JPH05177196A - Active carbon feeding device in high grade water purification system - Google Patents

Active carbon feeding device in high grade water purification system

Info

Publication number
JPH05177196A
JPH05177196A JP3345932A JP34593291A JPH05177196A JP H05177196 A JPH05177196 A JP H05177196A JP 3345932 A JP3345932 A JP 3345932A JP 34593291 A JP34593291 A JP 34593291A JP H05177196 A JPH05177196 A JP H05177196A
Authority
JP
Japan
Prior art keywords
activated carbon
storage tank
biological
active carbon
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3345932A
Other languages
Japanese (ja)
Other versions
JP3042118B2 (en
Inventor
Keiichi Tsukitari
圭一 月足
Hiroshi Tsukura
洋 津倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3345932A priority Critical patent/JP3042118B2/en
Publication of JPH05177196A publication Critical patent/JPH05177196A/en
Application granted granted Critical
Publication of JP3042118B2 publication Critical patent/JP3042118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To prevent the lowering in activity of nitrifying bacteria in the lower water temperature period, enable early start of bacterial growth and treat with superior removing performance of organic matters of very small amount, etc., and of ammonia. CONSTITUTION:A biological active carbon treatment column 3, an active carbon storage tank 6 and a biological active carbon aging tank 7 are disposed, and a mechanism for judging the nitrified state of biological active carbon based on the quality of water detected from a raw water storage tank 2 and an active carbon treating water storage tank 5 as the standard for judgement and feeding biological active carbon to which nitrifying bacteria are made to adhere from the biological active carbon aging tank 7 are provided between the biological active carbon treatment column 3 and the biological active carbon aging tank 7 and between the biological active carbon treatment column 3 and the active carbon storage tank 6. Further, a mechanism for feeding active carbon free of nitrifying bacteria from the active carbon storage tank 6 and a mechanism for drawing out the active carbon in the biological active carbon treatment column 3 into biological active carbon aging tank 7 or the active carbon storage tank 6 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水道水の浄化処理に利
用される生物活性炭処理塔への活性炭供給装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for supplying activated carbon to a biological activated carbon treatment tower used for purification of tap water.

【0002】[0002]

【従来の技術】一般に河川などから取水した原水とか下
水2次処理水を浄化するに際して、先ず凝集沈殿池で原
水中に凝集剤を注入,混合し、撹拌及び滞留処理により
原水中の懸濁物質(砂,粘土,藻類等の有機物等)を凝
集して沈澱,分離する。このプロセスでは殺藻処理や
鉄,マンガンなどの色度成分の除去を目的とした塩素処
理が組み込まれている。特に大都市近郊においては、河
川の汚濁が著しいため、アンモニアや、発ガン性物質の
THM(トリハロメタン)の前駆物質であるフミン質を
含む色度成分の含有率が高く、塩素処理により塩素とア
ンモニアが反応してクロラミンを生成し、必要以上の塩
素を消費してしまう結果、塩素注入率が高くなってTH
M生成能(THMFP)が増大する。
2. Description of the Related Art Generally, when purifying raw water or secondary sewage treated water taken from rivers, etc., first, a flocculant is injected and mixed in raw water in a flocculation sedimentation tank, and suspended substances in raw water are treated by stirring and retaining. (Sand, clay, algae, and other organic substances) are aggregated, precipitated, and separated. This process incorporates algae treatment and chlorine treatment for the purpose of removing chromaticity components such as iron and manganese. Particularly in the suburbs of large cities, rivers are highly polluted, so the content of ammonia and chromaticity components including humic substances, which are precursors of the carcinogenic THM (trihalomethane), is high. React to produce chloramine and consume more chlorine than necessary, resulting in a high chlorine injection rate and TH
Increases the ability to generate M (THMFP).

【0003】このような背景から、近年上述した物質の
除去を目的として高度浄水処理システムを浄水プロセス
に組み込む方式が行われるようになってきた。この高度
浄水処理方法には、オゾン処理や生物活性炭処理があ
り、例えば塩素処理の代替としてオゾン処理塔によりオ
ゾン処理を行い、更に活性炭処理塔もしくは生物濾過塔
により色度成分などを除去する。この後、砂濾過池等で
濾過し、浄水池に送水する。
From such a background, in recent years, a method of incorporating an advanced water purification system into the water purification process has been used for the purpose of removing the above-mentioned substances. This advanced water purification method includes ozone treatment and biological activated carbon treatment. For example, as an alternative to chlorine treatment, ozone treatment is performed by an ozone treatment tower, and further a chromaticity component is removed by an activated carbon treatment tower or biological filtration tower. After that, it is filtered with a sand filter, etc. and sent to a water purification tank.

【0004】活性炭処理塔に充填される粒状活性炭は、
硝化菌などの微生物を表面に繁殖させたものであり、流
入される水中の微量有機物の吸着及び除去だけでなく、
アンモニアの除去も可能となっている。更に生物活性炭
処理の前にオゾン処理を行うことにより、負荷変動に対
する許容度や活性炭の寿命の向上をはかることができ
る。
The granular activated carbon packed in the activated carbon treatment tower is
Microorganisms such as nitrifying bacteria are propagated on the surface, and not only the adsorption and removal of trace organic substances in the inflowing water,
It is also possible to remove ammonia. Further, by performing the ozone treatment before the biological activated carbon treatment, it is possible to improve the tolerance against load fluctuation and the life of the activated carbon.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の高
度浄水処理システムに用いられる生物活性炭処理手段の
場合、冬期における低水温期には硝化菌の活性が低下す
る上、活性炭処理塔の立ち上げに時間がかかるという難
点がある。
However, in the case of the biological activated carbon treatment means used in the above-mentioned advanced water treatment system, the activity of nitrifying bacteria decreases in the low water temperature period in winter, and it takes time to start up the activated carbon treatment tower. There is a drawback that it costs.

【0006】即ち、硝化菌の活性は水温に大きく影響さ
れることが知られており、夏期の高水温時に比して水温
が10℃以下に下がる冬期は硝化菌の活性度が低下して
しまい、しかも河川等の水量低減に伴ってアンモニア濃
度は逆に増加するという現象が発生する。特に硝化菌の
増殖速度は、有機物等を除去する他の微生物に比して相
当遅く、特に水温が20℃の時の硝化菌による定常的な
アンモニア除去処理が達成される期間に比べて、水温が
10℃の場合には同定常的処理に要する期間が2倍以上
もかかってしまうことがあり、更に原水中のアンモニア
濃度が生物活性炭の持つ処理能力以上に急激に高くなっ
た場合とか、硝化菌の活性を阻害する物質が混入した場
合には対応が取れず、活性炭処理塔の処理効率が著しく
悪化するという問題点が生じる。又、原水中の有機物濃
度が高い場合には、硝化菌は従属栄養菌と比較しても増
殖速度が遅いため、生物相のバランスがくずれて従属栄
養菌が優占種となり、硝化菌の活性が低下することがあ
る。
That is, it is known that the activity of nitrifying bacteria is greatly influenced by the water temperature, and the activity of the nitrifying bacteria decreases in the winter when the water temperature falls below 10 ° C. as compared with the high water temperature in summer. Moreover, a phenomenon occurs in which the ammonia concentration increases conversely as the amount of water in rivers decreases. In particular, the growth rate of nitrifying bacteria is considerably slower than that of other microorganisms that remove organic substances, etc., and in particular, the temperature of water is 20% lower than that of the period in which a constant ammonia removal treatment by nitrifying bacteria is achieved. If the temperature is 10 ° C, the time required for the same steady treatment may take more than twice as long, and if the concentration of ammonia in the raw water suddenly rises above the treatment capacity of the biological activated carbon, or if nitrification occurs. If a substance that inhibits the activity of the bacterium is mixed, no countermeasure can be taken, and there arises a problem that the treatment efficiency of the activated carbon treatment tower is significantly deteriorated. Also, when the concentration of organic matter in the raw water is high, the growth rate of nitrifying bacteria is slower than that of heterotrophic bacteria, so the balance of biota is disrupted and the heterotrophic bacteria become the dominant species. May decrease.

