises: a placing shelf comprising a plurality of placing parts arranged at different positions in the vertical direction; a plurality of containers placed on the placing parts; and light dimming sheets which cover the plurality of containers. Each container is shaped so as to house the liquid culture medium whose depth is 3 cm or less, whose liquid surface area is 400 cmor more, and whose liquid surface contacts with air.

Description

本発明は、簡便かつ効率的にラン藻を培養する方法及びそのための装置に関する。   The present invention relates to a method for easily and efficiently cultivating cyanobacteria and an apparatus therefor.

ラン藻(シアノバクテリア)が生産する細胞外放出多糖は、高い保水力、優れた金属吸着能等を有する機能性バイオポリマーである。当該多糖を工業的に利用するためには、ラン藻の簡便且つ効率的な培養方法が求められている。   Extracellularly-released polysaccharides produced by cyanobacteria are functional biopolymers having high water retention, excellent metal adsorption ability, and the like. In order to industrially use the polysaccharide, a simple and efficient method for culturing cyanobacteria is required.

従来のラン藻の大量培養は、多量の培地に藻体を懸濁し、十分な照射光強度と炭酸ガスの供給を実現するために通気・循環装置等を備えた高価且つ複雑な培養システムを用いて行われることが一般的である(例えば特許文献1)。   Conventional mass culture of cyanobacteria uses an expensive and complex culture system with aeration / circulation devices, etc., to suspend algal bodies in a large amount of medium and to provide sufficient irradiation light intensity and carbon dioxide supply. Is generally performed (for example, Patent Document 1).

国際公開WO2005/102031International Publication WO2005 / 102031

K. Ohki et al., Journal Appl. Phycol., Vol.26, P.265-272 (2014)K. Ohki et al., Journal Appl. Phycol., Vol.26, P.265-272 (2014) Morel,F.M.M. Rueter, J. AQUIL:A chemically defined phytoplankton culture medium for trace metal studies. J. Phycol. 15: 135-141 (1979)Morel, F.M.M.Rueter, J. AQUIL: A chemically defined phytoplankton culture medium for trace metal studies.J. Phycol. 15: 135-141 (1979)

本発明は、簡便かつ効率的にラン藻を大量培養する方法、及びそのための装置を提供することを目的とする。   An object of this invention is to provide the method and apparatus for mass-cultivating cyanobacteria simply and efficiently.

本発明者はラン藻を、深さ3cm以下かつ液面の面積が400cm以上であり、前記液面が空気と接している液体培地中において静置培養することにより、ラン藻を簡便且つ効率的に培養できることを見出した。 The present inventor can easily and efficiently use cyanobacteria by static culture in a liquid medium having a depth of 3 cm or less and a liquid surface area of 400 cm 2 or more and the liquid surface being in contact with air. It was found that it can be cultivated automatically.

本発明者はまた前記培養方法を実行するための装置として、上下方向の異なる位置に配置された複数の載置部を備える載置棚と、前記載置部に取り外し可能に載置された複数の容器と、前記複数の容器を覆い、外部の光源から各容器に到達する光の光合成有効光量子束密度を低減する減光シートとを備え、各容器は、ラン藻培養用の液体培地を、深さ3cm以下かつ液面の面積が400cm以上となるように収容し、且つ、前記液面が空気と接するように収容する形状となっていることを特徴とする装置が好適であることを見出した。 The inventor also provides, as an apparatus for performing the culture method, a mounting shelf including a plurality of mounting units disposed at different positions in the vertical direction, and a plurality of removably mounted units on the mounting unit. And a light reducing sheet that covers the plurality of containers and reduces the photosynthesis effective photon flux density of light reaching each container from an external light source, and each container has a liquid medium for cyanobacteria culture, A device characterized by being accommodated such that the depth is 3 cm or less and the area of the liquid level is 400 cm 2 or more, and the liquid level is accommodated so as to be in contact with air, is suitable. I found it.

本発明によれば簡便かつ効率的にラン藻を大量培養することが可能である。   According to the present invention, it is possible to cultivate a large amount of cyanobacteria simply and efficiently.

図1は実験1及び2でのラン藻の培養試験の結果を示す写真である。FIG. 1 is a photograph showing the results of cyanobacterial culture tests in Experiments 1 and 2. 図2はグリーンハウス内に設置された本発明の培養装置の一例を示す写真である。FIG. 2 is a photograph showing an example of the culture apparatus of the present invention installed in a green house. 図3は図2に示す培養装置を用いてラン藻の静置培養を行った場合の、各段の容器でのバイオマス生産量を示す図である。FIG. 3 is a diagram showing the biomass production in each stage of the container when static culture of cyanobacteria is performed using the culture apparatus shown in FIG. 図4は参考試験1で測定された培養時の光及び温度の条件と細胞外多糖類(EPS)の生産量との関係を示す図である。FIG. 4 is a graph showing the relationship between the light and temperature conditions during cultivation and the amount of extracellular polysaccharide (EPS) produced in Reference Test 1. 図5は培養用の容器50を示す図である。FIG. 5 is a view showing a container 50 for culture. 図6はラン藻601を含む液体培地602をHの深さで収容した容器50を示す図である。FIG. 6 is a view showing a container 50 containing a liquid medium 602 containing cyanobacteria 601 at a depth of H. FIG. 図7は容器本体51の外寸及び内寸の最大値及び最小値を説明するための図である。FIG. 7 is a diagram for explaining the maximum value and the minimum value of the outer dimension and the inner dimension of the container body 51. 図8は載置棚80を利用して複数の容器50を上下方向の異なる位置に配置した例を示す図である。FIG. 8 is a diagram showing an example in which a plurality of containers 50 are arranged at different positions in the vertical direction using the mounting shelf 80. 図9は本発明のラン藻培養用の培養装置90を示す図である。FIG. 9 is a diagram showing a culture apparatus 90 for cultivating cyanobacteria according to the present invention.

1.ラン藻
本発明に係るラン藻の培養方法及びラン藻の培養装置を用いた方法により培養されるラン藻は、ラン藻に分類される微生物であれば特に限定されないが、好ましくは、細胞外に多糖を放出し、細胞同士が接着して細胞塊を形成するラン藻である。
1. Cyanobacteria The cyanobacterium cultivated by the method of culturing cyanobacteria and the method using the apparatus for cultivating cyanobacteria according to the present invention is not particularly limited as long as it is a microorganism classified as cyanobacteria, but preferably extracellularly. It is a cyanobacteria that releases a polysaccharide and adheres to each other to form a cell mass.

特に好適なラン藻としては、Rippkaら(R.Rippka, J.Deruelles, J.B.Waterbury, M.Herdman, R.Y.Stanier. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen.Microbiol. 111: 1-61 (1979))の分類によるラン藻のサブグループのうち、単細胞種のセクションI、糸状体種のセクションIII、セクションIV、セクションVに属するラン藻が挙げられる。単細胞種のセクションIに属するラン藻としては、具体的には、シアノセー(Cyanothece)属、グレオセー(Gloeothece)属、又はグレオカプサ(Gloeocapsa)属に属するラン藻が挙げられる。糸状体種のセクションIIIに属するラン藻としては、具体的には、リングビア(Lyngbia)属、フォルミディウム(Phormidium)属、又はオシラトリア(Oscillatoria)属に属するラン藻が挙げられる。糸状体種のセクションIVに属するラン藻としては、具体的には、ノストック(Nostoc)属、又はカロスリックス(Calothrix)属に属するラン藻が挙げられる。糸状体種のセクションVに属するラン藻としては、具体的には、クロログレオプシス(Chlorogloeopsis)属、又はフィッシェレラ(Fischerella)属に属するラン藻が挙げられる。 Particularly suitable cyanobacteria include Rippka et al. (R. Rippka, J. Deruelles, JB Waterbury, M. Herdman, RYStanier. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1- 61 (1979)), cyanobacteria belonging to section I of single cell species, section III of filamentous species, section IV, and section V are included. The cyanobacteria belonging to a single cell type section I, specifically, Shianose (Cyanothece) genus Gureose (Gloeothece) genus, or cyanobacteria and the like belonging to Gureokapusa (Gloeocapsa) genus. The cyanobacteria belonging to Section III of the filamentous species, specifically, Ringubia (Lyngbia) genus Phormidium (Phormidium) genus, or cyanobacteria and the like belonging to Oscillatoria (Oscillatoria) genus. Specific examples of cyanobacteria belonging to section IV of the filamentous species include cyanobacteria belonging to the genus Nostoc or the genus Calothrix . The cyanobacteria belonging to Section V of the filament type, specifically, chloro gray Opsys (Chlorogloeopsis) genus, or cyanobacteria and the like belonging to Fissherera (Fischerella) genus.

本発明は、上記に挙げた具体的な属に分類されるラン藻のなかでもシアノセー(Cyanothece)属に属するラン藻に対して特に適しており、更に、該シアノセー属に属するラン藻の中でも以下の特性1〜7のうち少なくとも1つ、好ましくは少なくとも3つ、より好ましくは特性1〜7の全てを有するラン藻に対して特に適している。 The present invention is particularly suitable for cyanobacteria belonging to the genus Cyanothe among the cyanobacteria classified into the specific genera listed above, and among the cyanobacteria belonging to the genus Cyanose, Are particularly suitable for cyanobacteria having at least one, preferably at least 3, and more preferably all of properties 1-7.

