JPH05166510A - Secondary lithium battery - Google Patents

Secondary lithium battery

Info

Publication number
JPH05166510A
JPH05166510A JP3352258A JP35225891A JPH05166510A JP H05166510 A JPH05166510 A JP H05166510A JP 3352258 A JP3352258 A JP 3352258A JP 35225891 A JP35225891 A JP 35225891A JP H05166510 A JPH05166510 A JP H05166510A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
electrode material
mol
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3352258A
Other languages
Japanese (ja)
Inventor
Katsuharu Ikeda
克治 池田
Kazuya Hiratsuka
和也 平塚
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3352258A priority Critical patent/JPH05166510A/en
Publication of JPH05166510A publication Critical patent/JPH05166510A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a secondary lithium battery possessing a high operation voltage and high energy density and capable of lengthening its cycle life. CONSTITUTION:A negative electrode material is used which is of lithium or contains lithium, and positive electrode material is used which is expressed by a general formula LixCrMnO4 (where, 0<x<=2).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い作動電圧を有し、
充放電容量が大きく、サイクル寿命を長くし得るリチウ
ム二次電池に係るものである。
The present invention has a high operating voltage,
The present invention relates to a lithium secondary battery having a large charge / discharge capacity and a long cycle life.

【0002】[0002]

【従来の技術】近年、リチウムを負極材料として用いる
リチウム二次電池は高いエネルギー密度(高い作動電圧
と大きい充放電容量)を持つ電池として注目されてい
る。このようなリチウム二次電池の正極材としては、例
えばチタン、モリブデン、銅、ニオブ、バナジウム、マ
ンガン、クロム、ニッケル、コバルトなどの金属の酸化
物、硫化物、セレン化物などが提案されており、なかで
も、サイクル特性に優れるリチウムとニッケルやコバル
トの複合酸化物である LiCoO2, LiNiO2 などを用いる開
発が進められている。
2. Description of the Related Art In recent years, lithium secondary batteries using lithium as a negative electrode material have been attracting attention as batteries having high energy density (high operating voltage and large charge / discharge capacity). As a positive electrode material for such a lithium secondary battery, for example, titanium, molybdenum, copper, niobium, vanadium, manganese, chromium, nickel, oxides of metals such as cobalt, sulfides, selenides, etc. have been proposed. Among them, development using lithium-nickel-cobalt composite oxides such as LiCoO 2 and LiNiO 2 , which have excellent cycle characteristics, is under way.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、近年リ
チウム二次電池はサイクル寿命の改善や安全性の面か
ら、負極として化学的に活性な金属状態のリチウムを用
いずに、例えば炭素質材料にリチウムをインターカレー
ションにより吸蔵させたものを用いるといった、リチウ
ムをイオン化した状態で保持させる方策をとったものが
多い。
However, in recent years, lithium secondary batteries have not been improved in terms of cycle life and safety, but have not used chemically active lithium in the metal state as the negative electrode. In many cases, a method of holding lithium in an ionized state is used, such as using a material occluded by intercalation.

【0004】しかしながら、この負極材の電位は従来用
いられていたリチウム金属電極より貴な電位であり、そ
のため正極、負極の組み合わせである電池としての作動
電圧は低くなってしまうという問題点があった。このた
め、サイクル特性に優れ、より高い作動電圧を出しうる
リチウム二次電池用の正極材が提供されることが望まし
い。そのようなものとして、例えば LiMn2O4で示される
スピネル含有複合酸化物が知られている。
However, the potential of the negative electrode material is nobler than that of the conventionally used lithium metal electrode, and therefore the operating voltage of the battery, which is a combination of the positive electrode and the negative electrode, becomes low. .. Therefore, it is desirable to provide a positive electrode material for a lithium secondary battery, which has excellent cycle characteristics and can output a higher operating voltage. As such, for example, a spinel-containing composite oxide represented by LiMn 2 O 4 is known.

【0005】しかしながら、LiMn2O4 は理論値に近い充
放電容量を得るのは難しく、またサイクル寿命も優れた
ものではなかった。
However, it is difficult for LiMn 2 O 4 to obtain a charge / discharge capacity close to the theoretical value, and the cycle life is not excellent.

