JP4579648B2 - Water purification method and water purification device - Google Patents

Water purification method and water purification device Download PDF

Info

Publication number
JP4579648B2
JP4579648B2 JP2004316535A JP2004316535A JP4579648B2 JP 4579648 B2 JP4579648 B2 JP 4579648B2 JP 2004316535 A JP2004316535 A JP 2004316535A JP 2004316535 A JP2004316535 A JP 2004316535A JP 4579648 B2 JP4579648 B2 JP 4579648B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
raw water
water
oxygen concentration
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004316535A
Other languages
Japanese (ja)
Other versions
JP2006122838A (en
Inventor
眞美 中町
豊 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2004316535A priority Critical patent/JP4579648B2/en
Publication of JP2006122838A publication Critical patent/JP2006122838A/en
Application granted granted Critical
Publication of JP4579648B2 publication Critical patent/JP4579648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄、マンガン及びアンモニア性窒素を含む地下水などの原水を対象とし、鉄バクテリアなどの好気性微生物を利用した自然ろ過方式により、地下水などの原水に含まれる鉄、マンガン及びアンモニア性窒素を除去する浄水処理方法及び浄水処理装置に関するものである。   The present invention is intended for raw water such as groundwater containing iron, manganese and ammonia nitrogen, and by natural filtration using aerobic microorganisms such as iron bacteria, iron, manganese and ammonia nitrogen contained in raw water such as ground water. The present invention relates to a water purification treatment method and a water purification treatment apparatus for removing water.

地下水は、清浄な水質であることが多く、良好な水道水源であるものの、地域によっては地殻を構成する岩石層から溶出した鉄やマンガンなどが含まれることがある。そこで、鉄、マンガン及びアンモニア性窒素を含む地下水などの原水から、これらの物質を除去する方法として、従来より、好気性微生物である鉄バクテリア(鉄酸化能、マンガン酸化能を併せ持つ鉄バクテリア)及び硝化菌を利用した自然ろ過方式による浄化処理方法が知られている。   Groundwater often has clean water quality and is a good source of tap water, but it may contain iron, manganese, etc. eluted from rock layers that make up the crust in some areas. Therefore, as a method for removing these substances from raw water such as groundwater containing iron, manganese and ammonia nitrogen, conventionally, aerobic microorganisms such as iron bacteria (iron bacteria having both iron oxidation ability and manganese oxidation ability) and A purification method using a natural filtration method using nitrifying bacteria is known.

図5は従来の浄化処理方法を実施するための浄化処理装置の一例を示す構成説明図である。図5において、1は地下水などの原水が供給される原水調整槽である。後述するろ過槽7のろ層8内に繁殖させる鉄バクテリア及び硝化菌は好気性微生物であり酸素を必要とするが、地下水中に溶存酸素はほとんど含まれないため、原水(地下水)に曝気などによって酸素を供給する必要がある。そこで、原水調整槽1内に設置された散気管4に槽外のエアポンプ2から空気が送られ、散気管4により曝気することにより、原水調整槽1内の原水に曝気により連続的に酸素が供給されるようになっている。3はエアポンプ2の回転を制御するインバータ回路である。インバータ回路3、エアポンプ2及び散気管4は、原水に酸素を供給する溶存酸素供給手段を構成している。   FIG. 5 is an explanatory diagram showing an example of a purification processing apparatus for carrying out a conventional purification processing method. In FIG. 5, reference numeral 1 denotes a raw water adjustment tank to which raw water such as ground water is supplied. Iron bacteria and nitrifying bacteria propagated in the filter layer 8 of the filtration tank 7 described later are aerobic microorganisms and require oxygen, but since groundwater contains almost no dissolved oxygen, aeration of raw water (groundwater), etc. Need to supply oxygen. Therefore, air is sent from the air pump 2 outside the tank to the aeration pipe 4 installed in the raw water adjustment tank 1 and aerated by the aeration pipe 4 so that oxygen is continuously supplied to the raw water in the raw water adjustment tank 1 by aeration. It comes to be supplied. An inverter circuit 3 controls the rotation of the air pump 2. The inverter circuit 3, the air pump 2, and the air diffuser 4 constitute dissolved oxygen supply means for supplying oxygen to the raw water.