(特性1)細胞外に多量の多糖を放出する。具体的には、液体培地(例えば本明細書の実験1の実験培養で用いる液体培地)中で培養する場合に、細胞外多糖の生産量が培養液1リットル・1日あたり10〜50mg(多糖の乾燥重量)である。
(特性2)単細胞であるにも関わらず、生産された細胞外多糖が原因で培養された細胞が大きな細胞塊を形成する。
(特性3)深さ3cm以下(より具体的には下記2.2の深さ)の液体培地中で静置培養により生育可能である。
(特性4)淡水中で生育可能である。
(特性5)窒素固定能力を有する。
(特性6)25〜45℃にて液体培地中で培養した場合の、生育に至適な光合成有効光量子束密度が5〜100μmole・m-2・sec−1、より好ましくは10〜60μmole・m−2・sec−1の範囲内にある。
(特性7)10〜20℃の低温、あるいは、46〜48℃の高温に1日1〜5時間、数日程度(例えば2〜4日間)曝されても生育可能である。
(Characteristic 1) A large amount of polysaccharide is released extracellularly. Specifically, when culturing in a liquid medium (for example, the liquid medium used in the experimental culture of Experiment 1 of the present specification), the amount of extracellular polysaccharide produced is 10-50 mg (polysaccharide) per liter of culture solution per day. Dry weight).
(Characteristic 2) Despite being a single cell, cells cultured due to the produced extracellular polysaccharide form a large cell mass.
(Characteristic 3) It can be grown by stationary culture in a liquid medium having a depth of 3 cm or less (more specifically, a depth of 2.2 below).
(Characteristic 4) It can grow in fresh water.
(Characteristic 5) It has nitrogen fixing ability.
(Characteristic 6) The photosynthesis effective photon flux density optimal for growth when cultured in a liquid medium at 25 to 45 ° C. is 5 to 100 μmole · m −2 · sec −1 , more preferably 10 to 60 μmole · m. -2 · sec -1 .
(Characteristic 7) It can grow even when exposed to a low temperature of 10 to 20 ° C. or a high temperature of 46 to 48 ° C. for 1 to 5 hours a day for several days (for example, 2 to 4 days).

上記の特性1〜7を備えるシアノセー(Cyanothece)属に属するラン藻の具体例としてはCyanothece sp. Viet Nam 01株、Cyanothece sp.PCC7822株等が挙げられる。 Examples of cyanobacteria belonging to Shianose (Cyanothece) genus with the above characteristics 1-7 Cyanothece sp. Viet Nam 01 strain, Cyanothes sp. PCC7822 strain etc. are mentioned.

Cyanothece sp. Viet Nam 01株は、本発明者らがベトナムの水田から非特許文献1記載の方法により単離した新規のラン藻である。本出願人は本株を独立行政法人製品評価技術基盤機構特許生物寄託センターに寄託することを試みたが、受託が拒否された(受託拒否証明書の通知年月日平成26年3月7日、通知番号2013−1367)。本出願人及び本発明者はこのCyanothece sp. Viet Nam 01株を自ら保管しており、分譲することが可能である。Cyanothece sp. Viet Nam 01株の範囲には、Cyanothece sp. Viet Nam 01株の変異株であって、細胞外多糖類生産能が維持された変異株も包含される。 Cyanothes sp. Viet Nam 01 strain is a novel cyanobacteria isolated by the present inventors from a paddy field in Vietnam by the method described in Non-Patent Document 1. The applicant tried to deposit the stock at the Patent Biological Deposit Center of the National Institute of Technology and Evaluation, but the acceptance was refused (notification date of the certificate of acceptance rejection March 7, 2014) Notification number 2013-1367). The present applicant and the present inventor have confirmed that the Cyanotheth sp. Viet Nam 01 stock is stored on its own and can be sold. Cyanothes sp. The range of Viet Nam 01 is Cyanothes sp. A mutant strain of Viet Nam 01 strain that retains the ability to produce extracellular polysaccharides is also included.

Cyanothece sp. Viet Nam 01株の受託が拒否された理由は本株の試料中に他の細菌が混入しているためである。細菌は本株の細胞外多糖類中に混入していると考えられ、除去することは不可能である。一般的には、ラン藻から細菌を除去する方法としては、ラン藻と細菌とをホモジナイズや超音波処理等でできるだけ分離したのち、ラン藻細胞を寒天培地のプレート上に広げて培養し、出現したラン藻のみのコロニーを無菌的に回収する方法が用いられる。しかしCyanothece sp. Viet Nam 01株は細胞外に多量に多糖を放出するため、細胞外が厚い多糖の層で覆われており、混入細菌は多糖の層に埋没又は付着して生息している。多糖の層は厚いため、弱いホモジナイズや超音波による処理では混入細菌を分離することができない。また、混入細菌を分離できる程度まで処理の強度を高めると、Cyanothece sp. Viet Nam 01株自体が死滅する。したがって、細菌が分離除去されたCyanothece sp. Viet Nam 01株を得ることはできない。更に、細菌が混入した本株の試料を、細菌を死滅させる抗生物質により処理する場合、細菌と本株とはともに原核生物であるため、本株も当該抗生物質に感受性を示し死滅してしまい、やはり分離が不可能である。 Cyanothes sp. The reason why the acceptance of the Viet Nam 01 strain was rejected was because other bacteria were mixed in the sample of this strain. Bacteria are considered to be contaminated in the extracellular polysaccharide of this strain and cannot be removed. Generally, as a method of removing bacteria from cyanobacteria, cyanobacteria and bacteria are separated as much as possible by homogenization or sonication, etc., and then cyanobacteria cells are spread on agar plates and cultured. A method of aseptically collecting colonies containing only cyanobacteria is used. However, Cyanotheth sp. The Viet Nam 01 strain releases a large amount of polysaccharide to the outside of the cell, so that the outside of the cell is covered with a thick polysaccharide layer, and the contaminated bacteria are buried or attached to the polysaccharide layer. Since the polysaccharide layer is thick, contaminated bacteria cannot be separated by weak homogenization or ultrasonic treatment. Further, when the intensity of the treatment is increased to such an extent that contaminating bacteria can be separated, Cyanotheth sp. Viet Nam 01 strain itself is killed. Therefore, Cyanothes sp. From which bacteria have been separated and removed. Viet Nam 01 strain cannot be obtained. Furthermore, when a sample of this strain contaminated with bacteria is treated with an antibiotic that kills the bacteria, both the bacteria and this strain are prokaryotes, so this strain is also sensitive and killed. After all, separation is impossible.

Cyanothece sp.PCC7822株はパスツール研究所藻類株コレクションから入手可能である。Cyanothece sp.PCC7822株の範囲には、Cyanothece sp.PCC7822株の変異株であって、細胞外多糖類生産能が維持された変異株も包含される。 Cyanothes sp. The PCC7822 strain is available from the Pasteur Institute algal strain collection. Cyanothes sp. The range of PCC7822 strain includes Cyanothes sp. A mutant strain of PCC7822 strain, which maintains the ability to produce extracellular polysaccharides, is also included.

2.培養条件
2.1.液体培地
本発明において用いるラン藻培養用の液体培地は、水中にラン藻の培養に必要な成分が添加された液体培地であって、ラン藻の培養に用いられる公知の液体培地や、公知の液体培地を適宜改変した液体培地であってよい。公知の液体培地としては非特許文献2に開示のものが挙げられ、本明細書に記載の実施例に使用する液体培地はそれを改変したものである。
2. Culture conditions
2.1. Liquid medium for culturing cyanobacteria used in the present invention is a liquid medium in which components necessary for culturing cyanobacteria are added to water, and a known liquid medium used for culturing cyanobacteria, A liquid medium obtained by appropriately modifying the liquid medium may be used. Known liquid media include those disclosed in Non-Patent Document 2, and the liquid media used in the examples described in the present specification are modified versions thereof.

液体培地のpH調整のためには、一般的にはトリスアミノメタン塩酸塩等の緩衝剤が添加されるが、緩衝剤は高価であることから、好適な実施形態では、液体培地はpH調整のために重炭酸塩を含有し、トリスアミノメタン塩酸塩等の緩衝剤を含有しない。より好ましくはpH調整を目的とした成分としては重炭酸塩のみを含有する。そのためには重炭酸塩の液体培地中での濃度は0.2〜0.4g・L−1が好ましい。 In order to adjust the pH of the liquid medium, a buffering agent such as trisaminomethane hydrochloride is generally added. However, since the buffering agent is expensive, in a preferred embodiment, the liquid medium is adjusted for pH adjustment. Therefore, it contains bicarbonate and does not contain a buffer such as trisaminomethane hydrochloride. More preferably, the component for adjusting the pH contains only bicarbonate. For this purpose, the concentration of bicarbonate in the liquid medium is preferably 0.2 to 0.4 g · L −1 .