【0006】この原因のひとつとして、LiMn2O4 を合成
する際、LiとMnそれぞれの水酸化物、酸化物または炭酸
塩などの出発物質を混合し、数百度で焼成することによ
り合成する方法が一般的に用いられているが、この方法
で安定なLiMn2O4 のスピネル結晶骨格を得ることは難し
いため、充放電を繰り返したときに結晶構造が壊れやす
く、良いサイクル特性が得られない。
As one of the causes of this, when synthesizing LiMn 2 O 4 , a method of synthesizing by mixing starting materials such as hydroxides, oxides or carbonates of Li and Mn and firing at several hundred degrees However, since it is difficult to obtain a stable LiMn 2 O 4 spinel crystal skeleton by this method, the crystal structure is easily broken when charge and discharge are repeated, and good cycle characteristics cannot be obtained. ..

【0007】また、他の原因として、LiMn2O4 が放電す
るときLiがLiMn2O4 格子中に入っていくが、この際LiMn
2O4 の電子伝導性が急激に低下してしまい、再び充電し
ていくとき、すなわちLiをLiMn2O4 格子中から引き抜く
反応のとき、電子伝導性が低下しているため電子の受渡
しがうまく行かず、LiのLiMn2O4 格子中からの引き抜き
が不完全なものとなるためと考えられる。
As another cause, when LiMn 2 O 4 discharges, Li enters into the LiMn 2 O 4 lattice.
The electron conductivity of 2 O 4 drops sharply, and when it is recharged, that is, during the reaction of extracting Li from the LiMn 2 O 4 lattice, the electron conductivity is lowered and electron transfer is not possible. This is probably because the extraction of Li from the LiMn 2 O 4 lattice was incomplete.

【0008】特に高率充電が要求される場合この傾向が
顕著となり、十分な充電ができないため作動電圧が低下
し、サイクル特性も急激に劣化してしまう欠点を有す
る。
This tendency becomes remarkable especially when high rate charging is required, and there is a drawback that the operating voltage is lowered because sufficient charging is not possible and the cycle characteristics are rapidly deteriorated.

【0009】本発明は、高い作動電圧でエネルギー密度
が高く、かつサイクル寿命が長く、工業的にも容易に合
成可能な正極材を用いることにより、経済性の高い二次
電池を提供することを目的とする。
The present invention aims to provide a highly economical secondary battery by using a positive electrode material which has a high energy density at a high operating voltage, a long cycle life, and can be easily synthesized industrially. To aim.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく、リチウム二次電池用正極材を種々検討した
結果、LixCrMnO4 なる一般式で表される特定のリチウム
含有複合酸化物を正極材として用いたときにサイクル寿
命が長く、高い作動電圧を有することを見いだした。即
ち、高い作動電圧と長いサイクル寿命を得るため、LixC
rMnO4 なる一般式のxが0<x≦2より構成されるもの
であることを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted various studies on positive electrode materials for lithium secondary batteries, and as a result, have found that a specific lithium-containing composite represented by the general formula Li x CrMnO 4 It has been found that when an oxide is used as a positive electrode material, it has a long cycle life and a high operating voltage. That is, to obtain a high operating voltage and a long cycle life, Li x C
It is characterized in that x in the general formula rMnO 4 is constituted by 0 <x ≦ 2.

【0011】本発明において、LixCrMnO4 のxが0であ
ると正極−負極間を移動するリチウムの絶対量が不足
し、十分な容量が発揮できず、逆に2を超えると充電効
率が低くなり、いずれも不適当である。そしてこれらの
うちxが1.0 〜1.5 を採用すると安定なスピネル結晶骨
格を形成するとともに、十分な放電容量とLi挿入時の電
子伝導性を確保できるので特に好ましい。そしてより好
ましくはxが1.05〜1.3、特に1.1 〜 1.2であることが
好ましい。
In the present invention, when x of Li x CrMnO 4 is 0, the absolute amount of lithium migrating between the positive electrode and the negative electrode is insufficient, and sufficient capacity cannot be exhibited. On the contrary, when it exceeds 2, charging efficiency is increased. It becomes low and neither is suitable. Of these, x is preferably 1.0 to 1.5 because a stable spinel crystal skeleton is formed and a sufficient discharge capacity and electron conductivity when Li is inserted can be secured. And more preferably, x is 1.05 to 1.3, particularly 1.1 to 1.2.