曝気によって酸素が供給された溶存酸素付与原水は、ポンプ5を有する溶存酸素付与原水供給管6によってろ過槽7に導かれ、ろ過槽7内に設けられたろ層8上方よりろ層8に下向流で通水される。ろ層8は、ろ過槽7内の底部に配された有孔ブロック上に、該有孔ブロックから上方へ向けて、例えば、砂利層8a、水道用基準ろ砂層(珪砂層)8b及びアンスラサイト層8cの順で形成されている。なお、ろ層8を形成するろ材としては、その他に、多孔質ろ材(人工セラミックのような焼結ろ材、天然軽石など)、繊維ろ材、プラスチックろ材などが採用される。ろ過槽7に導かれた溶存酸素付与原水は、ろ層8を通過する間に、濁度成分である懸濁浮遊物がろ層8上部に懸滞し除去されるとともに、ろ層8内に繁殖して担持された鉄バクテリア及び硝化菌の作用によって、溶存酸素付与原水に含まれる、つまり、元の原水に含まれる鉄、マンガン及びアンモニア性窒素が除去されることとなる。そして、これらの物質の除去がなされた処理水が、前記有孔ブロックを介してろ過槽7の集水室に集水され、集水室の処理水出口より取り出されるようになっている。   The dissolved oxygen-added raw water supplied with oxygen by aeration is guided to a filtration tank 7 by a dissolved oxygen-added raw water supply pipe 6 having a pump 5, and is directed downward to the filter layer 8 from above the filter layer 8 provided in the filter tank 7. The water is passed in a stream. The filter layer 8 is, for example, a gravel layer 8a, a reference filter sand layer (silica sand layer) 8b for water supply, and anthracite on the perforated block arranged at the bottom of the filtration tank 7, upward from the perforated block. The layers 8c are formed in this order. In addition, as the filter medium for forming the filter layer 8, porous filter media (sintered filter media such as artificial ceramics, natural pumice, etc.), fiber filter media, plastic filter media and the like are employed. While the dissolved oxygen-added raw water guided to the filtration tank 7 passes through the filter layer 8, suspended suspended matters that are turbidity components are suspended and removed at the upper part of the filter layer 8, and in the filter layer 8. By the action of the fermented and supported iron bacteria and nitrifying bacteria, iron, manganese, and ammonia nitrogen contained in the dissolved oxygen-added raw water, that is, contained in the original raw water are removed. The treated water from which these substances have been removed is collected in the water collection chamber of the filtration tank 7 through the perforated block and taken out from the treated water outlet of the water collection chamber.

ところで、好気性微生物である鉄バクテリア及び硝化菌などを利用した自然ろ過方式による浄化処理方法では、前記好気性微生物に酸素を供給することが必須であり、安定した浄水処理性能を維持するために、溶存酸素(DO)の管理が重要である。   By the way, in the purification method by the natural filtration method using the aerobic microorganisms such as iron bacteria and nitrifying bacteria, it is essential to supply oxygen to the aerobic microorganisms in order to maintain stable water purification performance. The management of dissolved oxygen (DO) is important.

そして、従来の浄化処理方法では、鉄バクテリア及び硝化菌などによる鉄、マンガン及びアンモニア性窒素の除去状態の良否を反映する指標として、溶存酸素付与原水をろ層8を通過させて得た処理水の溶存酸素濃度を測定して監視し、この処理水の溶存酸素濃度が目標溶存酸素濃度となるように、原水調整槽1内への曝気空気吹き込み量を制御するようにしていた。   In the conventional purification treatment method, the treated water obtained by passing the dissolved oxygen-added raw water through the filter layer 8 as an index reflecting the quality of removal of iron, manganese and ammonia nitrogen by iron bacteria and nitrifying bacteria. The dissolved oxygen concentration was measured and monitored, and the amount of aeration air blown into the raw water adjustment tank 1 was controlled so that the dissolved oxygen concentration of the treated water became the target dissolved oxygen concentration.

ところが、本発明者らの実験によると、浄水処理効果の良否にかかわらず(得られる処理水の水質にかかわらず)、処理水の溶存酸素濃度があるほぼ一定値(例えば、2mg/L程度)になっていた。このことから、処理水の溶存酸素濃度を測定し、該測定結果に基づいて原水調整槽1内への曝気空気吹き込み量を調整制御することは、適切でないことが判明した。すなわち、本発明者らは、その実験から、原水にアンモニア性窒素が含まれていると、処理水の溶存酸素濃度が目標溶存酸素濃度(例えば、2mg/L以上)となるように、原水調整槽1内への曝気空気吹き込み量を制御しても、ろ過速度が速い、すなわち鉄バクテリアや硝化菌との接触反応時間が充分でなく短い場合や、また、溶存酸素が付与された原水の該溶存酸素濃度が適正範囲より外れて低いために鉄バクテリアや硝化菌の活性が低い場合には、溶存酸素が鉄バクテリアや硝化菌によって適切に消費されず、処理水側に流出してくることから、あたかも原水へ充分に酸素付与しているものと錯覚してしまうということが判明した。このように、溶存酸素付与原水をろ層8を通過させて得た処理水の溶存酸素濃度を測定して監視し、処理水の溶存酸素濃度が目標溶存酸素濃度となるように原水に供給する酸素量を制御するという従来のやり方は、適切でないという知見を得たものである。
特開平7−100491号公報(段落[0011]、図1) 石丸 豊,外1名,「鉄バクテリア法による浄水処理技術」,環境技術,環境技術学会,平成16年4月,第33巻,第4号,p.292−297
However, according to the experiments by the present inventors, the dissolved oxygen concentration of the treated water has a substantially constant value (for example, about 2 mg / L) regardless of the quality of the water purification treatment effect (regardless of the quality of the obtained treated water). It was. From this, it was found that it is not appropriate to measure the dissolved oxygen concentration of the treated water and adjust and control the amount of aeration air blown into the raw water adjustment tank 1 based on the measurement result. That is, the present inventors have shown from the experiment that when the raw water contains ammonia nitrogen, the raw water is adjusted so that the dissolved oxygen concentration of the treated water becomes the target dissolved oxygen concentration (for example, 2 mg / L or more). Even if the amount of aeration air blown into the tank 1 is controlled, the filtration rate is fast, that is, the contact reaction time with iron bacteria or nitrifying bacteria is not sufficient, and the raw water to which dissolved oxygen is added If the activity of iron bacteria and nitrifying bacteria is low because the dissolved oxygen concentration is lower than the appropriate range, dissolved oxygen will not be properly consumed by the iron bacteria or nitrifying bacteria and will flow out to the treated water side. It has been found that the illusion is that the raw water is sufficiently oxygenated. Thus, the dissolved oxygen concentration raw water is measured and monitored for the dissolved oxygen concentration of the treated water obtained by passing through the filter layer 8 and supplied to the raw water so that the dissolved oxygen concentration of the treated water becomes the target dissolved oxygen concentration. The conventional way of controlling the amount of oxygen has been found to be inappropriate.
Japanese Patent Laid-Open No. 7-100491 (paragraph [0011], FIG. 1) Yutaka Ishimaru, 1 outside, "Purification Water Treatment Technology Using Iron Bacteria Method", Environmental Technology, Environmental Technology Society, April 2004, Vol. 33, No. 4, p. 292-297