【0007】又、活性炭処理塔の運転開始の際とか、活
性炭交換後の運転再開の際に、活性炭の表面に微生物を
増殖させ、その生物相を安定させるために立ち上げ運転
を行う必要がある。そして活性炭表面における微生物の
増殖速度が低下した場合、換言すれば硝化菌の活性度が
低下した場合には、前記立ち上げ時間の延長に加えて微
生物によるアンモニアの除去率が低下してしまうという
難点が生じる。
Further, at the time of starting the operation of the activated carbon treatment tower or restarting the operation after the exchange of the activated carbon, it is necessary to grow the microorganisms on the surface of the activated carbon and perform a start-up operation in order to stabilize the biota. .. And when the growth rate of microorganisms on the surface of activated carbon is reduced, in other words, when the activity of nitrifying bacteria is reduced, the removal rate of ammonia by microorganisms is reduced in addition to the extension of the startup time. Occurs.

【0008】更に従来から活性炭の劣化とか活性炭洗浄
時のキャリーオーバー、もしくは活性炭の流出に対処し
て、活性炭処理塔からの活性炭の引き抜き及び補充が実
施されており、従って活性炭処理塔における活性炭の充
填量は、原水の注入量に関係なくほぼ一定となってい
る。そのため、原水の注入負荷が高い場合には所定の処
理水質が得られず、逆に原水の注入負荷が低い場合には
活性炭の無駄な使用とか流量ロスが生じる等の問題点が
発生する。又、生物活性炭の処理能力以上の負荷がかか
ると該生物活性炭の早期劣化が招来される惧れがあり、
これに対処して活性炭洗浄回数を増加しなければならな
い等の難点がある。
Further, conventionally, the activated carbon is withdrawn and replenished from the activated carbon treatment tower by coping with deterioration of the activated carbon, carryover during washing of the activated carbon, or outflow of the activated carbon. Therefore, the activated carbon is packed in the activated carbon treatment tower. The amount is almost constant regardless of the amount of raw water injected. Therefore, when the injection load of raw water is high, a predetermined treated water quality cannot be obtained, and conversely, when the injection load of raw water is low, problems arise such as wasted use of activated carbon and loss of flow rate. Further, if a load higher than the treatment capacity of the biological activated carbon is applied, there is a fear that the biological activated carbon may be deteriorated early.
There is a problem in that the number of times of washing with activated carbon must be increased in response to this.

【0009】本発明はこれらの問題点に鑑み、低水温期
における硝化菌の活性低下を防止するとともに生物活性
炭処理塔の早期立ち上げを可能とし、しかも微量有機物
等の除去性能およびアンモニアの除去性能ともに優れた
処理を行える装置を提供することを目的とするものであ
る。
In view of these problems, the present invention prevents the activity of nitrifying bacteria from decreasing in the low water temperature period and enables the biological activated carbon treatment tower to be started up early, and moreover, the removal performance of trace organic substances and the removal performance of ammonia. It is an object of the present invention to provide an apparatus capable of excellent processing.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するために、原水貯留槽と、この原水貯留槽から原水
が流入処理されるとともに表面に微生物が繁殖した粒状
活性炭が充填された生物活性炭処理塔と、活性炭処理水
貯留槽とを具備してなる高度浄水処理装置において、上
記生物活性炭処理塔とは別途に、活性炭貯留槽と生物活
性炭順養槽を配設するとともに、該生物活性炭順養槽に
槽内の硝化菌への酸素供給機構を設け、且つ上記生物活
性炭処理塔と生物活性炭順養槽との間、及び上記生物活
性炭処理塔と活性炭貯留槽との間に、原水貯留槽と活性
炭処理水貯留槽から検出される水質を判断基準として生
物活性炭の硝化状態を判断して、生物活性炭順養槽から
生物活性炭処理塔内へ硝化菌の付着している生物活性炭
を供給する機構と、活性炭貯留槽から生物活性炭処理塔
内へ硝化菌の付着していない活性炭を供給する機構と、
該生物活性炭処理塔内の活性炭を生物活性炭順養槽もし
くは活性炭貯留槽に引き抜く機構を配備した構成にして
ある。
[Means for Solving the Problems] In order to achieve the above object, the present invention comprises a raw water storage tank, and raw water is treated from the raw water storage tank, and the surface is filled with granular activated carbon in which microorganisms are propagated. In a highly purified water treatment apparatus comprising a biological activated carbon treatment tower and an activated carbon treated water storage tank, an activated carbon storage tank and a biological activated carbon replenishment tank are provided separately from the biological activated carbon treatment tower, and the biological An oxygen supply mechanism for the nitrifying bacteria in the tank is provided in the activated carbon rectification tank, and the raw water is provided between the biological activated carbon treatment tower and the biological activated carbon rectification tank, and between the biological activated carbon treatment tower and the activated carbon storage tank. The nitrification state of the biological activated carbon is judged based on the water quality detected from the storage tank and the activated carbon treated water storage tank, and the biological activated carbon with the nitrifying bacteria adhering to it is fed from the biological activated carbon rectification tank into the biological activated carbon treatment tower. And the mechanism A mechanism for supplying activated carbon unattached of nitrifying bacteria to biological activated carbon treatment tower of activated carbon reservoir,
A structure is provided in which a mechanism for extracting the activated carbon in the biological activated carbon treatment tower to a biological activated carbon replenishment tank or an activated carbon storage tank is provided.

【0011】更に請求項2により、上記水質の判断基準
として原水貯留槽と活性炭処理水貯留槽のアンモニア濃
度を利用しており、請求項3により、上記水質の判断基
準として、原水貯留槽と活性炭処理水貯留槽の紫外線吸
光度を利用したことを特徴とする。又、請求項4によ
り、上記生物活性炭処理塔からの活性炭引き抜き量を、
生物活性炭処理塔の単位活性炭当たりの処理負荷量から
決定することを特徴とし、請求項5により、前記生物活
性炭順養槽に、アンモニアを含有する原水を一定時間毎
又は連続的に供給するアンモニア原水供給部を配備して
ある。
Further, according to claim 2, the concentration of ammonia in the raw water storage tank and the activated carbon treated water storage tank is used as the criterion for determining the water quality. According to claim 3, the raw water storage tank and the activated carbon are used as criteria for determining the water quality. The feature is that the ultraviolet absorption of the treated water storage tank is used. According to claim 4, the amount of activated carbon drawn from the biological activated carbon treatment tower is
It is determined from the treatment load amount per unit activated carbon of the biological activated carbon treatment tower, and according to claim 5, ammonia raw water for supplying raw water containing ammonia to the biological activated carbon rectifying tank at regular intervals or continuously. It has a supply department.