【0012】実際、このような正極材を製造するには所
定の化学量論比になるように出発物質を調製し、これを
酸化性雰囲気下 700〜 950℃で焼成する。合成に際して
は、出発物質として式LixCrMnO4 なる一般式を構成する
金属元素の酸化物、水酸化物、炭酸塩、または硝酸塩な
どを用いることができる。また、出発物質の粒径はなる
べく小さい方が望ましい。これは焼成時に固相反応を行
うため、出発物質の粒径が小さいほうが反応が速やかに
均一に進行するためである。出発物質の平均粒径は、好
ましくは30μm以下、より好ましくは15μm以下とする
ことが望ましい。
In practice, in order to manufacture such a positive electrode material, the starting materials are prepared so as to have a predetermined stoichiometric ratio, and the starting materials are fired at 700 to 950 ° C. in an oxidizing atmosphere. In the synthesis, oxides, hydroxides, carbonates, nitrates or the like of metal elements forming the general formula of Li x CrMnO 4 can be used as starting materials. Further, it is desirable that the particle size of the starting material is as small as possible. This is because the solid phase reaction is performed during firing, and the smaller the particle size of the starting material, the faster the reaction proceeds uniformly. The average particle size of the starting material is preferably 30 μm or less, more preferably 15 μm or less.

【0013】また、合成に際しての焼成条件としては、
温度は 700〜 950℃、好ましくは850 〜 900℃とするこ
とが望ましい。時間は15〜30時間、好ましくは20〜25時
間とすることが望ましい。
The firing conditions for the synthesis are as follows:
It is desirable that the temperature be 700 to 950 ° C, preferably 850 to 900 ° C. The time is desirably 15 to 30 hours, preferably 20 to 25 hours.

【0014】また、合成時の均一化をはかるため、焼成
初期から1〜4時間後、好ましくは2〜3時間後に一旦
焼成炉から取り出し、焼成物を粉砕撹拌し、再び焼成炉
に戻す工程を入れることが望ましい。
In order to make the composition uniform during synthesis, a step is taken out of the firing furnace after 1 to 4 hours, preferably 2 to 3 hours after the initial firing, and the fired product is crushed and stirred, and then returned to the firing furnace. It is desirable to put in.

【0015】また、焼成終了時、焼成温度から降温して
いく時の降温速度が早すぎると安定なスピネル結晶骨格
が得られずサイクル特性に支障をきたすため、降温速度
はなるべく小さいほうが良い。焼成終了時の降温速度は
1時間あたり50℃〜 120℃、好ましくは、1時間あたり
80℃〜100 ℃とすることが望ましい。しかしながら、こ
れら上記の条件は特に限定されるものではない。
At the end of firing, if the rate of temperature decrease when lowering the temperature from the firing temperature is too fast, a stable spinel crystal skeleton cannot be obtained and cycle characteristics are hindered. Therefore, the rate of temperature decrease is preferably as low as possible. The temperature lowering rate at the end of firing is 50 ° C to 120 ° C per hour, preferably per hour
It is desirable that the temperature be 80 ° C to 100 ° C. However, these above conditions are not particularly limited.

【0016】一方、負極材としては、例えばリチウム金
属またはリチウムを含有する負極材として、リチウム合
金、例えばLi-Al 合金、Pb,Bi,Sn等の低融点金属とLiと
の合金等リチウムを含有する有機導電性物質や有機物焼
成体などの層間化合物、正極材よりも卑な電位で作動す
るリチウムを含有する金属酸化物や硫化物やセレン化物
等を用いることができるがこれに限定されるものではな
い。
On the other hand, as the negative electrode material, for example, lithium metal or a negative electrode material containing lithium, lithium alloy such as Li-Al alloy, alloy of low melting point metal such as Pb, Bi, Sn and Li and lithium is included. It is possible to use an organic electroconductive substance, an intercalation compound such as an organic fired body, a metal oxide, a sulfide, or a selenide containing lithium that operates at a base potential lower than that of the positive electrode material, but is not limited thereto. is not.