窒素固定能を有するラン藻を培養する場合は、液体培地には、硝酸ナトリウム等の硝酸塩などの窒素源を添加する必要がない。窒素源は一般に高価であることから、窒素源を含有しない液体培地を使用することでラン藻の培養コストを低減することができる。   When cultivating cyanobacteria having nitrogen-fixing ability, it is not necessary to add a nitrogen source such as nitrate such as sodium nitrate to the liquid medium. Since the nitrogen source is generally expensive, the culture cost of cyanobacteria can be reduced by using a liquid medium containing no nitrogen source.

2.2.浅い液体培地中での静置培養
本発明の特徴の一つは、ラン藻を、深さ3cm以下かつ液面の面積が400cm以上であり、前記液面が空気と接している液体培地中において、静置培養することである。液深が浅く(3cm以下)なおかつ空気と接する液面の面積が広い(400cm以上)液体培地中では、撹拌や通気をせずともラン藻に十分な空気が供給されるため、ラン藻の成長が可能である。したがって、液体培地に対し通気、撹拌、振とう等による攪乱を与えない静置培養が可能である。液体培地に対し攪乱を与える培養は細胞塊を形成するラン藻の培養には適さないのに対して、静置培養は細胞塊を形成するラン藻の培養に好適である。
2.2. Static culture in a shallow liquid medium One of the features of the present invention is that a cyanobacteria has a depth of 3 cm or less and a liquid surface area of 400 cm 2 or more, and the liquid surface is in contact with air. In, static culture. In a liquid medium with a shallow liquid depth (3 cm or less) and a large surface area in contact with air (400 cm 2 or more), sufficient air is supplied to cyanobacteria without agitation or aeration. Growth is possible. Therefore, it is possible to perform static culture without disturbing the liquid medium by aeration, stirring, shaking, or the like. While culture that perturbs the liquid medium is not suitable for culturing cyanobacteria that form cell masses, stationary culture is suitable for culturing cyanobacteria that form cell masses.

液体培地の深さは、好ましくは2.5cm以下、より好ましくは2.0cm以下である。深さの下限値は特に限定されないが、深さは通常は0.5cm以上、好ましくは1cm以上、更に好ましくは1.5cm以上である。なお本発明において液体培地の深さは、液体培地とラン藻とが混合されたのちの、培養を開始する時点での液体培地の深さを指す。   The depth of the liquid medium is preferably 2.5 cm or less, more preferably 2.0 cm or less. The lower limit of the depth is not particularly limited, but the depth is usually 0.5 cm or more, preferably 1 cm or more, and more preferably 1.5 cm or more. In the present invention, the depth of the liquid medium refers to the depth of the liquid medium at the time when the culture is started after the liquid medium and cyanobacteria are mixed.

液体培地の液面の面積は400cm以上であれば特に限定されないが、好ましくは500cm以上、より好ましくは900cm以上、更に好ましくは1,000cm以上、最も好ましくは1,250cm以上である。この範囲内のとき、液体培地の深さに対して液面が十分に広いため、ラン藻の静置培養が容易となる。液体培地の液面の面積の上限値は特に限定されないが、培養容器の取扱い性の向上と液体培地の揮発の抑制の観点から、液体培地の液面の面積は通常は15,000cm以下、好ましくは10,000cm以下、より好ましくは8,100cm以下、更に好ましくは6,400cm以下、更に好ましくは4,900cm以下である。 In Although the area of the surface of the liquid medium is not particularly limited as long as 400 cm 2 or more, preferably 500 cm 2 or more, more preferably 900 cm 2 or more, more preferably 1,000 cm 2 or more, most preferably 2090 cm @ 2 or more is there. Within this range, the level of the liquid medium is sufficiently wide relative to the depth of the liquid medium, so that static culture of cyanobacteria is facilitated. The upper limit of the liquid surface area of the liquid medium is not particularly limited, but from the viewpoint of improving the handleability of the culture vessel and suppressing the volatilization of the liquid medium, the liquid surface area of the liquid medium is usually 15,000 cm 2 or less, preferably 10,000 cm 2 or less, more preferably 8,100Cm 2 or less, more preferably 6,400Cm 2 or less, still more preferably 4,900Cm 2 or less.

液体培地の液面の形状は特に限定されないが、典型的には、液面を平面視したときの形状が三角形、四角形(長方形、正方形、平行四辺形、台形、ひし形等)、五〜八角形の多角形、円形、楕円形、扁平した円形、扁平した楕円形等であってよい。三角形、四角形、五〜八角形等の多角形は角部が滑らかな形状であってもよい。より好ましくは、液面を平面視したときの図形において、該図形の重心を間に介して対向する、該図形の周縁上の一対の点の間の距離の最大値(例えば長方形又は正方形の場合は対角線の長さ、円の場合は直径の長さ、楕円の場合は長径の長さ)をAとし、距離の最小値(例えば長方形の場合は短辺の長さ、正方形の場合は一辺の長さ、円の場合は直径の長さ、楕円の場合は短径の長さ)をBとしたとき、A/Bが好ましくは1.0〜5.0、より好ましくは1.0〜3.5、更に好ましくは1.0〜2.5、更に好ましくは1.0〜2.0である。   The shape of the liquid surface of the liquid medium is not particularly limited, but typically the shape when the liquid surface is viewed in plan is a triangle, a rectangle (rectangle, square, parallelogram, trapezoid, rhombus, etc.), a pentagon to an octagon May be a polygon, a circle, an ellipse, a flat circle, a flat ellipse, or the like. Polygons such as triangles, quadrilaterals, pentagons and octagons may have shapes with smooth corners. More preferably, in the figure when the liquid level is viewed in plan, the maximum value of the distance between a pair of points on the periphery of the figure that are opposed to each other with the center of gravity of the figure in between (for example, in the case of a rectangle or a square) Is the length of the diagonal, the length of the diameter in the case of a circle, the length of the major axis in the case of an ellipse), and the minimum distance (for example, the length of the short side for a rectangle, the length of a side for a square) A / B is preferably 1.0 to 5.0, more preferably 1.0 to 3 where B is the length of the diameter, the length of the circle in the case of a circle, and the length of the minor axis in the case of an ellipse. 0.5, more preferably 1.0 to 2.5, and still more preferably 1.0 to 2.0.

液体培地の液面と接する空気は、外気と通気可能な状態であることが好ましい。液体培地を収容する容器に蓋を有していたとしても、該蓋によって容器内と外気とが完全には遮断されず、容器内の空気と外気とが通気可能な状態であれば特に問題はない。液体培地を収容する容器が蓋を有することは、液体培地の揮発を抑止できるとともに、容器外からの害虫の侵入を阻止することができるため好ましい。   The air in contact with the liquid surface of the liquid medium is preferably in a state where it can be ventilated with outside air. Even if the container containing the liquid culture medium has a lid, the lid and the outside air are not completely blocked by the lid, and the problem is particularly problematic if the air and the outside air in the container can be vented. Absent. It is preferable that the container for storing the liquid medium has a lid because volatilization of the liquid medium can be suppressed and invasion of pests from outside the container can be prevented.

液体培地を、深さ3cm以下かつ液面の面積が400cm以上となるように収容し、且つ、液面が空気と接するように収容するのに適した容器の一例である容器50を図5、6に示す。容器50は、容器本体51と蓋52とを備える。蓋52は上記の通り必須ではなく、容器本体51のみからなる容器であってもよい。蓋52は、容器本体51を、容器本体51の内部の空気と外気とが通気可能な状態で閉じることができる。蓋52と容器本体51との間に大きな間隙ができて害虫等が進入することを阻止するためには、蓋52は、薄いプラスチック製シートなどの可塑性のある材質で構成されることが好ましい。容器本体51は底部501と底部501の周縁から起立し、上方に開放された周壁502とを備える。容器本体51の内部にはラン藻601を含む液体培地602が収容される。ここで液体培地を収容する容器が底部と該底部の周縁から起立する周壁とを備える場合、該周壁で囲われる部分の内側形状及び内側寸法(内寸)が、収容された液体培地の液面の形状及び面積を決定する。前記部分の内寸の最大値をA、最小値をBとしたとき、A/Bが上記範囲であることが好ましい。ここで、前記部分の内寸の最大値とは、前記部分での周壁の内側の輪郭を平面視したときの図形において、該図形の重心を間に介して対向する、該図形の周縁上の一対の点の間の距離の最大値を指し、該図形が長方形又は正方形の場合は対角線の長さ、円の場合は直径の長さ、楕円の場合は長径の長さを指す。また、前記部分の内寸の最小値とは、前記部分での周壁の内側の輪郭を平面視したときの図形において、該図形の重心を間に介して対向する、該図形の周縁上の一対の点の間の距離の最小値を指し、該図形が長方形の場合は短辺の長さ、正方形の場合は一辺の長さ、円の場合は直径の長さ、楕円の場合は短径の長さを指す。例えば、容器本体51では、周壁502で囲われる部分504での周壁502の内側の輪郭を平面視したときの図形が長方形であるため、前記部分504の内寸の最大値Aは対角線の長さであり、内寸の最小値Bは短辺の長さである(図7)。
容器本体51に収容された液体培地602の深さHは深さに関する上記条件を満たす。
FIG. 5 shows a container 50 which is an example of a container suitable for storing a liquid medium so that the depth is 3 cm or less and the liquid surface area is 400 cm 2 or more and the liquid surface is in contact with air. , 6. The container 50 includes a container main body 51 and a lid 52. The lid 52 is not essential as described above, and may be a container composed only of the container body 51. The lid 52 can close the container body 51 in a state where air inside the container body 51 and outside air can be vented. In order to prevent a pest or the like from entering due to a large gap between the lid 52 and the container body 51, the lid 52 is preferably made of a plastic material such as a thin plastic sheet. The container body 51 includes a bottom portion 501 and a peripheral wall 502 that stands up from the periphery of the bottom portion 501 and opens upward. A liquid medium 602 containing cyanobacteria 601 is accommodated inside the container body 51. Here, when the container for storing the liquid medium includes a bottom portion and a peripheral wall rising from the peripheral edge of the bottom portion, the inner shape and the inner dimension (inner dimension) of the portion surrounded by the peripheral wall are the liquid level of the stored liquid medium. Determine the shape and area. When the maximum value of the inner dimension of the portion is A and the minimum value is B, it is preferable that A / B is in the above range. Here, the maximum value of the inner dimension of the part is a figure when the outline inside the peripheral wall in the part is viewed in plan, on the periphery of the figure that is opposed to each other with the center of gravity of the figure in between. The maximum value of the distance between a pair of points indicates the length of a diagonal line when the figure is a rectangle or a square, the length of a diameter when it is a circle, and the length of a major axis when it is an ellipse. In addition, the minimum value of the inner dimension of the portion is a pair of shapes on the periphery of the figure facing each other with the center of gravity of the figure in between when the outline inside the peripheral wall in the part is viewed in plan. If the figure is a rectangle, the length of the short side, if it is a square, the length of one side, if it is a circle, the length of the diameter, if it is an ellipse, Refers to the length. For example, in the container main body 51, since the figure when the outline inside the peripheral wall 502 in the portion 504 surrounded by the peripheral wall 502 is viewed in plan is a rectangle, the maximum value A of the inner dimension of the portion 504 is the length of the diagonal line. The minimum value B of the inner dimension is the length of the short side (FIG. 7).
The depth H of the liquid culture medium 602 accommodated in the container main body 51 satisfies the above-described condition regarding the depth.