【0012】[0012]

【作用】かかる構成によれば、平常の原水処理時には原
水が原水貯留槽から生物活性炭処理塔に流入されて、粒
状活性炭により浄化処理されるとともに、この粒状活性
炭の表面に繁殖している硝化菌の作用により、微量有機
物の吸着,除去だけでなく、アンモニアも除去される。
According to this structure, during normal raw water treatment, the raw water flows from the raw water storage tank into the biological activated carbon treatment tower, is purified by the granular activated carbon, and the nitrifying bacteria that propagate on the surface of the granular activated carbon. By the action of, not only the adsorption and removal of trace organic substances but also ammonia is removed.

【0013】そしてアンモニア濃度とか紫外線吸光度を
判断基準として、原水貯留槽と活性炭処理水貯留槽の水
質と生物活性炭の硝化状態が判断され、活性炭処理水と
して許容されるアンモニア濃度よりも実際の活性炭処理
水のアンモニア濃度の方が大きい場合には、生物活性炭
順養槽から硝化菌の付着した生物活性炭が生物活性炭処
理塔に供給される。これにより生物活性炭処理塔内の活
性炭表面における微生物の付着量が増大して硝化菌の活
性度が向上し、その結果として原水のアンモニアの除去
率が高められる。
Then, the water quality of the raw water storage tank and the activated carbon treated water storage tank and the nitrification state of the biological activated carbon are judged based on the ammonia concentration or the ultraviolet absorbance as a criterion, and the actual activated carbon treatment is carried out rather than the ammonia concentration allowed as the activated carbon treated water. When the ammonia concentration of water is higher, the bioactive carbon having nitrifying bacteria attached thereto is supplied to the bioactive carbon treatment tower from the bioactive carbon rectification tank. As a result, the amount of attached microorganisms on the surface of the activated carbon in the biological activated carbon treatment tower is increased, the activity of nitrifying bacteria is improved, and as a result, the removal rate of ammonia in raw water is increased.

【0014】又、活性炭処理水貯留槽と原水貯留槽の紫
外線吸光度が測定され、この吸光度と色度が予め設定さ
れている許容吸光度及び許容色度と比較されて、吸光度
と色度の両者に差が生じた場合には、活性炭貯留槽から
硝化菌の付着していない活性炭が生物活性炭処理塔に供
給される。
Further, the UV absorbance of the activated carbon treated water storage tank and the raw water storage tank is measured, and the absorbance and the chromaticity are compared with preset allowable absorbance and allowable chromaticity to obtain both the absorbance and the chromaticity. When there is a difference, activated carbon free from nitrifying bacteria is supplied to the biological activated carbon treatment tower from the activated carbon storage tank.

【0015】更に活性炭の処理効率を高めなければなら
ない場合には、生物活性炭処理塔の単位活性炭当たりの
処理負荷量から活性炭引き抜き量が決定され、該生物活
性炭処理塔内の活性炭が生物活性炭順養槽もしくは活性
炭貯留槽に引き抜かれる。
When it is necessary to further increase the treatment efficiency of activated carbon, the amount of activated carbon drawn out is determined from the treatment load per unit activated carbon of the biological activated carbon treatment tower, and the activated carbon in the biological activated carbon treatment tower is conditioned by the biological activated carbon. It is pulled out to a tank or an activated carbon storage tank.

【0016】上記生物活性炭順養槽に原水供給部からア
ンモニアを含有する原水を一定時間毎又は連続的に供給
することにより、硝化菌の増殖効率が向上する。
By supplying raw water containing ammonia from the raw water supply unit to the above-mentioned biological activated carbon rectifying tank at regular intervals or continuously, the growth efficiency of nitrifying bacteria is improved.

【0017】[0017]

【実施例】以下、本発明にかかる高度浄水処理における
活性炭供給装置の一実施例を説明する。図1に示した本
実施例の概略図において、1は原水、2は原水貯留槽、
3は原水1が流入される生物活性炭処理塔であり、この
生物活性炭処理塔3内に粒状活性炭4が充填されてい
る。5は活性炭処理水貯留槽である。
EXAMPLE An example of the activated carbon supply device in the advanced water purification treatment according to the present invention will be described below. In the schematic view of this embodiment shown in FIG. 1, 1 is raw water, 2 is a raw water storage tank,
Reference numeral 3 denotes a biological activated carbon treatment tower into which the raw water 1 flows, and the biological activated carbon treatment tower 3 is filled with granular activated carbon 4. 5 is an activated carbon treated water storage tank.

【0018】一方、6は活性炭貯留槽、7は生物活性炭
順養槽であり、活性炭貯留槽6内には硝化菌が付着され
ていないスラリー状活性炭が充填されている。又、生物
活性炭順養槽7には硝化菌が付着された活性炭が溶媒と
ともに充填され、好気性菌である硝化菌に酸素を供給す
るため、生物活性炭順養槽7の内方底部に散気管9が配
置され、この散気管9に対して外部に配備されたブロワ
10から空気が送り込まれるようになっている。8はア
ンモニアを含有する原水を一定時間毎又は連続的に生物
活性炭順養槽7に供給するアンモニア原水貯留槽であ
る。上記のアンモニア原水貯留槽8,散気管9及びブロ
ワ10によってアンモニア原水供給部が構成される。
On the other hand, 6 is an activated carbon storage tank, and 7 is a biological activated carbon replenishment tank, and the activated carbon storage tank 6 is filled with slurry activated carbon to which nitrifying bacteria are not attached. In addition, the activated carbon to which the nitrifying bacteria are attached is filled with the solvent in the biological activated carbon culturing tank 7 to supply oxygen to nitrifying bacteria which are aerobic bacteria. 9 is arranged, and air is sent to the air diffuser 9 from a blower 10 provided outside. Reference numeral 8 denotes an ammonia raw water storage tank for supplying raw water containing ammonia to the biological activated carbon rectifying tank 7 at regular intervals or continuously. The ammonia raw water storage tank 8, the diffuser pipe 9 and the blower 10 constitute an ammonia raw water supply unit.

【0019】上記活性炭貯留槽6、生物活性炭順養槽7
及びアンモニア原水貯留槽8は、活性炭による原水1の
処理系とは別途に配設されている。尚、生物活性炭順養
槽7を全体的に恒温槽内に配置することによって硝化菌
の順養作用が高められる。
The activated carbon storage tank 6 and the biological activated carbon acclimation tank 7
The ammonia raw water storage tank 8 is arranged separately from the treatment system of the raw water 1 using activated carbon. By arranging the biological activated carbon replenishment tank 7 entirely in the thermostatic bath, the remediation action of nitrifying bacteria can be enhanced.