【0017】また、電解質には、リチウムイオンが移動
可能なものなら何でもよいが、固体電解質、例えば、ポ
リエチレンオキサイドにLiClO4を溶解させたものや無機
リチウム固体電解質を樹脂中に分散させたもの等やエス
テル類や、エーテル類の有機溶媒にリチウム塩を溶解さ
せた非水溶媒電解質、例えば、炭酸プロピレンとジメト
キシエタンの1:1の混合溶媒に1モルの過塩素酸リチ
ウムを溶解したもの等を用いることができる。
Any electrolyte can be used as long as lithium ions can move, but solid electrolytes such as polyethylene oxide in which LiClO 4 is dissolved or inorganic lithium solid electrolyte dispersed in a resin can be used. A non-aqueous solvent electrolyte prepared by dissolving a lithium salt in an organic solvent such as an ester or an ether, for example, a 1: 1 mixed solvent of propylene carbonate and dimethoxyethane in which 1 mol of lithium perchlorate is dissolved. Can be used.

【0018】[0018]

【作用】本発明のLixCrMnO4 (但し、0<x≦2)なる
一般式で構成される正極材は、合成された時点において
放電状態であり、リチウムまたはリチウムを含有しうる
負極材と組み合わせて充電し正極材中のLiを結晶格子中
から引き抜くことにより充電状態となる。この時の正極
材側での反応は、次式のごとく進行すると考えられる。
The positive electrode material of the present invention composed of the general formula Li x CrMnO 4 (where 0 <x ≦ 2) is in a discharged state at the time of synthesis and is a negative electrode material that may contain lithium or lithium. By combining and charging and extracting Li in the positive electrode material from the crystal lattice, a charged state is achieved. It is considered that the reaction on the positive electrode material side at this time proceeds as shown in the following equation.

【0019】 LixCrMnO4 → Lix-yCrMnO4+yLi++ye- ・・(1) ここで、(1) 式の右項のLi+ は負極材側に移行する。こ
のように構成された電池は高い作動電圧でエネルギー密
度が高く、サイクル寿命が長いものとなる。
Li x CrMnO 4 → Li xy CrMnO 4 + yLi + + ye ··· (1) Here, Li + in the right term of the formula (1) shifts to the negative electrode material side. The battery thus constructed has a high energy density at a high operating voltage and a long cycle life.

【0020】[0020]

【実施例】以下に実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0021】[実施例1]LixCrMnO4 なる一般式のxが
1.2 となるように、出発物質としてLi2CO3を0.12モルと
MnCO3 を0.2 モルとCr2O3 を0.1 モル秤量し、良く混合
したものを酸化性雰囲気中において焼成炉で 900℃、2
時間焼成した後、一旦取り出し、焼成物を粉砕混合し、
再び酸化性雰囲気中において焼成炉で 900℃、20時間焼
成後、1時間あたり 100℃の速度で100 ℃になるまで降
温し、焼成物を取り出し乳鉢にて粉砕した。
[Example 1] x in the general formula Li x CrMnO 4 is
Li 2 CO 3 as a starting material to 0.12 mol
0.2 mol of MnCO 3 and 0.1 mol of Cr 2 O 3 were weighed and mixed well, and the mixture was mixed in an oxidizing atmosphere at 900 ° C in a firing furnace for 2
After firing for an hour, take it out once, pulverize and mix the fired product,
After again firing at 900 ° C. for 20 hours in a firing furnace in an oxidizing atmosphere, the temperature was lowered at a rate of 100 ° C. per hour until the temperature reached 100 ° C., and the fired product was taken out and ground in a mortar.

【0022】この粉砕物85重量部に導電剤としてケッチ
ェンブラックを10重量部と、結着剤としてエチレン−プ
ロピレン共重合体樹脂5重量部を加え、これをキシレン
に溶解させてスラリーとした。このスラリーを厚さ30μ
mのアルミニウム箔に均一に塗布した後、これを約80℃
で乾燥させてからローラープレス機にて塗布厚が約 100
μmになるまで圧延し、20mm×20mmの大きさに切断した
ものを正極とした。
10 parts by weight of Ketjen black as a conductive agent and 5 parts by weight of an ethylene-propylene copolymer resin as a binder were added to 85 parts by weight of this pulverized product, and this was dissolved in xylene to form a slurry. This slurry has a thickness of 30μ
m evenly applied to aluminum foil, then apply this at about 80 ℃
After drying with a roller press, the coating thickness is about 100.
The positive electrode was rolled to a size of μm and cut into a size of 20 mm × 20 mm.