そこで本発明の課題は、鉄、マンガン及びアンモニア性窒素を含む地下水等の原水を対象とし、鉄バクテリアなどの好気性微生物を利用した自然ろ過方式により前記原水に含まれる鉄、マンガン及びアンモニア性窒素の除去を行うに際し、好気性微生物による除去状態の良否が適正に反映される指標を測定して監視し、その測定結果に基づいて前記原水に供給する酸素量を制御することで、前記原水に含まれる鉄、マンガン及びアンモニア性窒素を、安定して良好に除去して、良好な水質を安定して得ることができる浄水処理方法及び浄水処理装置を提供することにある。   Therefore, an object of the present invention is to target raw water such as groundwater containing iron, manganese and ammonia nitrogen, and to iron, manganese and ammonia nitrogen contained in the raw water by a natural filtration method using aerobic microorganisms such as iron bacteria. In the removal of water, an index that appropriately reflects the quality of the removal state by aerobic microorganisms is measured and monitored, and the amount of oxygen supplied to the raw water is controlled based on the measurement result. An object of the present invention is to provide a water purification treatment method and a water purification treatment apparatus that can stably and satisfactorily remove iron, manganese, and ammonia nitrogen contained therein and stably obtain good water quality.

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、鉄、マンガン及びアンモニア性窒素を含む地下水等の原水に酸素を供給し、この溶存酸素付与原水をろ過槽内に設けられたろ層に通水することにより、前記ろ層に担持された鉄バクテリア及び硝化菌の作用によって、ろ過槽内の溶存酸素付与原水に含まれる鉄、マンガン及びアンモニア性窒素の除去を行い、その処理水を得る浄水処理方法において、前記ろ層の直前部で溶存酸素付与原水の溶存酸素濃度を測定し、その測定結果に基づいて前記ろ層の直前部における溶存酸素付与原水の溶存酸素濃度が目標溶存酸素濃度となるように前記原水に供給する酸素量を制御することを特徴とする浄水処理方法。   The invention according to claim 1 supplies oxygen to raw water such as ground water containing iron, manganese and ammonia nitrogen, and passes the dissolved oxygen-added raw water through a filter layer provided in a filtration tank, thereby providing the filter layer. In the water purification method for obtaining the treated water by removing iron, manganese and ammonia nitrogen contained in the dissolved oxygen-added raw water in the filtration tank by the action of iron bacteria and nitrifying bacteria supported on the filtration tank, Measure the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately before, and supply the raw oxygen water so that the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately before the filter layer becomes the target dissolved oxygen concentration based on the measurement result A water purification method characterized by controlling the amount of oxygen.

請求項2の発明は、請求項1記載の浄水処理方法において、前記目標溶存酸素濃度が5mg/L以上であることを特徴とするものである。   The invention according to claim 2 is the water purification method according to claim 1, wherein the target dissolved oxygen concentration is 5 mg / L or more.

請求項3の発明は、鉄、マンガン及びアンモニア性窒素を含む地下水等の原水に酸素を供給する溶存酸素供給手段と、前記溶存酸素供給手段による溶存酸素付与原水をろ層に通水することにより、前記ろ層に担持された鉄バクテリア及び硝化菌の作用によって、槽内の溶存酸素付与原水に含まれる鉄、マンガン及びアンモニア性窒素の除去を行い、その処理水を得るろ過槽と、前記ろ層の直前部における溶存酸素付与原水の溶存酸素濃度を測定する溶存酸素濃度計と、前記溶存酸素濃度計による測定結果に基づいて前記ろ層の直前部における溶存酸素付与原水の溶存酸素濃度が目標溶存酸素濃度となるように制御出力を前記溶存酸素供給手段に与える溶存酸素供給制御手段と、を備えたことを特徴とする浄化処理装置である。   The invention according to claim 3 is a method in which dissolved oxygen supply means for supplying oxygen to raw water such as ground water containing iron, manganese and ammonia nitrogen, and the dissolved oxygen-added raw water by the dissolved oxygen supply means are passed through the filter layer. The filtration tank for removing the iron, manganese, and ammonia nitrogen contained in the dissolved oxygen-added raw water in the tank by the action of iron bacteria and nitrifying bacteria supported on the filter layer and obtaining the treated water; The dissolved oxygen concentration meter that measures the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately before the layer, and the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately before the filter layer based on the measurement result of the dissolved oxygen concentration target A purification treatment apparatus comprising: dissolved oxygen supply control means for providing a control output to the dissolved oxygen supply means so as to obtain a dissolved oxygen concentration.