【0020】図中の11は原水1の流量計、12,1
3,14は流路切替用三方コック、15,16,17,
18は流体ポンプ、19は紫外線吸光光度計、20はア
ンモニア電極、21は水温計である。又、22は前記流
量計11,紫外線吸光光度計19,アンモニア電極20
及び水温計21からの入力信号を受けて、流路切替用三
方コック12,13,14と流体ポンプ15,16,1
7,18の稼働状態を制御する信号を出力するコントロ
ーラ、23は予め所望のデータがメモリーされている中
央処理装置(CPU)である。コントローラ22として
はDDC(Directdigital control)方式が採用され
る。
Reference numeral 11 in the figure denotes a flow meter for raw water 1, 12, 1
3, 14 are three-way cocks for switching the flow paths, 15, 16, 17,
18 is a fluid pump, 19 is an ultraviolet absorptiometer, 20 is an ammonia electrode, and 21 is a water thermometer. Further, 22 is the flowmeter 11, the ultraviolet absorptiometer 19, the ammonia electrode 20.
And the input signals from the water temperature gauge 21 to receive the flow path switching three-way cocks 12, 13, 14 and the fluid pumps 15, 16, 1.
A controller that outputs a signal for controlling the operating states of 7 and 18, and 23 is a central processing unit (CPU) in which desired data is stored in advance. As the controller 22, a DDC (Direct digital control) method is adopted.

【0021】かかる構成によれば、平常の原水処理を行
う場合には、原水1が原水貯留槽2から流量計11を経
由して生物活性炭処理塔3に流入して粒状活性炭4によ
って浄化処理されるとともに、この粒状活性炭4の表面
に繁殖している硝化菌の作用により、微量有機物の吸
着,除去だけでなく、アンモニアも除去される。
According to this structure, in the case of performing normal raw water treatment, raw water 1 flows from the raw water storage tank 2 into the biological activated carbon treatment tower 3 via the flow meter 11 and is purified by the granular activated carbon 4. In addition to the adsorption and removal of trace organic substances, ammonia is also removed by the action of nitrifying bacteria that propagate on the surface of the granular activated carbon 4.

【0022】そして本実施例では、生物活性炭処理塔3
に対する活性炭の供給、又は活性炭の引き抜きを実施す
ることを特徴としており、この活性炭の供給と引き抜き
動作は以下の3つの動作態様から成っている。
In this embodiment, the biological activated carbon treatment tower 3
It is characterized in that the activated carbon is supplied to or removed from the activated carbon. The activated carbon supply and the withdrawal operations are composed of the following three operation modes.

【0023】(1)硝化菌が付着している生物活性炭の
供給 (2)硝化菌が付着していない活性炭の供給 (3)生物活性炭処理塔からの活性炭の引き抜き 以下に上記3つの動作態様についてそれぞれ説明する。
(1) Supply of bioactive carbon to which nitrifying bacteria are attached (2) Supply of active carbon to which nitrifying bacteria are not attached (3) Extraction of activated carbon from biological activated carbon treatment tower The above three operation modes will be described below. Each will be explained.

【0024】(1)硝化菌が付着している生物活性炭の
供給 原水貯留槽2と活性炭処理水貯留槽5のアンモニア濃度
が信号ラインS1,S2を介してアンモニア電極20で検
出され、このアンモニア濃度に基づいて生物活性炭処理
塔3に対する生物活性炭の供給量が決定される。即ち、
原水貯留槽2のアンモニア電極出力値V1(mv)と、
活性炭処理水貯留槽5のアンモニア電極出力値V2(m
v)とがそれぞれアンモニア電極20で検出されて、こ
の検出値がコントローラ22に入力され、図2に示した
ように中央処理装置24にメモリーされているアンモニ
ア濃度(mg−N/l)とアンモニア電極出力値(m
v)との相関図から原水と処理水の実際のアンモニア濃
度が算定され、且つ生物活性炭処理塔3のアンモニア除
去率が算定される。そして活性炭処理水として許容され
るアンモニア濃度(CNset)と実際の活性炭処理水のア
ンモニア濃度(CNV2)を比較して、 (CNset)<(CNV2) の場合には、生物活性炭順養槽7から硝化菌の付着した
生物活性炭を生物活性炭処理塔3に供給される。又、 (CNset)≧(CNV2) の場合には、生物活性炭順養槽7から生物活性炭処理塔
3への生物活性炭への供給を実施しない。
(1) Supply of Biological Activated Carbon with Nitrifying Bacteria Attached The ammonia concentrations in the raw water storage tank 2 and the activated carbon treated water storage tank 5 are detected by the ammonia electrode 20 via the signal lines S 1 and S 2. The supply amount of bioactive carbon to the bioactive carbon treatment tower 3 is determined based on the ammonia concentration. That is,
Ammonia electrode output value V 1 (mv) of the raw water storage tank 2,
Ammonia electrode output value V 2 (m of activated carbon treated water storage tank 5
v) are detected by the ammonia electrode 20, and the detected values are input to the controller 22, and the ammonia concentration (mg-N / l) and the ammonia stored in the central processing unit 24 as shown in FIG. Electrode output value (m
The actual ammonia concentration of the raw water and the treated water is calculated from the correlation diagram with v), and the ammonia removal rate of the biological activated carbon treatment tower 3 is calculated. Then, the ammonia concentration allowed as activated carbon treated water (C Nset ) is compared with the actual ammonia concentration of activated carbon treated water (C NV2 ), and if (C Nset ) <(C NV2 ), biological activated carbon replenishment is performed. The biological activated carbon having nitrifying bacteria attached thereto is supplied from the tank 7 to the biological activated carbon treatment tower 3. When (C Nset ) ≧ (C NV2 ), the supply of the biological activated carbon from the biological activated carbon replenishment tank 7 to the biological activated carbon treatment tower 3 is not performed.

【0025】生物活性炭順養槽7から生物活性炭を供給
する場合には、コントローラ22からの信号ラインS3
によって流路切替用三方コック14を生物活性炭順養槽
7側に切り替え、同時に信号ラインS4によって流体ポ
ンプ16を稼働することにより、該流体ポンプ16の駆
動力によって生物活性炭処理塔3に硝化菌が付着された
生物活性炭が供給される。これによって生物活性炭処理
塔3内の活性炭表面における微生物の付着量が増大して
硝化菌の活性度が向上し、その結果として原水1のアン
モニアの除去率を高めることができる。
When the biological activated carbon is supplied from the biological activated carbon replenishment tank 7, the signal line S 3 from the controller 22 is supplied.
The flow path switching three-way cock 14 is switched to the biological activated carbon replenishment tank 7 side, and at the same time, the fluid pump 16 is operated by the signal line S 4, whereby the driving force of the fluid pump 16 causes the biological activated carbon treatment tower 3 to nitrify bacteria. The biological activated carbon to which is attached is supplied. As a result, the amount of attached microorganisms on the surface of the activated carbon in the biological activated carbon treatment tower 3 is increased, the activity of nitrifying bacteria is improved, and as a result, the removal rate of ammonia in the raw water 1 can be increased.