【0023】一方、負極としては、厚さ 300μmの金属
リチウム箔を25mm×25mmの大きさに切断し、端部にニッ
ケルリードを圧着したものを作成した。図1のように、
負極1と正極3の塗布面を対向させ、その間にセパレー
タとして、厚さ25μmのポリプロピレン製のマイクロポ
ーラスフィルム2を介在させ十分な電解質の存在するビ
ーカーセルで、正極端子5、負極端子4に充放電電源を
接続し、25℃のアルゴン雰囲気中で充放電試験を行っ
た。
On the other hand, as the negative electrode, a metal lithium foil having a thickness of 300 μm was cut into a size of 25 mm × 25 mm, and a nickel lead was pressure-bonded to an end of the foil. As shown in Figure 1,
A positive electrode terminal 5 and a negative electrode terminal 4 were filled with a beaker cell having a sufficient amount of electrolyte with a negative-polarity 1 and a positive-electrode 3 coating surfaces facing each other and a polypropylene microporous film 2 having a thickness of 25 μm interposed as a separator therebetween. A charging / discharging test was conducted in an argon atmosphere at 25 ° C. with a discharge power supply connected.

【0024】電解質として1mol/l のLiClO4を溶解した
体積比1:1の炭酸プロピレンとジメトキシエタンの混
合溶媒を用いた。充放電条件は定電流で1mA/cm2の電流
密度で行い、充電電圧は4.5 Vまで、放電電圧は2.5 V
までの電位規制で行った。
A mixed solvent of propylene carbonate and dimethoxyethane having a volume ratio of 1: 1 in which 1 mol / l of LiClO 4 was dissolved was used as an electrolyte. Charge and discharge conditions are constant current and current density of 1mA / cm 2 , charging voltage is up to 4.5V, discharging voltage is 2.5V.
It was done by controlling the potential up to.

【0025】充放電5サイクル目の放電カーブを図2に
示した。また 5,10,25,50 サイクル時の平均作動電圧を
表1に、5サイクル目を初期値としたときの放電容量維
持率を表2に示した。
FIG. 2 shows the discharge curve at the fifth cycle of charge / discharge. Table 1 shows the average operating voltage at 5,10,25,50 cycles, and Table 2 shows the discharge capacity maintenance rate when the fifth cycle is the initial value.

【0026】[実施例2]LixCrMnO4 なる一般式のxが
0.5 となるように、出発物質としてLi2CO3を0.05モルと
MnCO3 を0.2 モルとCr2O3 を0.1 モル秤量した以外は、
すべて実施例1と同様に行い、充放電テストも同様に行
った。また 5,10,25,50 サイクル時の平均作動電圧を表
1に、5サイクル目を初期値としたときの放電容量維持
率を表2に示した。
[Example 2] x in the general formula of Li x CrMnO 4 is
Li 2 CO 3 as a starting material to 0.05 mol
Except that 0.2 mol of MnCO 3 and 0.1 mol of Cr 2 O 3 were weighed,
All were carried out in the same manner as in Example 1, and the charge / discharge test was also carried out in the same manner. Table 1 shows the average operating voltage at 5,10,25,50 cycles, and Table 2 shows the discharge capacity maintenance rate when the fifth cycle is the initial value.

【0027】[実施例3]LixCrMnO4 なる一般式のxが
1.0 となるように、出発物質としてLi2CO3を0.1モルとM
nCO3 を0.2 モルとCr2O3 を0.1 モル秤量した以外は、
すべて実施例1と同様に行い、充放電テストも同様に行
った。また 5,10,25,50 サイクル時の平均作動電圧を表
1に、5サイクル目を初期値としたときの放電容量維持
率を表2に示した。
[Example 3] x in the general formula of Li x CrMnO 4 is
Li 2 CO 3 as a starting material in an amount of 0.1 mol and M
Except that 0.2 mol of nCO 3 and 0.1 mol of Cr 2 O 3 were weighed,
All were carried out in the same manner as in Example 1, and the charge / discharge test was also carried out in the same manner. Table 1 shows the average operating voltage at 5,10,25,50 cycles, and Table 2 shows the discharge capacity maintenance rate when the fifth cycle is the initial value.