請求項4の発明は、請求項3記載の浄水処理装置において、前記目標溶存酸素濃度が5mg/L以上であることを特徴とするものである。   The invention of claim 4 is the water purification apparatus of claim 3, wherein the target dissolved oxygen concentration is 5 mg / L or more.

本発明の浄水処理方法又は浄水処理装置は、鉄、マンガン及びアンモニア性窒素を含む地下水などの原水を対象とし、鉄バクテリアなどの好気性微生物を利用した自然ろ過方式により前記原水に含まれる鉄、マンガン及びアンモニア性窒素の除去を行うに際し、好気性微生物による除去状態の良否が適正に反映される指標として、ろ過槽内に設けられたろ層の直前部における溶存酸素付与原水の溶存酸素濃度を測定し、その測定結果に基づいて前記ろ層の直前部における溶存酸素付与原水の溶存酸素濃度が目標溶存酸素濃度となるように前記原水に供給する酸素量を制御するようにしている。これにより、水道水源としての地下水などの原水に含まれる鉄、マンガン及びアンモニア性窒素を安定して良好に除去して、良好な水質を安定して得ることができる。   The water purification treatment method or the water purification apparatus of the present invention is intended for raw water such as ground water containing iron, manganese and ammonia nitrogen, and iron contained in the raw water by a natural filtration method using aerobic microorganisms such as iron bacteria, When removing manganese and ammoniacal nitrogen, measure the dissolved oxygen concentration of the raw oxygen-added raw water immediately before the filter layer in the filter tank as an index that properly reflects the quality of the removal by aerobic microorganisms. And based on the measurement result, the amount of oxygen supplied to the raw water is controlled so that the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately before the filter layer becomes the target dissolved oxygen concentration. Thereby, iron, manganese, and ammonia nitrogen contained in raw water such as ground water as a tap water source can be stably and satisfactorily removed, and good water quality can be stably obtained.

本発明においては、ろ層直前部における溶存酸素付与原水の溶存酸素濃度を測定し、その測定結果に基づいてろ層直前部における溶存酸素付与原水の溶存酸素濃度が目標溶存酸素濃度DOとなるように原水に曝気などによって供給する酸素量を制御するようにしている。この場合、溶存酸素付与原水の溶存酸素濃度の測定を行うろ層直前部としては、下向流の自然ろ過方式では、ろ層の直上方位置がろ層に最も近くて特に好ましい。そして、酸素付与後からろ層へ至るまでの溶存酸素付与原水の経路において、溶存酸素濃度がろ層直上方での値とほとんど変化なく実質的に同じであるような箇所であればよい(図2参照)。 In the present invention, the dissolved oxygen concentration of dissolved oxygen providing the raw water in the filtrate layer immediately preceding section was measured, so that the dissolved oxygen concentration of dissolved oxygen providing the raw water in the filtrate layer immediately preceding section on the basis of the measurement result is the target dissolved oxygen concentration DO M The amount of oxygen supplied to the raw water by aeration is controlled. In this case, as the portion immediately before the filter layer for measuring the dissolved oxygen concentration of the dissolved oxygen-added raw water, the position immediately above the filter layer is particularly preferable because it is the closest to the filter layer in the downward flow natural filtration method. And, in the path of the dissolved oxygen-added raw water from the oxygen application to the filter layer, the dissolved oxygen concentration may be a location that is substantially the same with almost no change from the value immediately above the filter layer (Fig. 2).

本発明において、前記目標溶存酸素濃度DOは、ろ過速度にもよるが、5mg/L以上がよい。目標溶存酸素濃度DOが5mg/Lを下回ると、ろ過槽内の酸素が不足し、鉄バクテリア及び硝化菌による浄化作用が低下して、鉄、マンガン及びアンモニア性窒素を安定して良好に除去できない。目標溶存酸素濃度DOは、好ましくは6mg/L以上、確実に良好な処理水質を得る点から、特に好ましくは6.5mg/L以上がよい。目標溶存酸素濃度DOの上限値は、ろ過速度にもよるが、8mg/L程度が適切である。その理由は、過度の曝気により酸素過飽和状態にした場合、溶存ケイ酸を含有する原水などでは鉄の除去が悪化することがあるためである。また、アンモニア性窒素の硝化においては約4.6倍の溶存酸素が必要であることから、本発明は、アンモニア性窒素濃度が1.3mg/L以下(溶存酸素付与原水の目標溶存酸素濃度DO:8mg/Lのとき、目標溶存酸素濃度DO:5mg/Lのときは0.65mg/L以下)の原水に適用することが、アンモニア性窒素を確実に除去する点から好ましい。 In the present invention, the target dissolved oxygen concentration DO M, depending on the filtration rate, it is more 5 mg / L. When the target dissolved oxygen concentration DO M is below 5 mg / L, oxygen is insufficient in the filtration tank, cleaning effect of iron bacteria and nitrifying bacteria is reduced, iron, stable and good removal of manganese and ammonium nitrogen Can not. Target dissolved oxygen concentration DO M is preferably 6 mg / L or more, from the viewpoint of obtaining a reliable good processing quality, particularly preferably it is more than 6.5 mg / L. Upper limit of the target dissolved oxygen concentration DO M, depending on the filtration rate, about 8 mg / L is suitable. The reason is that when the oxygen is supersaturated by excessive aeration, the removal of iron may be deteriorated in raw water containing dissolved silicic acid. In addition, since about 4.6 times the dissolved oxygen is required for nitrification of ammonia nitrogen, the present invention has an ammonia nitrogen concentration of 1.3 mg / L or less (the target dissolved oxygen concentration DO of dissolved oxygen-added raw water). It is preferable to apply to raw water having a target dissolved oxygen concentration DO M : 0.6 mg / L or less when the target dissolved oxygen concentration DO M is 5 mg / L when M is 8 mg / L from the viewpoint of reliably removing ammonia nitrogen.