【0026】尚、生物活性炭順養槽7の外部に配備され
たブロワ10から該生物活性炭順養槽7の内方底部に配
置された散気管9に空気を供給することにより、槽内で
曝気と撹拌が行われ、好気性菌である硝化菌に酸素が供
給されて、活性炭の表面に増殖した硝化菌が多量に付着
する。
Aeration is carried out in the tank by supplying air from a blower 10 provided outside the biological activated carbon acclimation tank 7 to an air diffuser 9 arranged at the inner bottom of the biological activated carbon acclimation tank 7. Then, agitation is performed, oxygen is supplied to the nitrifying bacterium which is an aerobic bacterium, and a large amount of the growing nitrifying bacterium adheres to the surface of the activated carbon.

【0027】ここで前記アンモニア電極20によるアン
モニア濃度の測定原理を簡単に説明すると、一般に水に
溶けているアンモニウムイオンは次式に示すように水素
イオンと平衡を保っている。
Here, the principle of measuring the ammonia concentration by the ammonia electrode 20 will be briefly described. Generally, ammonium ions dissolved in water are in equilibrium with hydrogen ions as shown in the following equation.

【0028】 NH3+H+←→NH4 +・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1) ここで溶液のpHを11以上にすると、上式の平衡は左
へずれて、ほとんどのアンモニウムイオンはアンモニア
として存在するようになる。この溶存アンモニアがガス
透過性膜を通って一定濃度の塩化アンモニウムを含む内
部液に溶け込み、上式の平衡は右へ変化する。この反応
によって内部液の水素イオン濃度が減少し、膜の内側に
あるpH電極の電位を負側に変化させるので、これによ
って間接的に溶存アンモニア濃度(アンモニウムイオ
ン)を測定することができる。
NH 3 + H + ← → NH 4 + (1) Here, the solution When the pH of the above is set to 11 or more, the equilibrium in the above formula shifts to the left, and most of the ammonium ions exist as ammonia. This dissolved ammonia dissolves in the internal liquid containing a fixed concentration of ammonium chloride through the gas permeable membrane, and the equilibrium in the above equation changes to the right. This reaction reduces the hydrogen ion concentration of the internal liquid and changes the potential of the pH electrode inside the membrane to the negative side, so that the dissolved ammonia concentration (ammonium ion) can be indirectly measured.

【0029】更に詳述すれば、pH測定用ガラス電極の
理論式はネルンストの式 E=E0+(2.303RT)/(F・log〔H+〕)・・・・(2) (2.303RT/F:ネルンスト定数) で与えられ、前記(1)式は 〔NH3〕〔H+〕/〔NH4 +〕=K・・・・・・・・・・・・・・・・・・・・・・(3) なる平衡式を満足する。内部液のアンモニウムイオンC
(mol/l)とすると、(3)式は 〔H+〕=(C・K)/〔NH3〕・・・・・・・・・・・・・・・・・・・・・・・・(4) 式となり、アンモニア濃度の関数となる。(2)式と
(4)式から E=E0+(2.303RT)/F・{log(C・K)/〔NH3〕}・ ・・・・・・・・・・・・・・・・・(5) ここで E′=E0+(2.303RT)/F・{lo
g(C・K)}とすると 、 E=E′−(2.303RT)/F・{log〔NH3〕}・・(6) となる。(2.303RT/F)は、濃度が10倍変化
した時の電位差の変化分で電位こう配と呼ばれ、25℃
において59.16mvとなる。従って標準液校正によ
って電位こう配の値とE0をきめてサンプル中のアンモ
ニア(アンモニウムイオン)濃度を求めることができ
る。
More specifically, the theoretical formula of the glass electrode for pH measurement is Nernst's formula: E = E 0 + (2.303 RT) / (F · log [H + ]) (2) (2) .303RT / F: Nernst constant), and the equation (1) is [NH 3 ] [H + ] / [NH 4 + ] = K.・ ・ ・ Satisfies the equilibrium equation (3). Ammonium ion C of internal solution
Assuming (mol / l), the formula (3) becomes [H + ] = (C · K) / [NH 3 ] ....・ It becomes the formula (4) and becomes the function of the ammonia concentration. From the expressions (2) and (4), E = E 0 + (2.303RT) / F · {log (C · K) / [NH 3 ]} ... .... (5) where E '= E 0 + (2.303RT ) / F · {lo
If g (C · K)}, then E = E ′ − (2.303RT) / F · {log [NH 3 ]} ·· (6) (2.303 RT / F) is the change in the potential difference when the concentration changes 10 times and is called the potential gradient.
Is 59.16 mv. Therefore, the ammonia (ammonium ion) concentration in the sample can be determined by calibrating the standard solution and determining the potential gradient value and E 0 .

【0030】(2)硝化菌が付着していない活性炭の供
給 この硝化菌が付着していない活性炭の供給は、生物活性
炭処理塔3の洗浄操作に伴う活性炭4のキャリーオーバ
ーとか、該活性炭4の流出及び処理水の負荷増大に伴う
水質悪化に対処して行われる。この場合には、原水貯留
槽2と活性炭処理水貯留槽5の吸光度が紫外線吸光光度
計19によって測定される。紫外線吸光度(UV)と
は、紫外線の波長領域である200〜400nmの範囲
で光が物質に吸収されることを利用した分析方法であ
り、測定は波長が260nmにおける吸光度(E26
0)と、波長が370nmにおける吸光度(E370)
を用いて実施される。上記E260は、図3に示したよ
うに過マンガン酸消費量(mg/l)との相関が高く、
E370は図4に示したように色度Yとの相関が高いこ
とが知られている。
(2) Supply of activated carbon to which nitrifying bacteria are not adhered The supply of activated carbon to which nitrifying bacteria are not adhered is such as carryover of activated carbon 4 accompanying the washing operation of the biological activated carbon treatment tower 3 or the activated carbon 4 This will be done in response to the deterioration of water quality due to the increase in runoff and load of treated water. In this case, the absorbances of the raw water storage tank 2 and the activated carbon treated water storage tank 5 are measured by the ultraviolet absorptiometer 19. Ultraviolet absorbance (UV) is an analytical method utilizing the fact that light is absorbed by a substance in the range of 200 to 400 nm, which is the wavelength range of ultraviolet rays, and the absorbance is measured at a wavelength of 260 nm (E26).
0) and the absorbance at a wavelength of 370 nm (E370)
Is carried out using. The above E260 has a high correlation with the permanganate consumption (mg / l) as shown in FIG.
It is known that E370 has a high correlation with the chromaticity Y as shown in FIG.