培養のための容器の外側形状及び外側寸法(外寸)は特に限定されない。容器が、底部と該底部の周縁から起立する周壁とを備える場合、前記周壁で囲われた部分での周壁の外側の輪郭を平面視したときの図形は、三角形、四角形(長方形、正方形、平行四辺形、台形、ひし形等)、五〜八角形の多角形、円形、楕円形、扁平した円形、扁平した楕円形等であってよい。三角形、四角形、五〜八角形等の多角形は角部が滑らかな形状であってもよい。より好ましくは、前記周壁で囲われた部分の外寸の最大値をC、最小値をDとしたとき、C/Dが好ましくは1.0〜5.0、より好ましくは1.0〜3.5、更に好ましくは1.0〜2.5、更に好ましくは1.0〜2.0である。ここで、前記周壁で囲われた部分の外寸の最大値とは、前記周壁で囲われた部分での周壁の外側の輪郭を平面視したときの図形において、該図形の重心を間に介して対向する、該図形の周縁上の一対の点の間の距離の最大値を指し、該図形が長方形又は正方形の場合は対角線の長さ、円の場合は直径の長さ、楕円の場合は長径の長さを指す。前記周壁で囲われた部分の外寸の最小値とは、前記周壁で囲われた部分での周壁の外側の輪郭を平面視したときの図形において、該図形の重心を間に介して対向する、該図形の周縁上の一対の点の間の距離の最小値を指し、該図形が長方形の場合は短辺の長さ、正方形の場合は一辺の長さ、円の場合は直径の長さ、楕円の場合は短径の長さを指す。例えば、容器本体51では、周壁502で囲われる部分504での周壁502の外側の輪郭を平面視したときの図形が長方形であるため、前記部分504の外寸の最大値Cは長方形の対角線の長さであり、外寸の最小値Dは長方形の短辺の長さである(図7)。培養のための容器の、前記周壁で囲われた部分の外寸の最大値Cは、好ましくは30cm〜140cm、より好ましくは40〜120cm、更に好ましくは50〜90cmである。容器の外寸の最大値がこの範囲であれば人手又は機械による搬送が容易であり取扱い性に優れる。   The outer shape and outer dimensions (outer dimensions) of the vessel for culture are not particularly limited. When the container includes a bottom portion and a peripheral wall standing up from the peripheral edge of the bottom portion, the shape of the outline of the outer periphery of the peripheral wall at the portion surrounded by the peripheral wall is a triangle, a rectangle (rectangle, square, parallel) A quadrilateral, a trapezoid, a rhombus, etc.), a pentagonal octagonal polygon, a circle, an ellipse, a flattened circle, a flattened ellipse, and the like. Polygons such as triangles, quadrilaterals, pentagons and octagons may have shapes with smooth corners. More preferably, C / D is preferably 1.0 to 5.0, more preferably 1.0 to 3 when the maximum value of the outer dimension of the portion surrounded by the peripheral wall is C and the minimum value is D. 0.5, more preferably 1.0 to 2.5, and still more preferably 1.0 to 2.0. Here, the maximum value of the outer dimension of the part surrounded by the peripheral wall is a figure when the outline of the outer side of the peripheral wall in the part surrounded by the peripheral wall is viewed in plan, with the center of gravity of the figure interposed therebetween. The maximum distance between a pair of points on the edge of the figure facing each other. When the figure is a rectangle or square, the length of the diagonal line, when it is a circle, the length of the diameter, and when it is an ellipse Indicates the length of the major axis. The minimum value of the outer dimension of the part surrounded by the peripheral wall is opposed to the figure when the outline of the outer side of the peripheral wall at the part surrounded by the peripheral wall is viewed in plan with the center of gravity of the figure in between , Refers to the minimum distance between a pair of points on the periphery of the figure, the length of the short side if the figure is a rectangle, the length of one side if it is a square, the length of the diameter if it is a circle In the case of an ellipse, it indicates the length of the minor axis. For example, in the container main body 51, since the figure when the outline of the outer side of the peripheral wall 502 at the portion 504 surrounded by the peripheral wall 502 is viewed in plan is a rectangle, the maximum value C of the outer dimension of the portion 504 is the diagonal of the rectangle. It is the length, and the minimum value D of the outer dimension is the length of the short side of the rectangle (FIG. 7). The maximum value C of the outer dimension of the portion surrounded by the peripheral wall of the vessel for culture is preferably 30 cm to 140 cm, more preferably 40 to 120 cm, and still more preferably 50 to 90 cm. If the maximum value of the outer dimension of the container is within this range, it can be easily transported manually or by machine and has excellent handleability.

容器本体51及び蓋52を構成する材料は特に限定されないが、外部の光源からの光を透過することができる材料であることが好ましい。   Although the material which comprises the container main body 51 and the lid | cover 52 is not specifically limited, It is preferable that it is the material which can permeate | transmit the light from an external light source.

2.3.光条件、温度、時間等
ラン藻の静置培養の際の光条件、温度、培養時間等の諸条件は、培養するラン藻の種類に応じて適宜決定することができ特に限定されない。
2.3. Various conditions such as light conditions, temperature, culture time and the like in stationary culture of cyanobacteria such as light conditions, temperature, and time can be appropriately determined according to the type of cyanobacteria to be cultured, and are not particularly limited.

好ましい一例では、Cyanothece属に属するラン藻を培養する場合、静置培養を、光合成有効光量子束密度が5〜100μmole・m-2・sec−1、より好ましくは10〜60μmole・m−2・sec−1である明期を含む条件で行う。光合成有効光量子束密度とは光合成に有効な波長領域(400〜700nm)の光の、単面積単位時間当たりの光量子数であり、本明細書中では単に「光強度」とも呼ぶ。光合成有効光量子束密度は実施例に記載の機器を用いて測定することができる。上記の条件の明期が24時間当たり12〜24時間となるようにすることが好ましい。上記の光合成有効光量子束密度は、白昼の天然光の光合成有効光量子束密度よりも低い。このため光源として天然光を利用する場合、後述する手段によって培養系に到達する光の光合成有効光量子束密度を低減することが好ましい。前記範囲の光合成有効光量子束密度は、Cyanothece属のラン藻が細胞外多糖類を生産するのに適している。 In a preferred example, when cultivating cyanobacteria belonging to the genus Cyanothece , static culture is carried out with a photosynthetic effective photon flux density of 5 to 100 μmole · m −2 · sec −1 , more preferably 10 to 60 μmole · m −2 · sec. It is performed under the condition including the light period which is -1 . The photosynthesis effective photon flux density is the number of photons per unit area of light in a wavelength region (400 to 700 nm) effective for photosynthesis, and is also simply referred to as “light intensity” in this specification. The photosynthetic effective photon flux density can be measured using the instrument described in the examples. It is preferable that the light period of the above conditions is 12 to 24 hours per 24 hours. The photosynthesis effective photon flux density is lower than the daylight natural light photosynthesis effective photon flux density. For this reason, when using natural light as a light source, it is preferable to reduce the photosynthesis effective photon flux density of the light which reaches | attains a culture system by the means mentioned later. Photosynthetic photon flux density of the range, Cyanothece genus cyanobacteria are suitable for producing extracellular polysaccharides.