図1は本発明の浄化処理方法を実施するための浄化処理装置の一例を示す構成説明図である。ここで、前記図5に示す従来の浄化処理装置と同一部分には図5と同一の符号を付して説明を省略し、異なる点について説明する。   FIG. 1 is a configuration explanatory view showing an example of a purification treatment apparatus for carrying out the purification treatment method of the present invention. Here, the same parts as those in the conventional purification treatment apparatus shown in FIG. 5 are denoted by the same reference numerals as those in FIG.

図1に示すように、9は溶存酸素濃度計であり、ろ過槽7のろ層8を形成するアンスラサイト層8cの直上方における溶存酸素付与原水の溶存酸素濃度を測定するものである。また、10は制御装置であり、溶存酸素濃度計9からの溶存酸素濃度測定値に見合う信号値に応じてアンスラサイト層8cの直上方における溶存酸素付与原水の溶存酸素濃度が目標溶存酸素濃度DOとなるようにインバータ回路3にエアポンプ2の回転数を指示するものである。制御装置10は、溶存酸素供給制御手段を構成している。 As shown in FIG. 1, 9 is a dissolved oxygen concentration meter, which measures the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately above the anthracite layer 8c forming the filter layer 8 of the filtration tank 7. Reference numeral 10 denotes a control device, and the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately above the anthracite layer 8c is set to the target dissolved oxygen concentration DO according to the signal value corresponding to the measured dissolved oxygen concentration value from the dissolved oxygen concentration meter 9. The rotation speed of the air pump 2 is instructed to the inverter circuit 3 so as to be M. The control device 10 constitutes dissolved oxygen supply control means.

このように構成される浄化処理装置を用いて、溶存酸素濃度計9により、アンスラサイト層8cの直上方における溶存酸素付与原水の溶存酸素濃度を測定し、制御装置10により、前記測定結果に基づいてアンスラサイト層8cの直上方における溶存酸素付与原水の溶存酸素濃度が目標溶存酸素濃度DOとなるように、エアポンプ2の回転数を調整制御することで原水に曝気によって供給する酸素量を制御するようにしている。 Using the thus configured purification treatment apparatus, the dissolved oxygen concentration meter 9 measures the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately above the anthracite layer 8c, and the control apparatus 10 based on the measurement result. Te so that the dissolved oxygen concentration of dissolved oxygen providing the raw water in the right above the anthracite layer 8c becomes a target dissolved oxygen concentration DO M, control the amount of oxygen supplied by the aeration in the raw water by adjusting and controlling the rotational speed of the air pump 2 Like to do.

なお、得られた処理水は、ろ過槽7の集水室の処理水出口より取り出され、必要に応じて、急速ろ過工程、生物活性炭処理工程又は膜ろ過処理工程などの下流工程に送られるようになっている。   The treated water obtained is taken out from the treated water outlet of the water collection chamber of the filtration tank 7 and sent to downstream processes such as a rapid filtration process, a biological activated carbon treatment process, or a membrane filtration process as necessary. It has become.

図2は本発明の浄化処理方法を実施するための浄化処理装置の別の例を示す構成説明図である。ここで、前記図1に示す浄化処理装置と同一部分には図1と同一の符号を付して説明を省略し、異なる点について説明する。   FIG. 2 is a structural explanatory view showing another example of the purification treatment apparatus for carrying out the purification treatment method of the present invention. Here, the same parts as those in the purification apparatus shown in FIG. 1 are denoted by the same reference numerals as those in FIG.

図2に示すように、この実施形態では、2つのろ過槽7を備えており、原水調整槽1から溶存酸素付与原水供給主管11によって導かれた溶存酸素付与原水は、前記溶存酸素付与原水供給主管11に接続された一方の枝管12を介して一方のろ過槽7に導入されるとともに、前記溶存酸素付与原水供給主管11に接続された他方の枝管13を介して他方のろ過槽7に導入されるようになっている。そして、ろ層8の直前部で溶存酸素付与原水の溶存酸素濃度を測定する溶存酸素濃度計として、この実施形態では、溶存酸素付与原水供給主管11によって導かれた溶存酸素付与原水の枝管12,13への分岐点での溶存酸素濃度を測定するようにした溶存酸素濃度計14が設けられている。   As shown in FIG. 2, in this embodiment, two filtration tanks 7 are provided, and the dissolved oxygen-added raw water introduced from the raw water adjustment tank 1 by the dissolved oxygen-added raw water supply main pipe 11 is the dissolved oxygen-added raw water supply. While being introduced into one filtration tank 7 via one branch pipe 12 connected to the main pipe 11, the other filtration tank 7 is connected via the other branch pipe 13 connected to the dissolved oxygen-added raw water supply main pipe 11. To be introduced. Then, as a dissolved oxygen concentration meter that measures the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately before the filter layer 8, in this embodiment, the branch pipe 12 of the dissolved oxygen-added raw water guided by the dissolved oxygen-added raw water supply main pipe 11 is used. , 13 is provided with a dissolved oxygen concentration meter 14 that measures the dissolved oxygen concentration at the branch point.