【0031】そこで活性炭処理水貯留槽5と原水貯留槽
2のE260,E370が信号ラインS5,S6を介して
紫外線吸光光度計19で検出され、この検出値がコント
ローラ22に伝達されて、活性炭処理水貯留槽5の過マ
ンガン酸消費量濃度(Kout)と色度(Cout)が測定さ
れる。そして中央処理装置24に予め設定されている許
容過マンガン酸消費量濃度(Kset)と許容色度
(Cset)と比較され、 (Kset)−(Kout)≧0で且つ(Cset)−(Cout)≧0・・・・・・・(7) の場合には、活性炭貯留槽6から硝化菌の付着していな
い活性炭を生物活性炭処理塔3に供給する。又、 (Kset)−(Kout)<0、あるいは(Cset)−(Cout)<0・・・(8) の場合には、活性炭貯留槽6から生物活性炭処理塔3へ
の活性炭への供給を実施しない。従って(Cout)又は
(Kout)が活性炭処理水として許容されている濃度を
超えた場合にのみ生物活性炭処理塔3に活性炭が供給さ
れる。
Then, E260 and E370 of the activated carbon treated water storage tank 5 and the raw water storage tank 2 are detected by the ultraviolet absorptiometer 19 via the signal lines S 5 and S 6, and the detected values are transmitted to the controller 22, The permanganate consumption concentration (K out ) and chromaticity (C out ) of the activated carbon treated water storage tank 5 are measured. Then, the permissible permanganate consumption concentration (K set ) preset in the central processing unit 24 is compared with the permissible chromaticity (C set ), and (K set ) − (K out ) ≧ 0 and (C set). ) − (C out ) ≧ 0 ... (7), activated carbon without nitrifying bacteria is fed from the activated carbon storage tank 6 to the biological activated carbon treatment tower 3. Further, in the case of (K set ) − (K out ) <0, or (C set ) − (C out ) <0 (8), the activated carbon from the activated carbon storage tank 6 to the biological activated carbon treatment tower 3 is Will not be supplied to Therefore, the activated carbon is supplied to the biological activated carbon treatment tower 3 only when (C out ) or (K out ) exceeds the concentration allowed as the activated carbon treated water.

【0032】活性炭貯留槽6から活性炭を供給する場合
には、コントローラ22からの信号ラインS3によって
流路切替用三方コック14を活性炭貯留槽6側に切り替
え、同時に信号ラインS7によって流体ポンプ17を稼
働することにより、該流体ポンプ17の駆動力によって
生物活性炭処理塔3に活性炭貯留槽6からスラリー状の
活性炭が供給される。
When activated carbon is supplied from the activated carbon storage tank 6, the flow path switching three-way cock 14 is switched to the activated carbon storage tank 6 side by the signal line S 3 from the controller 22, and at the same time, the fluid pump 17 is supplied by the signal line S 7 . By operating the above, the driving force of the fluid pump 17 supplies the activated carbon in a slurry state from the activated carbon storage tank 6 to the biological activated carbon treatment tower 3.

【0033】(3)生物活性炭処理塔からの活性炭の引
き抜き 活性炭の引き抜き操作は、雨期等において河川の水量が
増加して原水としての水質が良好となり、且つ水量の増
加に伴って活性炭の処理効率を高めなければならない時
に実施される。この活性炭の引き抜き量は、生物活性炭
処理塔3への単位活性炭(X)当たりの処理負荷量(X
/M)から決定される。
(3) Extraction of Activated Carbon from Biological Activated Carbon Treatment Tower In the operation of extracting activated carbon, the quality of raw water is improved due to an increase in the amount of water in the river during the rainy season and the treatment efficiency of activated carbon increases as the amount of water increases. It is carried out when it has to be raised. The amount of this activated carbon extracted is the amount of treatment load (X) per unit activated carbon (X) to the biological activated carbon treatment tower 3.
/ M).

【0034】 (X/M)=(Q・C)・(1/M)・・・・・・・・・・・・・・・・・・・・(9) ここでQ:活性炭処理塔3への流入水量 C:流入水中の物質の濃度 M:活性炭処理塔3へ充填されている活性炭量 つまり単位活性炭当たりの処理負荷量(X/M)の活性
炭処理塔3に、物質の濃度C/2,流入水量Qで流入し
た時の処理負荷量は (X/M)′=(Q・C)/(2M)・・・・・・・・・・・・・・・・・・・・(10) となる。従って生物活性炭処理塔3の運転時の流量負荷
は、処理可能な負荷量の1/2となる。そのため、負荷
量を(X/M)として処理を行うために、流量を2倍に
するか活性炭充填量を1/2にすれば良いが、流量は活
性炭処理水貯留槽5の容量とかプラントの計画流量によ
って左右されるため、生物活性炭処理塔3内の活性炭の
充填量を1/2にすることが経済的にみても好ましい。
(X / M) = (Q · C) · (1 / M) ···· (9) where Q: activated carbon treatment tower Amount of influent water to 3 C: Concentration of substance in influent M: Amount of activated carbon filled in activated carbon treatment tower 3, that is, concentration of substance C in activated carbon treatment tower 3 of treatment load amount (X / M) per unit activated carbon / 2, the processing load when inflowing with the inflow water amount Q is (X / M) '= (QC) / (2M) ....・ It becomes (10). Therefore, the flow rate load during operation of the biological activated carbon treatment tower 3 is ½ of the treatable load amount. Therefore, in order to perform the treatment with the load amount (X / M), the flow rate may be doubled or the activated carbon filling amount may be halved. The flow rate depends on the capacity of the activated carbon treated water storage tank 5 or the plant. Since it depends on the planned flow rate, it is economically preferable to reduce the filling amount of the activated carbon in the biological activated carbon treatment tower 3 to 1/2.

【0035】生物活性炭処理塔3から活性炭を引き抜く
場合には、コントローラ22からの信号ラインS8によ
って流路切替用三方コック12,13を生物活性炭順養
槽7側に切り替えるとともに流体ポンプ15を稼働す
る。これによって生物活性炭処理塔3の上層部及び下層
部から活性炭が引き抜かれ、生物活性炭順養槽7に送り
込まれる。又、流路切替用三方コック13を別方向に切
り替えることによって引き抜かれた活性炭の一部は活性
炭貯留槽6にも送り込まれる。
When the activated carbon is withdrawn from the biological activated carbon treatment tower 3, the flow path switching three-way cocks 12 and 13 are switched to the biological activated carbon replenishment tank 7 side and the fluid pump 15 is operated by the signal line S 8 from the controller 22. To do. As a result, the activated carbon is extracted from the upper layer portion and the lower layer portion of the biological activated carbon treatment tower 3 and fed into the biological activated carbon acclimation tank 7. Further, a part of the activated carbon extracted by switching the flow path switching three-way cock 13 in the other direction is sent to the activated carbon storage tank 6.