【0028】[実施例4]LixCrMnO4 なる一般式のxが
1.8 となるように、出発物質としてLi2CO3を0.8モルとM
nCO3 を0.2 モルとCr2O3 を0.1 モル秤量した以外は、
すべて実施例1と同様に行い、充放電テストも同様に行
った。また 5,10,25,50 サイクル時の平均作動電圧を表
1に、5サイクル目を初期値としたときの放電容量維持
率を表2に示した。
[Example 4] x in the general formula of Li x CrMnO 4 is
1.8 mol of Li 2 CO 3 as starting material and M
Except that 0.2 mol of nCO 3 and 0.1 mol of Cr 2 O 3 were weighed,
All were carried out in the same manner as in Example 1, and the charge / discharge test was also carried out in the same manner. Table 1 shows the average operating voltage at 5,10,25,50 cycles, and Table 2 shows the discharge capacity maintenance rate when the fifth cycle is the initial value.

【0029】[比較例]LiMn2O4 を合成するため、Li2C
O3を 0.1モルとMnO2を0.4 モル秤量し、良く混合したも
のを酸化性雰囲気中において焼成炉で 800℃、20時間焼
成後、焼成物を取り出し乳鉢にて粉砕した。この粉砕物
を用いたこと以外はすべて実施例1と同様に行った。
[Comparative Example] To synthesize LiMn 2 O 4 , Li 2 C
After 0.1 mol of O 3 and 0.4 mol of MnO 2 were weighed and mixed well, the mixture was baked in an oxidizing atmosphere in a baking furnace at 800 ° C. for 20 hours, and the baked product was taken out and ground in a mortar. The same procedure as in Example 1 was carried out except that this pulverized product was used.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】これらの実施例ならびに比較例の結果か
ら明らかなように、本発明を適用した二次電池では、高
い作動電圧が発現でき、またサイクル特性も従来に比較
して優れたものとなる。
As is clear from the results of these Examples and Comparative Examples, the secondary battery to which the present invention is applied can exhibit a high operating voltage and has excellent cycle characteristics as compared with the conventional ones. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した実施例及び、比較例で使用し
た試験用電池の断面図
FIG. 1 is a cross-sectional view of test batteries used in Examples to which the present invention is applied and Comparative Examples.

【図2】本発明を適用した実施例1および比較例の5サ
イクル目の放電曲線を示す特性図
FIG. 2 is a characteristic diagram showing discharge curves at the 5th cycle of Example 1 and Comparative Example to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 負極 2 マイクロポーラスフィルム 3 正極 4 負極端子 5 正極端子 1 Negative electrode 2 Microporous film 3 Positive electrode 4 Negative electrode terminal 5 Positive electrode terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式 LixCrMnO4(但し、0<x≦2)で
表される正極材を用いたことを特徴とするリチウム二次
電池。
1. A lithium secondary battery comprising a positive electrode material represented by the general formula Li x CrMnO 4 (where 0 <x ≦ 2).
JP3352258A 1991-12-13 1991-12-13 Secondary lithium battery Withdrawn JPH05166510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3352258A JPH05166510A (en) 1991-12-13 1991-12-13 Secondary lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3352258A JPH05166510A (en) 1991-12-13 1991-12-13 Secondary lithium battery

Publications (1)

Publication Number Publication Date
JPH05166510A true JPH05166510A (en) 1993-07-02

Family

ID=18422832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3352258A Withdrawn JPH05166510A (en) 1991-12-13 1991-12-13 Secondary lithium battery

Country Status (1)

Country Link
JP (1) JPH05166510A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001935A1 (en) * 1993-07-09 1995-01-19 National Research Council Of Canada Novel materials for use as cathodes in lithium electrochemical cells
JPH09134723A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001935A1 (en) * 1993-07-09 1995-01-19 National Research Council Of Canada Novel materials for use as cathodes in lithium electrochemical cells
JPH09134723A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
EP0951083B1 (en) Solid state lithium secondary battery
EP0696075A2 (en) Non-aqueous electrolyte secondary battery
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP3562187B2 (en) Non-aqueous electrolyte secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JPH09245787A (en) Positive electrode active material for lithium secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2000243455A (en) Lithium secondary battery
JP3086297B2 (en) Non-aqueous solvent secondary battery
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JP2835138B2 (en) Non-aqueous solvent secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JPH05166510A (en) Secondary lithium battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JPH0513082A (en) Nonaqueous electrolytic liquid secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
JP3104321B2 (en) Non-aqueous electrolyte lithium secondary battery and method for producing the same
JPH05129019A (en) Secondary battery
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery
JP2001015109A (en) Lithium secondary battery
JP3017847B2 (en) Non-aqueous solvent secondary battery
JP2003317718A (en) Positive electrode material, electrode and battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311