このように構成される浄化処理装置を用いて、溶存酸素濃度計14により、溶存酸素付与原水供給主管11における枝管12,13への分岐点での溶存酸素付与原水の溶存酸素濃度を測定し、制御装置10により、前記測定結果に基づいて前記分岐点での溶存酸素付与原水の溶存酸素濃度が目標溶存酸素濃度DOとなるように、エアポンプ2の回転数を調整制御することで原水に曝気によって供給する酸素量を制御するようにしている。 Using the thus-configured purification apparatus, the dissolved oxygen concentration meter 14 measures the dissolved oxygen concentration of the dissolved oxygen-added raw water at the branch point to the branch pipes 12 and 13 in the dissolved oxygen-added raw water supply main pipe 11. , the control unit 10, as the dissolved oxygen concentration of dissolved oxygen providing the raw water in the branch point based on the measurement result reaches the target dissolved oxygen concentration DO M, the raw water by adjusting and controlling the rotational speed of the air pump 2 The amount of oxygen supplied by aeration is controlled.

なお、本発明は、図1,図2に示す実施形態に限定されず、例えば、ろ過槽7内に溶存酸素供給手段を設けるなど、本発明の趣旨を逸脱しない範囲で種々の設計変更が可能である。   The present invention is not limited to the embodiment shown in FIGS. 1 and 2, and various design changes can be made without departing from the spirit of the present invention, for example, by providing a dissolved oxygen supply means in the filtration tank 7. It is.

図3は本発明に係る浄水処理結果の一例を示すグラフであって、ろ過速度LV:130m/日、実験期間:約10ヶ月間の場合の、ろ過槽のアンスラサイト層の直上方における溶存酸素付与原水の溶存酸素濃度DOと、ろ過槽の処理水出口で得られた処理水に含まれる鉄(Fe)、マンガン(Mn)及びアンモニア性窒素(NH−N)の各濃度との関係を示すグラフである。実験は前記図1に示す浄化処理装置を用いて実施した。なお、原水に含まれる鉄、マンガン及びアンモニア性窒素の各濃度は、それぞれ、2.4〜24(平均5.19)mg/L、0.30〜0.41(平均0.37)mg/L、及び0.48〜0.83(平均0.66)mg/Lである。 FIG. 3 is a graph showing an example of the result of the water purification treatment according to the present invention. The dissolved oxygen immediately above the anthracite layer of the filtration tank when the filtration rate LV is 130 m / day and the experiment period is about 10 months. The relationship between the dissolved oxygen concentration DO of the raw raw water and each concentration of iron (Fe), manganese (Mn) and ammonia nitrogen (NH 4 -N) contained in the treated water obtained at the treated water outlet of the filtration tank It is a graph to show. The experiment was performed using the purification treatment apparatus shown in FIG. In addition, each density | concentration of iron, manganese, and ammonia nitrogen contained in raw | natural water is 2.4-24 (average 5.19) mg / L, 0.30-0.41 (average 0.37) mg / L, respectively. L, and 0.48 to 0.83 (average 0.66) mg / L.

図3から理解されるように、ろ過速度LV:130m/日の場合、目標溶存酸素濃度DOを7〜8mg/Lとして浄水処理を行うようにすれば、鉄:0.4mg/L程度、マンガン:0.1mg/L未満、アンモニア性窒素:0.01未満、のように安定して良好な浄水処理を行えることが確認できた。 As understood from FIG. 3, the filtration rate LV: For 130m / day, if the target dissolved oxygen concentration DO M to perform the water purification process as 7~8mg / L, iron: 0.4 mg / L or so, It was confirmed that good water purification treatment could be performed stably such as manganese: less than 0.1 mg / L and ammoniacal nitrogen: less than 0.01.

図4は本発明に係る浄水処理結果の一例を示すグラフであって、ろ過速度LV:65m/日、実験期間:約7ヶ月間の場合の、ろ過槽のアンスラサイト層の直上方における溶存酸素付与原水の溶存酸素濃度DOと、ろ過槽の処理水出口で得られた処理水に含まれる鉄(Fe)、マンガン(Mn)及びアンモニア性窒素(NH−N)の各濃度との関係を示すグラフである。実験は前記図1に示す浄化処理装置を用いて実施した。なお、原水に含まれる鉄、マンガン及びアンモニア性窒素の各濃度は、それぞれ、2.4〜24(平均5.19)mg/L、0.30〜0.41(平均0.37)mg/L、及び0.48〜0.83(平均0.66)mg/Lである。 FIG. 4 is a graph showing an example of the result of the water purification treatment according to the present invention, and the dissolved oxygen immediately above the anthracite layer of the filtration tank when the filtration rate LV is 65 m / day and the experiment period is about 7 months. The relationship between the dissolved oxygen concentration DO of the raw raw water and each concentration of iron (Fe), manganese (Mn) and ammonia nitrogen (NH 4 -N) contained in the treated water obtained at the treated water outlet of the filtration tank It is a graph to show. The experiment was performed using the purification treatment apparatus shown in FIG. In addition, each density | concentration of iron, manganese, and ammonia nitrogen contained in raw | natural water is 2.4-24 (average 5.19) mg / L, 0.30-0.41 (average 0.37) mg / L, respectively. L, and 0.48 to 0.83 (average 0.66) mg / L.