【0036】上記生物活性炭順養槽7は基準律速になら
ないように、該生物活性炭順養槽7のアンモニア濃度が
信号ラインS9を介してアンモニア電極20で検出され
て、常時アンモニア濃度がモニタリングされるととも
に、基準律速になる場合にはコントローラ22から出力
される信号ライン22によって稼働される流体ポンプ1
8を用いてアンモニア原水貯留槽8からアンモニアを含
有する原水を一定時間毎又は連続的に供給することによ
り、生物活性炭順養槽7内での硝化菌の増殖効率が向上
する。更に生物活性炭順養槽7中の微生物量を維持する
ために、生物活性炭処理塔3の洗浄廃水が管路25を介
して生物活性炭順養槽7に流入されている。 更に生物
活性炭処理塔3の運転開始の際、又は活性炭交換後の運
転再開の際に、活性炭の表面に微生物を増殖させ、生物
相を安定させるための立ち上げ運転を行う場合にあって
も、生物活性炭順養槽7から硝化菌の付着した生物活性
炭を供給することにより、微生物の増殖速度が加速され
るので、立ち上げ運転時間を短縮することが可能とな
る。
The ammonia concentration of the biological activated carbon rectifying tank 7 is detected by the ammonia electrode 20 through the signal line S 9 so that the biological activated carbon rectifying tank 7 does not become the rate-determining standard, and the ammonia concentration is constantly monitored. In addition, the fluid pump 1 operated by the signal line 22 output from the controller 22 when the reference rate is controlled.
By supplying raw water containing ammonia from the ammonia raw water storage tank 8 at regular intervals or continuously using the No. 8, the growth efficiency of nitrifying bacteria in the biological activated carbon rectifying tank 7 is improved. Further, in order to maintain the amount of microorganisms in the biological activated carbon replenishment tank 7, the cleaning wastewater of the biological activated carbon treatment tower 3 is flown into the biological activated carbon replenishment tank 7 via the pipe 25. Further, even when the operation of the biological activated carbon treatment tower 3 is started, or when the operation is restarted after the activated carbon is exchanged, even when the start-up operation is performed to grow the microorganisms on the surface of the activated carbon and stabilize the biota, By supplying the bioactive carbon to which the nitrifying bacteria are attached from the bioactive carbon acclimation tank 7, the growth rate of microorganisms is accelerated, so that the startup operation time can be shortened.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
アンモニア濃度とか紫外線吸光度を判断基準として原水
貯留槽と活性炭処理水貯留槽の水質と生物活性炭の硝化
状態が判断され、この判断結果に基づいて生物活性炭処
理塔に生物活性炭順養槽から硝化菌が付着した活性炭が
供給されることにより、生物活性炭処理塔内で硝化菌が
増殖して活性炭表面における硝化菌の活性度が向上し、
原水のアンモニア除去率を高めることができる。特に夏
期の高水温時に比して水温が下がる冬期には硝化菌の活
性度が低下し易いため、冬期に本発明を適用することが
有効であり、それに伴って水温低下時における硝化菌に
よる定常的なアンモニア除去処理を達成する時間を短縮
することが出来る。更に処理水中に硝化菌の活性を阻害
する物質が混入された場合にも対応可能となる。
As described above, according to the present invention,
The water quality of the raw water storage tank and the activated carbon treated water storage tank and the nitrification state of the biological activated carbon are judged based on the ammonia concentration or ultraviolet absorbance as the judgment criteria, and based on this judgment, nitrifying bacteria from the biological activated carbon preparation tank to the biological activated carbon treatment tower By supplying the attached activated carbon, the nitrifying bacteria grow in the biological activated carbon treatment tower and the activity of the nitrifying bacteria on the surface of the activated carbon is improved,
Ammonia removal rate of raw water can be increased. In particular, the activity of nitrifying bacteria is likely to decrease in the winter when the water temperature is lower than when the water temperature is high in the summer, so it is effective to apply the present invention in the winter, and accordingly, the steady state by the nitrifying bacteria at the time when the water temperature decreases It is possible to shorten the time for achieving the effective ammonia removal treatment. Further, it becomes possible to deal with the case where a substance that inhibits the activity of nitrifying bacteria is mixed in the treated water.

【0038】又、活性炭貯留槽から硝化菌の付着してい
ない活性炭が供給されることにより、硝化菌のキャリー
オーバーとか活性炭処理塔に処理能力以上の負荷がかか
った場合にも直ちに対処することが可能である。
Further, by supplying activated carbon free from nitrifying bacteria from the activated carbon storage tank, it is possible to immediately deal with carryover of nitrifying bacteria or when a load exceeding the processing capacity is applied to the activated carbon processing tower. It is possible.

【0039】活性炭の処理効率を高めなければならない
場合には、生物活性炭処理塔の単位活性炭当たりの処理
負荷量から活性炭引き抜き量が決定され、該生物活性炭
処理塔内の活性炭を引き抜くことができる。更に生物活
性炭処理塔の運転開始の際とか活性炭交換後の運転再開
の際に、活性炭の表面の微生物増殖速度を加速すること
が出来るので、立ち上げ運転時間を短縮することが可能
となり、しかも微量有機物等の除去性能及びアンモニア
態窒素の除去性能ともに優れた処理を行える装置が提供
される。
When it is necessary to enhance the treatment efficiency of activated carbon, the amount of activated carbon removed is determined from the treatment load per unit activated carbon of the biological activated carbon treatment tower, and the activated carbon in the biological activated carbon treatment tower can be extracted. Furthermore, when the operation of the biological activated carbon treatment tower is started, or when the operation is restarted after the activated carbon is replaced, the growth rate of microorganisms on the surface of the activated carbon can be accelerated, which makes it possible to shorten the start-up operation time, and to reduce the trace amount. Provided is an apparatus capable of performing a treatment excellent in both removal performance of organic substances and the removal performance of ammonia nitrogen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる高度浄水処理における活性炭供
給装置の一実施例を示す概略図。
FIG. 1 is a schematic view showing an embodiment of an activated carbon supply device in an advanced water purification treatment according to the present invention.

【図2】アンモニア濃度とアンモニア電極出力値との相
関を示すグラフ。
FIG. 2 is a graph showing the correlation between ammonia concentration and ammonia electrode output value.

【図3】吸光度と過マンガン酸消費量との相関を示すグ
ラフ。
FIG. 3 is a graph showing the correlation between absorbance and permanganate consumption.

【図4】吸光度と色度との相関を示すグラフ。FIG. 4 is a graph showing the correlation between absorbance and chromaticity.

【符号の説明】[Explanation of symbols]