培養時の温度は、Cyanothece属に属するラン藻を培養する場合、25〜45℃、好ましくは25〜40℃、更に好ましくは25〜35℃、最も好ましくは27.5℃〜32.5℃である。常時前記範囲の温度で培養を行うことが好ましいが、それには限定されず、培養期間中の1〜3時間/日程度の時間、低温(15℃以下)又は高温(45℃以上)にさらされてもよい。 When culturing cyanobacteria belonging to the genus Cyanothece , the culture temperature is 25 to 45 ° C, preferably 25 to 40 ° C, more preferably 25 to 35 ° C, and most preferably 27.5 to 32.5 ° C. is there. It is preferable to always carry out the culture at a temperature within the above range, but it is not limited to this, and it is exposed to a low temperature (15 ° C. or lower) or a high temperature (45 ° C. or higher) for a time of about 1 to 3 hours / day during the culture period. May be.

静置培養の時間は特に限定されないが、Cyanothece属に属するラン藻を培養する場合、通常は10〜40日、好ましくは14〜25日である。 Is not time limited particularly in static culture, when cultured cyanobacterium belonging to Cyanothece genus, usually 10 to 40 days, preferably 14-25 days.

3.立体的な培養方法
本発明の培養方法の好ましい実施形態では、複数の容器の各々に、液体培地が、深さ3cm以下かつ液面の面積が400cm以上となるように収容され、且つ、前記液面が空気と接するように収容されており、各容器は、上下方向の異なる位置に配置されており、各容器に収容された前記液体培地中で前記ラン藻を静置培養する。
3. Three-dimensional culture method In a preferred embodiment of the culture method of the present invention, the liquid medium is accommodated in each of the plurality of containers so that the depth is 3 cm or less and the liquid surface area is 400 cm 2 or more, and The liquid level is accommodated in contact with the air, and the containers are arranged at different positions in the vertical direction, and the cyanobacteria are statically cultured in the liquid medium accommodated in the containers.

本実施形態で用いられる個々の容器の特徴は上記2.2において説明した通りであり、具体例として図5、6に示す容器50が例示できる。   The characteristics of the individual containers used in this embodiment are as described in 2.2 above, and the container 50 shown in FIGS. 5 and 6 can be illustrated as a specific example.

本実施形態では、液体培地が収容された複数の容器を、上下方向の異なる位置に、好ましくは上下方向に沿って、配置する。このように配置する方法としては、2以上の容器を上下方向に積み重ねてもよいし、上下方向の異なる位置に配置された複数の載置部を備える載置棚を用意し、各載置部に容器を載置してもよい。3cm以下という浅い液深の液体培地を用いる場合、通常、単位土地面積あたりのラン藻の生産量を向上させることは難しいが、上下方向の異なる位置に複数の容器を配置して静置培養することにより、単位土地面積あたりのラン藻の生産量を増大することが可能となる。上下方向の異なる位置に配置される容器の個数は特に限定されないが、好ましは2〜10、より好ましくは3〜7である。ラン藻、特にCyanothece属に属するラン藻は、小さな光合成有効光量子束密度の条件、例えば5〜100μmole・m-2・sec−1、好ましくは10〜60μmole・m−2・sec−1の条件において増殖し細胞外多糖類を生産することができるため、本実施形態のように、液体培地が収容された複数の容器を上下方向の異なる位置に配置した場合であっても、各容器内で十分に増殖し細胞外多糖類を生産することが可能である。 In the present embodiment, a plurality of containers each containing a liquid medium are arranged at different positions in the vertical direction, preferably along the vertical direction. As a method of arranging in this way, two or more containers may be stacked in the vertical direction, or a mounting shelf including a plurality of mounting units arranged at different positions in the vertical direction is prepared. A container may be placed on the container. When using a liquid medium with a shallow liquid depth of 3 cm or less, it is usually difficult to improve the production of cyanobacteria per unit land area, but a plurality of containers are placed at different positions in the vertical direction and placed in stationary culture. This makes it possible to increase the production of cyanobacteria per unit land area. The number of containers arranged at different positions in the vertical direction is not particularly limited, but is preferably 2 to 10, more preferably 3 to 7. Cyanobacteria, particularly cyanobacteria belonging to the genus Cyanothece, have a small photosynthetic effective photon flux density, for example, 5 to 100 μmole · m −2 · sec −1 , preferably 10 to 60 μmole · m −2 · sec −1 . Since it can proliferate and produce extracellular polysaccharides, it is sufficient in each container even when a plurality of containers containing liquid media are arranged at different positions in the vertical direction as in this embodiment. It is possible to proliferate and produce extracellular polysaccharides.

図8では、排水受け部804と、上下方向の異なる位置に配置された複数の載置部(4つの載置板802と、排水受け部804の一部である載置面803とからなる)と、載置板802を固定するフレーム801とを備える載置棚80に、載置板802及び載置面803のそれぞれに容器50を取り外し可能に載置し静置培養を行う実施形態を示す。排水受け部804を設けない場合、最下段の載置部は地面や床面であってもよい。図8の例では2つの載置棚80は1つの排水受け部804を共有しているが、2つの載置棚80がそれぞれ独立に排水受け部を有してもよい。
本実施形態での静置培養の条件は上記2の通りである。
In FIG. 8, the drainage receiving portion 804 and a plurality of placement portions arranged at different positions in the vertical direction (consisting of four placement plates 802 and a placement surface 803 that is a part of the drainage receiving portion 804). And a frame 801 for fixing the mounting plate 802, an embodiment in which the container 50 is detachably mounted on the mounting plate 802 and the mounting surface 803 and static culture is performed. . When the drainage receiving portion 804 is not provided, the lowermost placement portion may be the ground or the floor. In the example of FIG. 8, the two placement shelves 80 share one drainage receiving portion 804, but the two placement shelves 80 may each independently have a drainage receiving portion.
The conditions for static culture in the present embodiment are as described above.

4.培養装置
上記の立体的な培養方法を実現するための培養装置の好ましい実施形態は、上下方向の異なる位置に配置された複数の載置部を備える載置棚と、前記載置部に取り外し可能に載置された複数の容器と、前記複数の容器を覆い、外部の光源から各容器に到達する光の光合成有効光量子束密度を低減する減光シートとを備え、各容器が、ラン藻培養用の液体培地を、深さ3cm以下かつ液面の面積が400cm以上となるように収容し、且つ、前記液面が空気と接するように収容する形状となっていることを特徴とする装置である。
4). A preferred embodiment of a culture apparatus for realizing the three-dimensional culture method for culturing apparatus described above, a shelf mounting comprises a plurality of mounting portion disposed vertically different positions, removable before mounting section And a dimming sheet that covers the plurality of containers and reduces the photosynthetic effective photon flux density of light reaching each container from an external light source, and each container is cultivated by cyanobacteria The apparatus is characterized in that the liquid medium for use is stored so that the depth is 3 cm or less and the liquid surface area is 400 cm 2 or more, and the liquid surface is stored in contact with air. It is.

各容器の特徴は上記2.2において説明した通りであり、具体例として図5、6に示す容器50が例示できる。   The characteristics of each container are as described in 2.2 above, and the container 50 shown in FIGS. 5 and 6 can be illustrated as a specific example.

当該装置の具体例(培養装置90)を図9に示す。載置棚80の特徴は上記3で説明した通りである。   A specific example of the apparatus (culture apparatus 90) is shown in FIG. The characteristics of the mounting shelf 80 are as described in the above section 3.

培養装置90は、前記複数の容器50を覆い、外部の光源から各容器50に到達する光の光合成有効光量子束密度を低減する減光シート91を備える。図示した例では、減光シート91は2つの載置棚80に載置された状態の容器50を覆うことができるように構成されているが、これには限定されず、1つの減光シートが1つの載置棚80に載置された状態の容器50のみを覆うように構成されていてもよい。また、図示した例では、減光シート91は、載置棚80に載置された状態の複数の容器50を覆うように構成されているが、これには限定されず、培養装置が複数の減光シートを備え、各減光シートが個々の容器50を個別に覆うように構成されていてもよい。   The culture apparatus 90 includes a light reducing sheet 91 that covers the plurality of containers 50 and reduces the photosynthetic effective photon flux density of light reaching the containers 50 from an external light source. In the illustrated example, the dimming sheet 91 is configured to cover the containers 50 placed on the two placing shelves 80, but is not limited thereto, and one dimming sheet is provided. May be configured to cover only the container 50 in a state of being placed on one placement shelf 80. In the illustrated example, the dimming sheet 91 is configured to cover the plurality of containers 50 in a state of being placed on the placement shelf 80, but is not limited thereto, and the culture apparatus includes a plurality of culture apparatuses. A dimming sheet may be provided, and each dimming sheet may be configured to individually cover the individual container 50.