図4から理解されるように、ろ過速度LV:65m/日の場合、目標溶存酸素濃度DOを6〜8mg/Lとして浄水処理を行うようにすれば、鉄:0.3mg/L程度、マンガン:0.001mg/L未満、アンモニア性窒素:0.01mg/L未満、のように安定して良好な浄水処理を行えることが確認できた。 As understood from FIG. 4, the filtration rate LV: For 65 m / day, if the target dissolved oxygen concentration DO M to perform the water purification process as 6~8mg / L, iron: 0.3 mg / L or so, It was confirmed that a good water purification treatment could be performed stably such as manganese: less than 0.001 mg / L and ammoniacal nitrogen: less than 0.01 mg / L.

本発明の浄化処理方法を実施するための浄化処理装置の一例を示す構成説明図である。It is composition explanatory drawing which shows an example of the purification processing apparatus for enforcing the purification processing method of this invention. 本発明の浄化処理方法を実施するための浄化処理装置の別の例を示す構成説明図である。It is composition explanatory drawing which shows another example of the purification processing apparatus for enforcing the purification processing method of this invention. 本発明に係る浄水処理結果の一例を示すグラフである。It is a graph which shows an example of the water purification process result which concerns on this invention. 本発明に係る浄水処理結果の一例を示すグラフである。It is a graph which shows an example of the water purification process result which concerns on this invention. 従来の浄化処理方法を実施するための浄化処理装置の一例を示す構成説明図である。It is composition explanatory drawing which shows an example of the purification processing apparatus for enforcing the conventional purification processing method.

符号の説明Explanation of symbols

1…原水調整槽
2…エアポンプ
3…インバータ回路
4…散気管
5…ポンプ
6…溶存酸素付与原水供給管
7…ろ過槽
8…ろ層
8a…砂利層
8b…水道用基準ろ砂層
8c…アンスラサイト層
9,14…溶存酸素濃度計
10…制御装置
11…溶存酸素付与原水供給主管
12,13…枝管
DESCRIPTION OF SYMBOLS 1 ... Raw water adjustment tank 2 ... Air pump 3 ... Inverter circuit 4 ... Aeration pipe 5 ... Pump 6 ... Dissolved oxygen provision raw water supply pipe 7 ... Filtration tank 8 ... Filtration layer 8a ... Gravel layer 8b ... Standard filtration sand layer 8c ... Anthracite Layers 9, 14 ... Dissolved oxygen concentration meter 10 ... Control device 11 ... Dissolved oxygen-added raw water supply main pipe 12, 13 ... Branch pipe

Claims (4)

鉄、マンガン及びアンモニア性窒素を含む地下水等の原水に酸素を供給し、この溶存酸素付与原水をろ過槽内に設けられたろ層に通水することにより、前記ろ層に担持された鉄バクテリア及び硝化菌の作用によって、ろ過槽内の溶存酸素付与原水に含まれる鉄、マンガン及びアンモニア性窒素の除去を行い、その処理水を得る浄水処理方法において、前記ろ層の直前部で溶存酸素付与原水の溶存酸素濃度を測定し、その測定結果に基づいて前記ろ層の直前部における溶存酸素付与原水の溶存酸素濃度が目標溶存酸素濃度となるように前記原水に供給する酸素量を制御することを特徴とする浄水処理方法。   By supplying oxygen to raw water such as groundwater containing iron, manganese, and ammonia nitrogen, and passing this dissolved oxygen-added raw water through a filter layer provided in a filter tank, iron bacteria supported on the filter layer and In the water purification method for removing iron, manganese and ammonia nitrogen contained in the dissolved oxygen-added raw water in the filtration tank by the action of nitrifying bacteria and obtaining the treated water, the dissolved oxygen-added raw water immediately before the filter layer And measuring the amount of oxygen supplied to the raw water so that the dissolved oxygen concentration of the dissolved oxygen-added raw water immediately before the filter layer becomes the target dissolved oxygen concentration based on the measurement result. Characterized water treatment method. 前記目標溶存酸素濃度が5mg/L以上であることを特徴とする請求項1記載の浄水処理方法。   The water purification method according to claim 1, wherein the target dissolved oxygen concentration is 5 mg / L or more. 鉄、マンガン及びアンモニア性窒素を含む地下水等の原水に酸素を供給する溶存酸素供給手段と、前記溶存酸素供給手段による溶存酸素付与原水をろ層に通水することにより、前記ろ層に担持された鉄バクテリア及び硝化菌の作用によって、槽内の溶存酸素付与原水に含まれる鉄、マンガン及びアンモニア性窒素の除去を行い、その処理水を得るろ過槽と、前記ろ層の直前部における溶存酸素付与原水の溶存酸素濃度を測定する溶存酸素濃度計と、前記溶存酸素濃度計による測定結果に基づいて前記ろ層の直前部における溶存酸素付与原水の溶存酸素濃度が目標溶存酸素濃度となるように制御出力を前記溶存酸素供給手段に与える溶存酸素供給制御手段と、を備えたことを特徴とする浄化処理装置。   The dissolved oxygen supply means for supplying oxygen to the raw water such as ground water containing iron, manganese and ammonia nitrogen, and the dissolved oxygen-added raw water by the dissolved oxygen supply means are passed through the filter bed, thereby being supported on the filter bed. By the action of iron bacteria and nitrifying bacteria, iron, manganese, and ammonia nitrogen contained in the dissolved oxygen-added raw water in the tank are removed to obtain treated water, and dissolved oxygen immediately before the filter layer. The dissolved oxygen concentration meter that measures the dissolved oxygen concentration of the raw raw water, and the dissolved oxygen concentration of the raw oxygen-added raw water in the immediately preceding portion of the filter bed based on the measurement result by the dissolved oxygen concentration meter becomes the target dissolved oxygen concentration A purification treatment apparatus comprising: dissolved oxygen supply control means for supplying a control output to the dissolved oxygen supply means. 前記目標溶存酸素濃度が5mg/L以上であることを特徴とする請求項3記載の浄水処理装置。   The water purification apparatus according to claim 3, wherein the target dissolved oxygen concentration is 5 mg / L or more.
JP2004316535A 2004-10-29 2004-10-29 Water purification method and water purification device Active JP4579648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004316535A JP4579648B2 (en) 2004-10-29 2004-10-29 Water purification method and water purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004316535A JP4579648B2 (en) 2004-10-29 2004-10-29 Water purification method and water purification device