1…原水、2…原水貯留槽、3…生物活性炭処理塔、4
…粒状活性炭、5…活性炭処理水貯留槽、6…活性炭貯
留槽、7…生物活性炭順養槽、8…アンモニア原水貯留
槽、9…散気管、10…ブロワ、11…流量計、12,
13,14…流路切替用三方コック、15,16,1
7,18…流体ポンプ、19…紫外線吸光光度計、20
…アンモニア電極、21…水温計、22…コントロー
ラ、23…中央処理装置。
1 ... Raw water, 2 ... Raw water storage tank, 3 ... Biological activated carbon treatment tower, 4
... Granular activated carbon, 5 ... Activated carbon treated water storage tank, 6 ... Activated carbon storage tank, 7 ... Biological activated carbon replenishment tank, 8 ... Ammonia raw water storage tank, 9 ... Aeration pipe, 10 ... Blower, 11 ... Flowmeter, 12,
13, 14 ... Three-way cock for flow path switching, 15, 16, 1
7, 18 ... Fluid pump, 19 ... Ultraviolet absorptiometer, 20
... Ammonia electrode, 21 ... Water thermometer, 22 ... Controller, 23 ... Central processing unit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原水貯留槽と、この原水貯留槽から原水
が流入処理されるとともに表面に微生物が繁殖した粒状
活性炭が充填された生物活性炭処理塔と、活性炭処理水
貯留槽とを具備してなる高度浄水処理装置において、 上記生物活性炭処理塔とは別途に、活性炭貯留槽と生物
活性炭順養槽を配設するとともに、該生物活性炭順養槽
に槽内の硝化菌への酸素供給機構を設け、且つ上記生物
活性炭処理塔と生物活性炭順養槽との間、及び上記生物
活性炭処理塔と活性炭貯留槽との間に、原水貯留槽と活
性炭処理水貯留槽から検出される水質を判断基準として
生物活性炭の硝化状態を判断して、生物活性炭順養槽か
ら生物活性炭処理塔内へ硝化菌の付着している生物活性
炭を供給する機構と、活性炭貯留槽から生物活性炭処理
塔内へ硝化菌の付着していない活性炭を供給する機構
と、該生物活性炭処理塔内の活性炭を生物活性炭順養槽
もしくは活性炭貯留槽に引き抜く機構を配備したことを
特徴とする高度浄水処理における活性炭供給装置。
1. A raw water storage tank, a biological activated carbon treatment tower in which raw water is inflow-treated from the raw water storage tank, and the surface is filled with granular activated carbon in which microorganisms have propagated, and an activated carbon treatment water storage tank. In the advanced water purification apparatus, the activated carbon storage tank and the biological activated carbon replenishment tank are provided separately from the biological activated carbon treatment tower, and the biological activated carbon replenishment tank is provided with an oxygen supply mechanism for nitrifying bacteria in the tank. The water quality detected from the raw water storage tank and the activated carbon treated water storage tank is provided between the biological activated carbon treatment tower and the biological activated carbon replenishment tank, and between the biological activated carbon processing tower and the activated carbon storage tank. As a function of determining the nitrification state of the biological activated carbon, the mechanism for supplying the biological activated carbon with nitrifying bacteria adhering to the biological activated carbon treatment tower from the biological activated carbon replenishment tank and the nitrifying bacteria to the biological activated carbon treatment tower from the activated carbon storage tank. Adhesion of A mechanism for supplying the activated carbon is not, activated carbon supply device in the advanced water treatment, characterized in that the deployment mechanism to pull out the activated carbon organism activated carbon treatment tower in biological activated carbon order Yoso or activated carbon reservoir.
【請求項2】 上記水質の判断基準として、原水貯留槽
と活性炭処理水貯留槽のアンモニア濃度を利用したこと
を特徴とする請求項1記載の高度浄水処理における活性
炭供給装置。
2. The activated carbon supply apparatus for advanced water purification treatment according to claim 1, wherein the concentration of ammonia in the raw water storage tank and the activated carbon treated water storage tank is used as the criterion for judging the water quality.
【請求項3】 上記水質の判断基準として、原水貯留槽
と活性炭処理水貯留槽の紫外線吸光度を利用したことを
特徴とする請求項1記載の高度浄水処理における活性炭
供給装置。
3. The activated carbon supply apparatus for advanced water purification treatment according to claim 1, wherein the absorbance of ultraviolet rays of the raw water storage tank and the activated carbon treatment water storage tank is used as the water quality judgment criterion.
【請求項4】 上記生物活性炭処理塔からの活性炭引き
抜き量を、生物活性炭処理塔の単位活性炭当たりの処理
負荷量から決定することを特徴とする請求項1記載の高
度浄水処理における活性炭供給装置。
4. The activated carbon supply apparatus for advanced water purification treatment according to claim 1, wherein the amount of activated carbon drawn from the biological activated carbon treatment tower is determined from the treatment load amount per unit activated carbon of the biological activated carbon treatment tower.
【請求項5】 前記生物活性炭順養槽に、アンモニアを
含有する原水を一定時間毎又は連続的に供給するアンモ
ニア原水供給部を配備した請求項1記載の高度浄水処理
における活性炭供給装置。
5. The activated carbon supply device for advanced water purification treatment according to claim 1, wherein the biological activated carbon rectifying tank is provided with an ammonia raw water supply unit for supplying raw water containing ammonia at regular intervals or continuously.
JP3345932A 1991-12-27 1991-12-27 Activated carbon supply device in advanced water purification treatment Expired - Lifetime JP3042118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3345932A JP3042118B2 (en) 1991-12-27 1991-12-27 Activated carbon supply device in advanced water purification treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3345932A JP3042118B2 (en) 1991-12-27 1991-12-27 Activated carbon supply device in advanced water purification treatment

Publications (2)

Publication Number Publication Date
JPH05177196A true JPH05177196A (en) 1993-07-20
JP3042118B2 JP3042118B2 (en) 2000-05-15

Family

ID=18379981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3345932A Expired - Lifetime JP3042118B2 (en) 1991-12-27 1991-12-27 Activated carbon supply device in advanced water purification treatment

Country Status (1)

Country Link
JP (1) JP3042118B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136208A (en) * 2002-10-17 2004-05-13 Kurita Water Ind Ltd Water treatment device, water treatment method, and water treatment program
JP2006212484A (en) * 2005-02-01 2006-08-17 Kurita Water Ind Ltd Pure water production method and apparatus
WO2015050234A1 (en) * 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
NL2026106B1 (en) * 2020-07-21 2022-03-21 Nieuwater B V System for removing pharmaceuticals from water, such as waste water and method therefore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136208A (en) * 2002-10-17 2004-05-13 Kurita Water Ind Ltd Water treatment device, water treatment method, and water treatment program
JP2006212484A (en) * 2005-02-01 2006-08-17 Kurita Water Ind Ltd Pure water production method and apparatus
WO2015050234A1 (en) * 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
US9708577B2 (en) 2013-10-02 2017-07-18 Ajinomoto Co., Inc. Apparatus for controlling ammonia and a method for controlling ammonia
NL2026106B1 (en) * 2020-07-21 2022-03-21 Nieuwater B V System for removing pharmaceuticals from water, such as waste water and method therefore

Also Published As

Publication number Publication date
JP3042118B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
Tekerlekopoulou et al. Ammonia, iron and manganese removal from potable water using trickling filters
KR101125165B1 (en) Method and installation for the biological treatment of water using activated sludge and comprising aeration regulation
KR101371220B1 (en) Method for simultaneous removal of nitrogend and organic in the waste water using membrane bioreactor
JP6720100B2 (en) Water treatment method and water treatment device
Falahti-Marvast et al. Performance of simultaneous organic and nutrient removal in a pilot scale anaerobic–anoxic–oxic membrane bioreactor system treating municipal wastewater with a high nutrient mass ratio
CA2622930A1 (en) Dynamic control of membrane bioreactor system
JP2003047990A (en) Biological denitrifier
JP2007054726A (en) Method and device for treating waste water
JP4793635B2 (en) Recycling method of organic wastewater
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
JP3042118B2 (en) Activated carbon supply device in advanced water purification treatment
KR101367229B1 (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP4579648B2 (en) Water purification method and water purification device
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JPH04371298A (en) Treatment of organic sewage and equipment
JP4101539B2 (en) Wastewater treatment equipment
JPH11267687A (en) Biologically nitrogen-removing device
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
CN106430549A (en) Sewage ordered treatment method
JP2009214073A (en) Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor
JP2006075784A (en) Biological purifying and circulating system tray
JPH1157771A (en) Biological water treatment and equipment therefor
JP2006075736A (en) Biological purifying and circulating system tray

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12