減光シート91は、外部の光源(例えば太陽)から各容器50に到達する光の光合成有効光量子束密度がラン藻の培養に適した光合成有効光量子束密度よりも強い場合に、前記光の光合成有効光量子束密度をラン藻の培養に適した光合成有効光量子束密度にまで低下させる役割を担う。ラン藻の培養に適した光合成有効光量子束密度は上記2.2で示した通りである。減光シート91は開閉可能であり、外部の光源の光強度の変化に応じて減光の程度を適宜調節することができる。   The light reducing sheet 91 is configured to perform photosynthesis of light when the photosynthesis effective photon flux density of light reaching each container 50 from an external light source (for example, the sun) is stronger than the photosynthesis effective photon flux density suitable for cyanobacteria culture. It plays the role of reducing the effective photon flux density to the photosynthetic effective photon flux density suitable for the cultivation of cyanobacteria. The photosynthetic effective photon flux density suitable for cultivation of cyanobacteria is as shown in 2.2 above. The dimming sheet 91 can be opened and closed, and the degree of dimming can be appropriately adjusted according to the change in the light intensity of the external light source.

実験1:静置培養と撹拌培養との比較
実験方法
材料
ベトナムの水田から分離した単細胞ラン藻Cyanothece sp. Viet Nam 01 株を用いた。本株は細胞外に高分子多糖を放出するため細胞は塊を作り増殖する性質を持つ。
Experiment 1: Comparison between stationary culture and agitation culture
experimental method
Material Single cell cyanobacteria Cyanothes sp. Viet Nam 01 strain was used. Since this strain releases macromolecular polysaccharides outside the cells, the cells have the property of growing in clusters.

培養
(静置培養)
細胞の維持培養は定温恒温器を用い温度30℃、光強度20μmole・m−2・sec−1昼光色蛍光灯光・連続明の条件下、円筒型ガラス製培養瓶(直径7cm・高さ9cm、図1a)に培地約100mlを入れたものを用いた。培養に用いた培地の組成(水中に添加した成分の組成)を表1に示す。なお本種は窒素固定能(空気中の窒素ガスをアンモニアに変換する能力)を持つため、窒素源(NaNO)は維持培養には加えたが、実験培養には加えなかった。この培地の特徴は、重炭酸塩の濃度を比較的高くしたことで、これにより緩衝剤を用いずに本ラン藻株の至適pHを維持することが可能であった。
Culture (stationary culture)
Maintenance culture of the cells is performed using a constant temperature incubator at a temperature of 30 ° C., light intensity of 20 μmole · m −2 · sec −1 daylight fluorescent lamp light, continuous bright light, cylindrical glass culture bottle (diameter 7 cm, height 9 cm, figure 1a) containing approximately 100 ml of medium was used. Table 1 shows the composition of the medium used for the culture (the composition of the components added in water). Since this species has nitrogen fixing ability (ability to convert nitrogen gas in the air into ammonia), a nitrogen source (NaNO 3 ) was added to the maintenance culture but not to the experimental culture. The feature of this medium was that the bicarbonate concentration was relatively high, which allowed the optimum pH of the cyanobacterial strain to be maintained without using a buffer.

実験培養は、維持培養の対数増殖期後期から直線増殖期の細胞(培養液として10ml)を、維持培養に用いたのと同じ形状の円筒型ガラス製培養瓶に収容された300mlの新鮮な培地(表1参照)に植え次ぎ14日間培養を行った。実験培養は、室内に設置された定温恒温器において、維持培養と同じ条件(温度30℃・光強度20μmole・m−2・sec−1昼光色蛍光灯光・連続明)のもと14日間行った。 In the experimental culture, 300 ml of fresh medium (10 ml as a culture solution) from the late logarithmic growth phase to the linear growth phase of the maintenance culture contained in a cylindrical glass culture bottle having the same shape as that used for the maintenance culture. (See Table 1) Planting was followed by culturing for 14 days. The experimental culture was carried out for 14 days under the same conditions as in the maintenance culture (temperature 30 ° C., light intensity 20 μmole · m −2 · sec −1 daylight fluorescent light / continuous light) in a constant temperature and temperature chamber installed indoors.

なお、本実験及び明細書に記載の他の実験における光強度は全て、LI−1905A光量子センサーを取り付けたLI−250A光量子計(ともにLI−COR Inc.(アメリカ合衆国ネブラスカ州)社製)を用いて測定した光強度である。この機器により、光合成に関わる波長400〜700nmの範囲の光強度を測定した。   In addition, all the light intensities in this experiment and other experiments described in the specification are obtained by using an LI-250A photonometer (both manufactured by LI-COR Inc. (Nebraska, USA)) equipped with an LI-1905A photon sensor. It is the measured light intensity. With this instrument, the light intensity in the wavelength range of 400 to 700 nm related to photosynthesis was measured.

静置培養試験区では、撹拌や振とうを行わず、培養瓶を静置した状態で上記条件の実験培養を行った。   In the static culture test section, the experimental culture was performed under the above conditions with the culture bottle still, without stirring and shaking.

Figure 2015171327
Figure 2015171327

(撹拌培養)
撹拌培養試験区では、円筒ガラス製培養瓶に収容された培養物をマグネチックスターラーを用いて撹拌しながら培養を行った点を除いて上記の静置培養試験区と同じ条件で培養を行った。
(Stirring culture)
In the agitation culture test group, the culture contained in the cylindrical glass culture bottle was cultured under the same conditions as the above stationary culture test group except that the culture was performed while stirring using a magnetic stirrer. .

結果と考察
静置培養試験区では、増殖した細胞が細胞塊を形成し培養容器底面に層状に広がった。
Results and Discussion In the stationary culture test group, the proliferated cells formed a cell mass and spread in layers on the bottom of the culture vessel.

撹拌培養試験区では、細胞塊は破断され細かくなったが、培養時間経過とともに次第に退色し、最終的には白くなり死滅した。   In the agitation culture test group, the cell mass was broken and made finer, but gradually faded with the lapse of the culture time, and eventually became white and died.

実験2:培養液の深さとバイオマス生産量との関係
実験方法
材料
実験1と同様にCyanothece sp. Viet Nam 01株(非特許文献1)を用いた。
Experiment 2: Relationship between culture depth and biomass production
experimental method
Similar to Material Experiment 1, Cyanotheth sp. Viet Nam 01 strain (Non-patent Document 1) was used.

培養
維持培養に用いた培地の組成及び培養条件と、実験培養に用いた培地の組成は、上記実験1と同様である。
The composition and culture conditions of the medium used for the culture maintenance culture and the composition of the medium used for the experimental culture are the same as in Experiment 1 above.

実験培養は、維持培養の対数増殖期後期から直線増殖期の細胞(培養液として300ml)を、半透明のプラスチック容器(外形36cm×54cm、高さ19cm、内形約35cm×45cm、深さ約18cm、液体培地液面面積約1,575cm、図1b)に収容された、3つの異なる容量の新鮮な培地に植え次ぎ14日間培養を行った。細胞添加後培地の液深はそれぞれ2cm、4cm、8cmであった。実験培養は、室内に設置された定温恒温器において、維持培養と同じ条件(温度30℃・光強度20μmole・m−2・sec−1昼光色蛍光灯光・連続明)のもと行った。 In the experimental culture, cells from the late logarithmic phase to the linear growth phase of the maintenance culture (300 ml as the culture solution) were placed in a translucent plastic container (external dimensions 36 cm × 54 cm, height 19 cm, inner shape approximately 35 cm × 45 cm, depth approximately). The culture was carried out for 14 days after planting in three different volumes of fresh medium housed in 18 cm, liquid medium surface area of about 1,575 cm 2 , FIG. After the addition of the cells, the medium depths were 2 cm, 4 cm, and 8 cm, respectively. The experimental culture was performed in a constant temperature and temperature chamber installed indoors under the same conditions as in the maintenance culture (temperature 30 ° C., light intensity 20 μmole · m −2 · sec −1 daylight fluorescent light, continuous light).

バイオマス生産量の評価
上記条件にて14日間培養したのちの細胞をステンレス製バスケット(網目幅約3mm)を用いて回収し(図1c)、凍結乾燥を行ったのち乾燥重量を測定した。
Evaluation of biomass production Cells after culturing for 14 days under the above conditions were collected using a stainless steel basket (mesh width of about 3 mm) (Fig. 1c), freeze-dried and then measured for dry weight.

結果と考察
培地の深さが浅くなるほどバイオマス生産量は大きくなり、培地の深さが4cmと2cmの間では差は有意(n=3、P<0.05)となった(表2)。培地の深さを2cmとした培養では、増殖した細胞は培養器底面に層状に広がり、上澄みの培地を除いたあとゼリー状の細胞塊として回収が可能であった(図1b、1c)。培養深度を下げ、培養の相対表面積を広げることでガス交換が効率よく行われ攪拌や通気をしなくてもバイオマス生産量を向上させることが可能となったと考えられた。
Results and Discussion As the medium depth decreased, the biomass production increased, and the difference was significant (n = 3, P <0.05) between the medium depths of 4 cm and 2 cm (Table 2). In the culture with a medium depth of 2 cm, the proliferated cells spread in layers on the bottom of the incubator and could be recovered as a jelly-like cell mass after removing the supernatant medium (FIGS. 1b and 1c). It was thought that by reducing the culture depth and increasing the relative surface area of the culture, gas exchange was efficiently performed, and it was possible to improve biomass production without stirring and aeration.