Publications (2)

Publication Number Publication Date
JP2006122838A JP2006122838A (en) 2006-05-18
JP4579648B2 true JP4579648B2 (en) 2010-11-10

Family

ID=36718073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004316535A Active JP4579648B2 (en) 2004-10-29 2004-10-29 Water purification method and water purification device

Country Status (1)

Country Link
JP (1) JP4579648B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189407B2 (en) * 2008-05-15 2013-04-24 扶桑建設工業株式会社 Purification method of raw water
JP5319231B2 (en) * 2008-10-10 2013-10-16 オルガノ株式会社 Biological filtration equipment
JP2011104496A (en) * 2009-11-16 2011-06-02 Nissin Electric Co Ltd Biological contact filtration device and groundwater purification system
CN101717172B (en) * 2009-11-20 2012-05-23 中国水产科学研究院渔业机械仪器研究所 Method for treating underground seawater used for aquiculture
JP5583444B2 (en) * 2010-03-26 2014-09-03 扶桑建設工業株式会社 Raw water purification method and apparatus
JP5781871B2 (en) * 2011-09-12 2015-09-24 株式会社奥村組 Purification method and apparatus for raw water containing iron, manganese and ammonia nitrogen
JP6389979B2 (en) * 2017-02-03 2018-09-12 田中 聡 Deodorant manufacturing method
CN108793431A (en) * 2018-07-06 2018-11-13 成都信息工程大学 A method of organic matter, ammonia nitrogen, manganese in the synchronous removal micro-polluted source water based on aeration and biological filter column

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066065A (en) * 2002-08-02 2004-03-04 Chiiki Kankyo System Kenkyusho:Kk Method of imparting arsenic removing function to filtration tank, water treatment method of groundwater, and water treatment equipment for groundwater
JP2005288417A (en) * 2004-04-05 2005-10-20 Japan Organo Co Ltd Biofiltration device
JP2005288416A (en) * 2004-04-05 2005-10-20 Japan Organo Co Ltd Biofiltration device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066065A (en) * 2002-08-02 2004-03-04 Chiiki Kankyo System Kenkyusho:Kk Method of imparting arsenic removing function to filtration tank, water treatment method of groundwater, and water treatment equipment for groundwater
JP2005288417A (en) * 2004-04-05 2005-10-20 Japan Organo Co Ltd Biofiltration device
JP2005288416A (en) * 2004-04-05 2005-10-20 Japan Organo Co Ltd Biofiltration device

Also Published As

Publication number Publication date
JP2006122838A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
Du et al. Removal of iron, manganese and ammonia from groundwater using a PAC-MBR system: The anti-pollution ability, microbial population and membrane fouling
Tekerlekopoulou et al. Ammonia, iron and manganese removal from potable water using trickling filters
Terada et al. Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification
CN105776770B (en) A kind of deep purification of waste water devices and methods therefor of high adaptivity
JP4579648B2 (en) Water purification method and water purification device
JP4966905B2 (en) Breeding water purification method
JP4671178B2 (en) Nitrogen removal method and apparatus
CA2348520A1 (en) Nitrification process
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
JP2002126779A (en) Sludge treatment method and apparatus used therefor
Breda et al. The role of backwash in start-up of full-scale drinking water biofilters
CN205635266U (en) High adaptive's sewage deep purification device
JP3042118B2 (en) Activated carbon supply device in advanced water purification treatment
JPH11267687A (en) Biologically nitrogen-removing device
JPH10263594A (en) Removing method and device of nitrate ion in waste water
JP4612078B2 (en) Biological treatment method and biological treatment apparatus
JP2003266096A (en) Wastewater treatment apparatus
JP3782738B2 (en) Wastewater treatment method
JPH07232188A (en) Method for controlling biological activated carbon equipment
JPH06496A (en) Advanced treatment of sewage
JPH08141587A (en) Method and apparatus for treating waste water
KR100882228B1 (en) Waste-water treatment apparatus comprising perchlorate, and treatment method thereof
JP2015016436A (en) Method and apparatus for biological denitrification
JP2004237219A (en) Biological membrane filter apparatus and treatment method
JP2000005783A (en) Cleaning treatment of river water and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250