Figure 2015171327
Figure 2015171327

実験3:培養容器の多段化
実験方法
材料
実験1と同様にCyanothece sp. Viet Nam 01株(非特許文献1)を用いた。
Experiment 3: Multistage culture vessel
experimental method
Similar to Material Experiment 1, Cyanotheth sp. Viet Nam 01 strain (Non-patent Document 1) was used.

培養
維持培養に用いた培地の組成及び培養条件と、実験培養に用いた培地の組成は、上記実験1と同様である。
The composition and culture conditions of the medium used for the culture maintenance culture and the composition of the medium used for the experimental culture are the same as in Experiment 1 above.

実験2で用いたのと同様の半透明のプラスチック容器(外形36cm×54cm、高さ19cm、内形約35cm×45cm、深さ約18cm、液体培地液面面積約1,575cm、図1b)を10個用意し、2つの鉄製アングル棚(載置棚)のそれぞれに縦方向に5個配置した。当該棚は、黒色メッシュ(減光シート)で覆い、自然光を遮蔽した状態で、無加温グリーンハウス(県立大生物資源開発研究センター)内に設置した(図2)。前記黒色メッシュは自然光を約60%遮蔽することができるものを用いた。前記黒色メッシュによる被覆後の前記棚内での光強度は時刻や天候により大きく変動するが、典型的には、白昼の光強度が約30〜50μmole・m−2・sec−1であった。 Translucent plastic container similar to that used in Experiment 2 (external dimensions: 36 cm × 54 cm, height: 19 cm, inner shape: about 35 cm × 45 cm, depth: about 18 cm, liquid medium liquid surface area: about 1,575 cm 2 , FIG. 1b) 10 pieces were prepared, and five pieces were arranged in the vertical direction on each of two iron angle shelves (mounting shelves). The shelf was installed in an unheated green house (Prefectural University Bioresource Development Research Center), covered with a black mesh (dimming sheet) and shielded from natural light (Fig. 2). The black mesh used was capable of blocking natural light by about 60%. The light intensity in the shelf after being covered with the black mesh varies greatly depending on the time of day and the weather, but typically the light intensity in the daytime is about 30 to 50 μmole · m −2 · sec −1 .

各々のプラスチック容器に、液深が2cmとなるように新鮮な実験培養用培地を入れた。そして各容器に、維持培養の対数増殖期後期から直線増殖期の細胞を培養液として300ml加え、14日間培養を行った。培養後、実験2と同様の方法でバイオマス生産量を測定した。   Fresh plastic medium for experimental culture was placed in each plastic container so that the liquid depth was 2 cm. Then, 300 ml of cells from the late logarithmic growth phase to the linear growth phase of the maintenance culture were added to each container as a culture solution and cultured for 14 days. After the cultivation, biomass production was measured by the same method as in Experiment 2.

実験培養は、2013年8月〜11月に計6回行った。多段化培養の評価については、培養実験時期によりバイオマス生産量が変動したため、実験時期それぞれについて、最上段のバイオマス生産量を100とし、各段のバイオマス生産量を相対値を用いて評価した。   Experimental culture was performed 6 times from August to November 2013. Regarding the evaluation of multi-stage culture, since the biomass production amount fluctuated depending on the culture experiment period, the biomass production amount at the top stage was set to 100 for each experiment period, and the biomass production amount at each stage was evaluated using relative values.

結果と考察
最上段のバイオマス生産量を100としたときの各段のバイオマス生産量の値を図3に示した。各段の間のバイオマス生産量に有意な差は見られなかった(n=6、P>0.05)。この結果は培養容器を立体に配置したために生じた光強度の違いがバイオマス生産量の制限要因にはならなかったことを示しており、本株のような比較的低照度を好む藻類の培養に立体培養は有効であった。
Results and Discussion FIG. 3 shows values of biomass production at each stage when the biomass production at the top stage is 100. There was no significant difference in biomass production between each stage (n = 6, P> 0.05). This result shows that the difference in light intensity caused by arranging the culture vessels in three dimensions did not become a limiting factor for biomass production. Three-dimensional culture was effective.

実験4:他のラン藻株の培養
実験方法
材料
Cyanothece sp. PCC7822株を、パスツール研究所藻類株コレクションから購入した。Cyanothece sp. PCC7822株は、Cyanothece sp. Viet Nam 01株と同様に細胞外多糖を生産して細胞塊を形成して増殖する性質を持つ。
Experiment 4: Culture of other cyanobacterial strains
experimental method
material
Cyanothes sp. PCC7822 strain was purchased from the Pasteur Institute algal strain collection. Cyanothes sp. The PCC7822 strain is Cyanothes sp. Similar to the Viet Nam 01 strain, it has the property of producing extracellular polysaccharides to form cell mass and proliferate.

培養条件
維持培養に用いた培地の組成及び培養条件と、実験培養に用いた培地の組成は、上記実験1と同様である。培養実験は、円筒型ガラス製培養瓶(直径7cm・高さ9cm、図1a)中で培地液深が2cmとなる条件で、温度30℃、昼光色蛍光灯(20μmol・m−2・sec−1、12時間明:12時間暗サイクル)の条件で行った。
The composition and culture conditions of the medium used for the culture conditions maintenance culture, the composition of the media used in the experiment the culture is the same as the experiment 1. The culture experiment was performed under the condition that the culture medium depth was 2 cm in a cylindrical glass culture bottle (diameter 7 cm, height 9 cm, FIG. 1 a), temperature 30 ° C., daylight fluorescent lamp (20 μmol · m −2 · sec −1). , 12 hours light: 12 hours dark cycle).

結果
独立した3つの培養を14日間行ったあとの乾燥重量増加量の平均値と標準偏差を、1日・培養1リットルあたりのバイオマス生産量として下表に示した。Cyanothece sp. Viet Nam 01株を同じ条件で培養した結果を対照実験として示す。
Results The average value and standard deviation of the increase in dry weight after 14 independent cultures for 14 days are shown in the table below as biomass production per day / liter of culture. Cyanothes sp. The result of culturing Viet Nam 01 strain under the same conditions is shown as a control experiment.

Figure 2015171327
Figure 2015171327

参考実験1:培養時の光強度と、多糖類の生産量との関係
実験方法
材料
実験1と同様にCyanothece sp. Viet Nam 01株(非特許文献1)を用いた。
Reference experiment 1: Relationship between light intensity during culture and polysaccharide production
experimental method
Similar to Material Experiment 1, Cyanotheth sp. Viet Nam 01 strain (Non-patent Document 1) was used.

培養
維持培養に用いた培地の組成及び培養条件と、実験培養に用いた培地の組成は、上記実験1と同様である。
培養容器としては円筒型ガラス製培養瓶(直径7cm・高さ9cm、図1a)を用いた。
The composition and culture conditions of the medium used for the culture maintenance culture and the composition of the medium used for the experimental culture are the same as in Experiment 1 above.
As the culture vessel, a cylindrical glass culture bottle (diameter 7 cm, height 9 cm, FIG. 1 a) was used.

異なった培養温度(20、25、30、35及び40℃)及び光強度(8、40、80、160μmole・m−2・sec−1)のもと、12時間暗/12時間明サイクルで20日間培養を行った。 Under different culture temperatures (20, 25, 30, 35 and 40 ° C.) and light intensity (8, 40, 80, 160 μmole · m −2 · sec −1 ), 20 hours in a 12 hour dark / 12 hour light cycle The culture was performed for a day.

細胞外多糖類(EPS)の生産量測定
培養後の細胞をメンブランフィルター上(孔径3mm)で捕集し、プラスチックチューブに入れ凍結乾燥した。乾燥細胞は測定まで室温保存した。
Measurement of production amount of extracellular polysaccharide (EPS) The cultured cells were collected on a membrane filter (pore diameter: 3 mm), placed in a plastic tube and freeze-dried. Dry cells were stored at room temperature until measurement.

凍結乾燥させた細胞をアルカリ処理(0.1N NaOH、80℃、4時間)後、イソプロパノールで細胞外多糖類を抽出・洗浄し、乾燥させた。細胞外多糖類は硫酸フェノール法(Radhakrishnamurty and Berenson, Effect of temperature and time of heating on the carbazole reaction of uronic acids and acid mucopolysaccharides Anal. Chem. Vol.35, 1316-1318, 1963)を用いて定量した。   The freeze-dried cells were treated with alkali (0.1N NaOH, 80 ° C., 4 hours), and then the extracellular polysaccharides were extracted and washed with isopropanol, and dried. Extracellular polysaccharides were quantified using the sulfate phenol method (Radhakrishnamurty and Berenson, Effect of temperature and time of heating on the carbazole reaction of uronic acids and acid mucopolysaccharides Anal. Chem. Vol. 35, 1316-1318, 1963).

結果を図4に示す。値は、20日間に合成された培養1リットルあたりの細胞外多糖類(EPS)の量を、2回の独立して行った実験の平均値として示した。   The results are shown in FIG. Values are expressed as the average value of the amount of extracellular polysaccharide (EPS) per liter of culture synthesized for 20 days in two independent experiments.

結果と考察
細胞外多糖類の合成量の至適光・温度条件は、8μmole・m−2・sec−1、30℃であった。本株による細胞外多糖類の合成量は比較的低照度・高温で高くなるということができる。
Results and Discussion Optimum light and temperature conditions for the amount of extracellular polysaccharide synthesized were 8 μmole · m −2 · sec −1 and 30 ° C. It can be said that the amount of extracellular polysaccharide synthesized by this strain increases at relatively low illuminance and high temperature.

50・・・培養用の容器
501・・底部
502・・周壁
504・・周壁で囲われた部分
602・・液体培地
601・・ラン藻
802・・載置板
803・・載置面
80・・・載置棚
90・・・培養装置
91・・・減光シート
C・・・・周壁で囲われた部分の外寸の最大値
H・・・・液体培地の深さ
50... Container 501 for culture .. Bottom 502 .. Peripheral wall 504.. Part 602 surrounded by peripheral wall... Liquid culture medium 601. · Mounting shelf 90 · · · Incubator 91 · Dimming sheet C · · · Maximum value H of the outer dimensions of the part surrounded by the peripheral wall · · · Depth of liquid medium

Claims (6)

ラン藻の培養方法であって、
ラン藻を、深さ3cm以下かつ液面の面積が400cm以上であり、前記液面が空気と接している液体培地中において、静置培養することを特徴とする方法。
A method for cultivating cyanobacteria,
A method comprising stationary culture of cyanobacteria in a liquid medium having a depth of 3 cm or less and a liquid surface area of 400 cm 2 or more, wherein the liquid surface is in contact with air.
ラン藻がシアノセー(Cyanothece)属に属するラン藻である、請求項1の方法。 The method of claim 1, wherein the cyanobacteria are cyanobacteria belonging to the genus Cyanothece . 複数の容器の各々に、前記液体培地が、深さ3cm以下かつ液面の面積が400cm以上となるように収容され、且つ、前記液面が空気と接するように収容されており、
各容器は、上下方向の異なる位置に配置されており、
各容器に収容された前記液体培地中で前記ラン藻を静置培養することを特徴とする、請求項1又は2の方法。
In each of a plurality of containers, the liquid medium is accommodated so that the depth is 3 cm or less and the area of the liquid surface is 400 cm 2 or more, and the liquid surface is accommodated in contact with air,
Each container is arranged at a different position in the vertical direction,
The method according to claim 1 or 2, wherein the cyanobacterium is statically cultured in the liquid medium contained in each container.
各容器は、底部と該底部の周縁から起立する周壁とを備え、各容器の前記周壁で囲われた部分の外寸の最大値が30cm〜140cmである、請求項3の方法。   The method according to claim 3, wherein each container includes a bottom portion and a peripheral wall rising from a peripheral edge of the bottom portion, and a maximum outer dimension of a portion surrounded by the peripheral wall of each container is 30 cm to 140 cm. ラン藻の培養装置であって、
上下方向の異なる位置に配置された複数の載置部を備える載置棚と、
前記載置部に取り外し可能に載置された複数の容器と、
前記複数の容器を覆い、外部の光源から各容器に到達する光の光合成有効光量子束密度を低減する減光シートとを備え、
各容器は、ラン藻培養用の液体培地を、深さ3cm以下かつ液面の面積が400cm以上となるように収容し、且つ、前記液面が空気と接するように収容する形状となっていることを特徴とする装置。
An apparatus for cultivating cyanobacteria,
A mounting shelf comprising a plurality of mounting portions arranged at different positions in the vertical direction;
A plurality of containers removably placed on the placement section, and
A light reducing sheet that covers the plurality of containers and reduces the photosynthesis effective photon flux density of light reaching each container from an external light source;
Each container has a shape in which a liquid medium for cultivating cyanobacteria is stored so that the depth is 3 cm or less and the liquid surface area is 400 cm 2 or more, and the liquid surface is in contact with air. A device characterized by comprising.
各容器は、底部と該底部の周縁から起立する周壁とを備え、各容器の前記周壁で囲われた部分の外寸の最大値が30cm〜140cmである、請求項5の装置。   The apparatus according to claim 5, wherein each container includes a bottom portion and a peripheral wall rising from a peripheral edge of the bottom portion, and a maximum value of an outer dimension of a portion surrounded by the peripheral wall of each container is 30 cm to 140 cm.
JP2014047914A 2014-03-11 2014-03-11 Method and device for culturing cyanobacteria Pending JP2015171327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014047914A JP2015171327A (en) 2014-03-11 2014-03-11 Method and device for culturing cyanobacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014047914A JP2015171327A (en) 2014-03-11 2014-03-11 Method and device for culturing cyanobacteria

Publications (1)

Publication Number Publication Date
JP2015171327A true JP2015171327A (en) 2015-10-01

Family

ID=54259123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014047914A Pending JP2015171327A (en) 2014-03-11 2014-03-11 Method and device for culturing cyanobacteria

Country Status (1)

Country Link
JP (1) JP2015171327A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184347A (en) * 1992-01-13 1993-07-27 Dainippon Ink & Chem Inc Algae cultivator and its culture
JPH05244932A (en) * 1992-03-05 1993-09-24 Mitsubishi Heavy Ind Ltd Cultivation of algae
JP2002262858A (en) * 2001-03-06 2002-09-17 Tokai Sangyo Kk Method for cultivating blue-breen algae
JP2007277046A (en) * 2006-04-07 2007-10-25 Tokyo Univ Of Agriculture & Technology Unialgal mass culturing method of phormidium, liquid fertilizer containing phormidium and its fertilizing method
JP2013226063A (en) * 2012-04-24 2013-11-07 Fujifilm Corp Method for cultivating microalgae, biofilm formed on liquid surface by the method, biomass and oil obtained from the biofilm, method for retrieving the biofilm, and method for producing biomass fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184347A (en) * 1992-01-13 1993-07-27 Dainippon Ink & Chem Inc Algae cultivator and its culture
JPH05244932A (en) * 1992-03-05 1993-09-24 Mitsubishi Heavy Ind Ltd Cultivation of algae
JP2002262858A (en) * 2001-03-06 2002-09-17 Tokai Sangyo Kk Method for cultivating blue-breen algae
JP2007277046A (en) * 2006-04-07 2007-10-25 Tokyo Univ Of Agriculture & Technology Unialgal mass culturing method of phormidium, liquid fertilizer containing phormidium and its fertilizing method
JP2013226063A (en) * 2012-04-24 2013-11-07 Fujifilm Corp Method for cultivating microalgae, biofilm formed on liquid surface by the method, biomass and oil obtained from the biofilm, method for retrieving the biofilm, and method for producing biomass fuel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIORESOUR. TECHNOL. (2006) VOL.97, ISSUE 15, P.1822-1827, JPN6018001258, ISSN: 0003869109 *
日本植物学会第76回大会研究発表記録 (2012) VOL.76, P.164 (2AD01), JPN6018001254, ISSN: 0003869108 *

Similar Documents

Publication Publication Date Title
Pulz Photobioreactors: production systems for phototrophic microorganisms
US20110300624A1 (en) Photobioreactor
JP5828238B2 (en) Apparatus and method for culturing microalgae
CN103602593B (en) Paecilomyces lilacinus space mutation mutant strain Sd-m-16 and microbial preparation and application thereof
CN105052498B (en) A kind of liquid cultivating method for setting up DSE and corn syntaxial system
CN107155896B (en) A method of promote African Chrysanthemum tissue culture to transplant seedling rooting
JP2011062123A (en) Method for culturing planktonic microalgae
CN110055303A (en) A kind of method that high flux screening is used to prevent and treat plant silborne fungal diseases microorganism
CN107164297A (en) A kind of method for promoting Antrodia camphorata mycelial growth and activated product to synthesize
JPWO2019225171A1 (en) Tomato pathogenic fungus detection device and detection method using it
TWI245797B (en) Method of culturing microalgae and device therefor
JP2019010037A (en) Culture and recovery method of microorganism
US10829725B2 (en) Air accordion bioreactor
Piotrowski et al. Temperate-zone cultivation of Oedogonium in municipal wastewater effluent to produce cellulose and oxygen
JP2015171327A (en) Method and device for culturing cyanobacteria
Xu et al. Variation in morphology and PSII photosynthetic characteristics of M acrocystis pyrifera during development from gametophyte to juvenile sporophyte
CN105580642A (en) Method for producing antrodia thalluses through continuous culturing process
JP6590144B2 (en) Indoor closed aquaculture system by static culture method using clonal monoalgae strain of Suizinori
Zittelli et al. Industrial Production of Microalgal Cell‐Mass and Secondary Products‐Species of High Potential: Mass Cultivation of Nannochloropsis in Closed Systems
CN103789398A (en) Soil bacteriostatic activity detection method and application thereof
Kraai et al. Immobilization and growth of clonal tissue fragments from the macrophytic red alga Gracilaria vermiculophylla on porous mesh panels
JP2019004809A (en) Method for culturing microorganisms
KR20140010495A (en) Mushroom breeding method includes basidiomycota and ascomycota
JP4715243B2 (en) Method for producing conidia of microorganisms belonging to the genus Paecilomyces
KR100395434B1 (en) the medium animate of air floating balloon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904